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Application of the coupled-cluster approach to the electric dipole moment of atoms
and molecules due to parity and time-reversal violation
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In this paper we present a variant of Monkhorst's coupled-cluster-based linear-response approach
designed for direct calculations of static properties of closed-shell many-fermion systems [Int. J.
Quantum Chem. Symp. 11, 421 (1977)]. All the required equations are derived in the framework
of the coupled-cluster singles and doubles model. Although the approach has been developed with
the calculation of electric-dipole moment of atoms and molecules due to parity- and time-reversal-
violating interactions in mind, it is general enough to be applicable to other problems which require
the presence of two one-electron perturbations.

PACS number(s): 03.65.—w

I. INTRODUCTION

The possible existence of an electric-dipole moment
(EDM) on an atom or a molecule, as a manifestation
of parity (P) and time-reversal (T) violation in nature,
has fascinated experimentalists and theorists alike for a
long time [1]. Such EDM's on atoms and molecules-
if they exist —are believed to be caused by P- and T-
violating weak interactions among their constituents (nu-
cleons and electrons) [2]. However, much stronger (P
and T-conserving) Coulomb forces, among the very same
constituents, make the task of calculating the eEects of
weak interactions computationally intricate. Further-
more, calculations of EDM on heavy atoms, where the
efFects are more likely to be seen [3], are rather compli-
cated because of the larger number of degrees of free-
dorn (electrons) in such systems. A number of calcu-
lations have been performed to evaluate the EDM's of
difFerent atomic and molecular systems [4], but most of
these calculations have been based on the diagrammatic
many-body perturbation theory (MBPT). Even in the
ordinary atomic-structure calculations employing the di-
agrammatic MBPT, the tremendous proliferation in the
number of diagrams beyond second order remains a seri-
ous bottleneck [5]. However, if one wants to apply such
an approach to the problem of atomic EDM, this pro-
liferation is made much worse by the interplay between
normal Coulomb interactions and the P- and T-violating
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interactions, so that bookkeeping becomes a cumbersome
task, making high-precision calculations very difBcult, if
not impossible, to achieve [6]. In this paper we propose
an alternative, nonperturbative, approach, based on the
coupled-cluster method [7,8], which not only avoids the
complexities of MBPT, but also achieves a clean separa-
tion of P- and T-violating interactions, &om those of the
dominant Coulomb forces.

The coupled-cluster method (CCM) for closed-shell
systems, whose foundations were laid by Coester and
Kuemmel [7,8] among others, is a nonperturbative ap-
proach to the many-body problem. This method shares
the attractive property of size extensivity with MBPT,
without the proliferation of diagrams associated with it.
Size extensivity, which implies correct scaling of various
extensive properties of a many-body system with its size,
is of paramount importance for extended systems such as
molecules. Though the CCM is an. independent formal-
ism in itself, the studies by Coester [7] and Hubbard [9]
have shown that it is equivalent to summing classes of
MBPT diagrams to all orders. Another strength of the
CCM is its versatility, i.e., applicability to a large variety
of problems in the field of many-body physics, ranging
from atoms to condensed matter systems [10]. Later in
this paper, we show that the evaluation of the effects of
P and T violation on atomic systems amounts to the cal-
culation of second derivatives of the energy of the system
with respect to the perturbation parameters. A substan-
tial part of the paper is concerned with developing an
approach that will lead to the direct calculation of these
derivatives within the coupled-cluster formalism. This
approach generally referred to as the coupled-cluster
based linear-response theory (CCLRT) is based on the
philosophy outlined in the work of Monkhorst [11] and
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developed by others [12]. One of the main advantages

of this approach is that we treat the external perturba-
tion to a given order as determined by the property to be
calculated. The ground state of the system is solved in-

dependently of the external perturbation where all single

and double excitations are accounted for.
The remaining sections are organized as follows. In

Sec. II we define the problem and establish the connec-
tion between the EDM expectation value and the energy
derivatives. Then, in Sec. III, we present a brief overview
of the CCM. Formulation of the CCLRT, and the deriva-
tion of all the required equations pertaining to the atomic
EDM problem, is done in Sec. IV. Numerical applica-
tions of this approach to calculate the EDM's of various
atomic and molecular systems, due to parity- and time-
reversal-violating interactions, will be presented in future
publications.

II. BACKGROUND

Here we give a brief background to the problem of P
and T violation in atomic systems, and its generaliza-
tion to molecules is straightforward. We assume that
the unperturbed ground state of a many-electron atom
is described by the eigenvalue problem

Hpl&) = EI&)

where Hp is the unperturbed Hamiltonian which is gen-
erally taken to be the Dirac-Coulomb Hamiltonian for
atomic systems,

H = Hp —) ez;E+gHPzv,

where g,. ez; is the electric-dipole operator of the atom,
g is a parameter determining the strength of P and-
T-violating interaction H~z~, and the subscript PTV
refers to the violation of parity- and time-reversal sym-
metries. The explicit forms of g and HPz v will be deter-
mined by the mechanism leading to P and T violation.
For example, to study P and T violation caused by an
intrinsic EDM on an electron, one can take as perturba-
tion [16]

H,„,=2icd. ) P;p„p,', (4)

where d, is the intrinsic EDM of electron, P and ps are
the Dirac matrices, the subscript i runs over the electrons
in the system, and p; is the momentum of the ith elec-
tron. Since the unknown parameter d, determines the
strength of the interaction H;„t, the obvious choice for g
and HP~v in this case will be

be the Schrodinger many-body Hamiltonian. The many-
electron state lg), which is also an eigenstate of total
angular momentum and parity, will, in general, be a lin-
ear combination of Slater determinants composed of one-
electron states. If one were to choose Hp of Eq. (2), these
one-electron states will be four-component Dirac spinors.

However, if the parity- and time-reversal symmetries
were being broken. by an interaction gH~z ~, then, in the
presence of an external electric field E (in the z direc-
tion), the total atomic Hamiltonian will be

2

Hp ——) crt; p;+P;mc + V„„,(r;) + )
j(i

~ (2)
g=dg)

HpTv = 2ic) A'ys'p'

The two-electron part of this Hamiltonian is not Lorentz
invariant. One could add the Breit interaction [13] to
the Hamiltonian as a correction. It is also important to
use a relativistic many-body approach which avoids the
continuum dissolution problem associated with the neg-
ative energy solutions that one encounters while using
the Hamiltonian of Eq. (2) [14]. One such approach is
the so-called no pair approximation of Sucher whereby
one projects out all the negative energy solutions f'rom

the model space [15]. However, the CCLRT formalism
that we develop later is independent of the details of
the relativistic nature of the problem, and is equally ap-
plicable to a nonrelativistic situation, where Ho would

I

If the atom has a permanent EDM, there will be a shift
in its energy when it is acted on by an electric field. If the
applied field is sufficiently weak, the shift in the energy
will be linear with respect to the field strength. If the
change in the energy is W@, the electric dipole moment
of the atom is defined as

( BW@1
D = lixn I— (6)E~p5 E )

Clearly, the first nonvanishing contribution to the energy
shift which is linear in the strength of the external electric
field, is obtained in the second order of the perturbation
theory,

) - (&lgH I&.)(@.l —E; 'EI@)

Here Eq 's are the energies corresponding to the intermediate states I@,), and Ey is the energy of the state lf).
Clearly, for W+ to be nonzero, the parities of the states lg, ) have to be opposite to that of the unperturbed state
I@). Using Eq. (6), we get the expression for the EDM of the atom,

~ - 8'IgH»v I@.) (&.I 2; ez'I@) + c.c.
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Since the perturbation parameter g, in general, is an un-

known quantity (such as d, abave), the quantity that one
calculates is the ratio [17],

tab gab gba
Zg

~abc ~abc ~bac {14)

R= —.D

It is easy to conclude from Eqs. (6), (8), and (9) that

(9)

If H is the Hamiltonian of the system and E is the
exact energy, we have

02%'E

g~E z=o; =o
(1o) HI&) = El&) .

It is this relationship between the second derivative of
energy and the ratio R which will be utilized in the direct
evaluation of the latter by means of the CCM. In the
following section we give a brief outline of the CCM. e He lgp) = Elgp). (16)

If we multiply both sides of Eq. (15) with e T and use
Eq. (11) we get

III. THE COUPLED-CLUSTER METHOD
On projecting Eq. (16) onto the space of the state func-"' s (l&o) IC) IC,') " l4;,'I'. :::) "},one g«s

According to the original proposal of Coester [7], the
exact wave function lg) of a closed-shell many-fermion
system can be written as and

{Pole He~lgp) = E

I&) =e lyo),

where T is the cluster operator and lgo) is an independent
particle (i.e., uncorrelated) reference state function. For
example, leap) could be a Slater determinant composed of
Hartree-Fock single-particle states. The cluster operator
T is defined as

{P;Ie He lgo) = 0,

{4„le He IP ) =0,

{P;,„'"e He lgo) = 0,

(18)

N

T=) T, , (12)

T, = ) t, (a+a;},
i,a

T, = ) t,,'(a+a, a+, a, },
o)bi)j

TL
abc. .. r + + +'(a a ab a~a ag. . .},

where N is the total number of fermions in the system.
The individual cluster operators T~ are de6ned in terms

of second-quantized operators as

In the equations above IP,. I',
"

) denotes a general n
fold excited determinant obtained by exciting(deexciting)
n-fermions out of the occupied states (holes) i, j, k, . . .
into the unoccupied states (particles) a, b, c, . . . . Equa-
tions (18) are a set of coupled nonlinear equations
which can be solved to get the cluster coefBcients

(t, , t, s, . . . , t; s&", . .. .},thus determining the exact wave

function lg). These cluster coefficients can then be sub-
stituted in Eq. (17) to evaluate E.

Full solution of the coupled-cluster equations for an N
fermion system would entail solving Eqs. (18) for all pos-
sible N-fold excitations out of the reference state function

lgp). This becomes highly impractical even for relatively
small values of ¹ Therefore, practical applications of
CCM mandate that we truncate the cluster expansion of
Eq. (12) to small values of N. One such possibility is the
so-called coupled-cluster singles and doubles approxima-
tion (CCSD) [18,19] which truncates Eq. (12) at l = 2,

o)b)c.i)~)k. .. T =Tx+T (19)

In the convention we have adopted, subscripts (super-
scripts) i,j, k, . . . (a, b, c, . . .) refer to the orbitals which
are occupied (unoccupied) in the reference state function

Igo). Curly brackets, (.. .}, around a group of creation
and annihilation operators imply normal ordering. Clus-
ter coefBcients like t,- - are fully antisymmetrized, i.e.,

{P,Ie He Igp) = 0,

{P„le He Igo) = 0 . {2o)

The solutions of T can be substituted in Eq. (17) to get
the value of the energy F. The detailed expressions for

Therefore, in order to determine the cluster coeKcients
for the CCSD approximation, the nonlinear equations
one has to solve are
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nonlinear equations represented by Eqs. (20) have been

derived by Cullen and Zerner [19] using a diagrammatic

approach.

g2=g,
O2 = HPTV ) (23)

IV. COUPLED-CLUSTER-BASED
LINEAR-RESPONSE METHOD

If we were to apply the traditional CGM to the

problem of atomic EDM by simply adding a parity-
and time-reversal-violating Hamiltonian Hpzv to the
atomic many-body Hamiltonian, it will amount to treat-

ing HPT~ to all orders along with the electron corre-
lation. The unknown parameters associated with HPT~
can lead to numerical problems while solving the coupled-

cluster equations. To circumvent this, we formulate the
atomic EDM problem using the coupled-cluster based
linear-response theory, as outlined by Monkhorst [11).

"' "'&(gi, g2)e "'"'ldo) = &(gi gz) 14'o) . (24)

Therefore, the counterparts of Eqs. (17) and (18) will be

(Pole '"'"'&(gi, g2)e '"'"'l4o) = E(gi, g2) (25)

and

where the explicit forms of g and HPTy depend on

the mechanisxn responsible for P and T violation in the

atom. However, we must emphasize that our exposition

of GCLRT is quite generul in that it can be easily applied

to any other case of interest where the problem can be

formulated as a double perturbation problem.

With the new Hamiltonian of Eq. (21), Eq. (16) can

be generalized to

Basic formalism
(4"':le ("'")&(gi,g~)e ("'")ldo) = o. (26)

The basic philosophy behind the coupled-cluster-based
linear-response approach is to treat the P and T-
violating term HI z& of the atomic many-body Hamil-

tonian only to first order, while treating the electron cor-
relation to all orders. The other significant advantage of
this approach is that it leads to direct calculation of the
expectation value of an operator (in our case, to be more

precise, the energy derivatives), instead of the usual way
of first calculating the wave function and then finding the
expectation value. Following Monkhorst's approach we

consider the perturbed Hamiltonian to be

If the coefficients gi and g2 are small, the new energy

E(gi, gz) and the new cluster operator T(gi, g2), can be
Taylor expanded in terms of them, i.e. ,

@(gi~g2) @+giE + g2E + glg2@ + ' ' '
~

T(gi) g2) = T + giT ' l + g2T ' l +g giT2~ ' l +
(27)

From Eq. (27) above, it is clear

+(gl) g2) + + giOi + g2O2 ~ (21)
E " = E(gi) g2)g2s, ps, p

(28)

where H is the atomic many-body Hamiltonian, gi and

g2 are the perturbation parameters associated with the
perturbation operators Oi and Oq. By comparing Eqs.
(21) and (3), the natural choices for gi, Oi, g2, and Oz,
for the problem of calculating EDM of an atom due to P
and T violation, will be

However, by looking at the definition of ratio R in Eq.
(10), it is obvious that if one were to define gi, g2, Oi,
and 02 according to Eqs. (22) and (23),

(29)

and

Og ——D, (22)

Therefore, the quantity of interest for the atomic EDM
problem is E~ 'il. Now we will derive the expressions
for E~ ' l, and the equations determining the associated
cluster operators. In order to do that, first we substitute
the quantities from Eq. (27) in Eq. (24),

E+ gqE ' + g2E ' + gqg2E ' +

(I+giOi+g. O2) le"' ' ."
i

Since ere are interested in expressing both the sides of the equation above in terms of various powers of the coefficients
T(1,0)

gq and g2, we expand the exponential terms like e~' ' to get

lP + ai&"'+ g*@"'+ uig~&"'+ ".
) Ig4)

= e (1 —giT ' +. )(1 —g2T ' +.. .)(1 —gig2T ' + .)

x (II + giOi + gq02) (1+giT~ ' l +.. .)(1+g2T ' + . .)(1+gig2T "+ . .) e l4o) .
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Comparing the terms independent of g1 and g2 on both
sides of the above expression, not too surprisingly, gives
us the unperturbed coupled-cluster equation

e He~ I(t p) = EIPp) .

Prom the terms proportional to g1, after a little alge-
bra, we get the following equation which determines the
cluster operator T( ' ) and E( ' ):

.-' 0, + II, T(") ",=E("), ,

where d„~ and h„' are, respectively, the matrix elements
of the operators 01 and 02 over single particle states
labeled p and q. Cluster operators such as T( ) can
themselves be expanded as

T(1,o)
l

l=1

T(P 1) ~ T(0,1)
l

/=1

—T O + 0 T(o,1) T E(o,1) (31)

Finally, the terms proportional to g1g2 give us the equa-
tions determining E( ) and T(

where square brackets [. . .] denote a commutator; i.e. , for
operators A and B, [A, B] = AB —BA. Above, terms
proportional to g2 give us the equation which determines
T(o» and E(»

where

T(1,o)
1

T(1,o)
2

T(1,1) X T(1,1)

l=1

""t, a+a, ,

't

) ""t,,'(a+a, a,+a, ),
a.' d

i&j

(38)

e
l [0,T "] + [O„T"] + [H, T '

]

and

and

(4.",.: I (o + IH, T"'l)
l
4 0) = o .

(4,' l (o, +(H, Ti''Il) I&.) = o,

(33)

(34)

+I, '"], "
r

By projecting Eqs. (30)—(32) onto the space of the func-

(I&&) 14') 1(t),~) I4;.g'"), . . .), and using the
fact that various cluster operators commute with each
other, we get the equations determining T( ' ), T( ' ),
T( ' ) and E(

T(1,o) T(1,0) T(1,0)
1 ')

T(o,1) T(o, 1)
1 2

T ' = T(1,1) + T(1,1)
1 2 (39)

As a result of this approximation, the equations deter-
mining cluster operators T(1,o) T(o,1) and T(1,1) and
the energy derivative E( ' ), become

(4.'ll (Oi + (HcT"')c) ~40) = 0

(0;,'l (Oi+ (HcT' ')c) lOD) = O, (40)

and

However, keeping practical applications in mind, we trun-
cate the expansions of T( ' ), T( ), and T( ' ) to, at the
most, double excitations; i.e. ,

(&' - l([O„T("] + [O„T"]

and

&"' = (&.I([O,T"']+[o. T"']

+[H "']+[[»T"']T""])I&) = o (»)

(dill (o + (H T"") ) l4 ) = o

(4;,'l (4 + (Hc»"')c) l40) = c,

((t;I((O T ")) + {O,T~' i) +(H Ti"))

(41)

+[H T '']+[[H T' '], T"'"])14.), (36)

where, for the sake of brevity, for any general operator
0, we have used the expression 0 = e Oe . Since both
the operators 01 and 02 represent one body interactions,
they can be expressed as

O, = ) d~qa+aq,
P)9

+(HNTi")T&o'&}~)Iy, ) = 0,

(42)

(y'l ((o T~''&) +(0 T"") + (H T"")

O2 —) h, a+aq,
s

(37)
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and

@"'= (40l (Wi&"")a + ÃP""&a

+ Ãx&"')c+ (&~&"'&"')c)l40) .

(43)

Above HN implies the normal-ordered form of the op-
erator H = e He, and the subscript C implies that
there is at least one contraction among the creation (an-
nihilation) operators of JI~ and annihilation (creation)
operators of cluster operators, leading to connected dia-
grams in the diagrammatic approach [5]. We have also
used the Wick's theorem [20] and the linked-cluster the-
orem [21] to reduce the commutators of Eqs. (33)—(36)
to get the connected products of normal-ordered terms
above in Eqs. (40)—(43). These steps are given in more
detail in Ref. [22].

By applying the rules of diagrammatic coupled-cluster
theory [5] to various terms of the expansions illustrated
above, one can finally get the detailed mathematical ex-
pressions, i.n terms of various cluster amplitudes and the
Hamiltonian matrix elements, for all the CCLRT equa-
tions for T~ ' ~, T~ ' ~, and T~ ~. The equations are
rather lengthy and have been relegated to the Appendix.

It is clear from the cluster amplitude equations given in

the Appendix that "'t;,"'t, , "'t;, . . . satisfy linear

equations unlike the cluster amplitudes t;, t,. ~, . . . . How-

ever, to solve for ""t;,i"'t; . , "'t;, , we do need the

complete solutions for t;, t, , . . ., as is quite clear from
those equations. Therefore, in CCLRT, one first solves
for the unperturbed problem and determines the T oper-
ators. Those solutions of T are then substituted in Eqs.
(Al) —(A4), which are then solved to get the cluster co-
efficients corresponding to T~ ' ~, T~ ' ~, and T~ ' ~, thus
completing the solution.

V. DISCUSSION

In this paper we have presented a variant of
Monkhorst's [11] coupled-cluster approach particularly
suited for—but not limited to—the calculation of the
atomic EDM due to parity- and time-reversal-violating
interactions. This approach is fully linked, and, there-
fore, it also allows for the calculation of properties of
extended systems such as molecules and clusters. The
properties to be calculated depend on cluster coefficients
whose solution is a mathematical problem formulated in-
dependent of the calculation of the correlated ground
state of the system. The cluster coefficients needed for
calculating the properties of interest are solutions of lin-

ear equations which should not be difficult to solve pro-
vided one has a good solution to the ground state prob-
lem. In the future we plan to implement this approach
numerically to test the viability of the approach.

APPENDIX A: THE EXPRESSIONS FOR CCLRT EQUATIONS
FOR T& ' ~) T& ' &, AND T& ' ~ AMPLITUDES

The detailed diagrammatic derivation of the equations satisfied by various cluster amplitudes is given in Ref. [22].
Since this derivation is quite lengthy, consisting of a large number of diagrams, here we just quote the final results.

The linear equations which determine the cluster coefBcients "'t, and "'t, are found to be

(&;.
~

I'O, + (@~re"l}
)

= d; + ) d, t,' —) di,;t„+) dg, (ti„—t,'t„) + ) f,"'t,'.
c,k

+) f~('''t„—' 't t„—"t t) —) y
k, c c,k

+ ) (uk~[«)
' "'"t;g, +""t,t i

—+"'"t t;I' —) (k i~~cd)
' —"'"t,'. tq)"

+ ' )t t t + ( )t t ~ + (,0)t g, td (1,0)t tCP, (I,o)t tg~ (I 0)taCtgikl 2 kil ki l ki l kli ik l

i''it, , t + —&"&t t'' — (lk[~xc) '""t t'+"'"t t + —""t (A1)

and
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(4~ l (os+ (~wT ' )c) l4'o)

= g„(—1)~P(ab) ) d&, t,. ' —g„(—1)"P(ij)) d&zt I,
—g (—1)~P(ij)) dr„t't, .&~

c,k

—P„(—1)~P(ab) ) dq, t&t,. '+ P (—1)"P(ab) ) fq, "'t, '.

c,k c

+P (—1)"P(ab) ) (k bllc d)t& "'t, —P (—1)~P(ab) ) fI„t& "'"t,
c,k, d k,c

——Q (—1)"P(ab) ) (k ll Ic d) (tg( + 2t~tt ) "''t,,
c,k, l,d

—E„(—1)"P(ij)) .f~ "'"t,'I. —E,(-1)"P(ij)).fk.t; ""t,'g
c,k

+E„(—1)"P(ij)) (k lllc j)C ""t,'i
c,k, l

——p„(—l)~P(ij) ) (k lllc d)""t;& (t&". + 2t&t".)
ckld

+p (—1)"P(ij)) (a blli c)""t.+ g (—l)&P(ij) ) (a bllcd)""t,'t"
c c~d

—P (—1)"P(iglab)) (kallci)"'t t& —P (—1)"P(ij)) f&,""t t, &

c,k c,k

—g (—1)"P(ijlab) ) (k bllc d)""t. (tft, + t&", )
c,d, k

+-E (-1)"P(ij)) (k lllc j)""t'; (Ct'+ tlt()
c,k, l

-2 (-1)"P(ij) ) (k ill«)""t,' (tat|"' —t'ktl'+ tl tk')
c,k, l, d

+-E (—1)'P(ij)(killed)""t,'t' (Ci + Cti)

-& (-1)"P(ab)) (kallji)""tt+ 2 (-1)"P(ab)) (killij)""Cti
k k, l

—P (—1)"P(iglab) ) (k allci)""t&t'. —P (—1)"P(ab)) fA,,""tzt, '
c,k k,c

+E,(-1)"P(ijlab) ) (l kllc j)""t((t'5+ t'g)
k, c, l

-2 E,(- )"P(ab) ).(«Ilc d)" "t,' (t,',"+ t,'t,')
l,c,d

-E„(-1)'P(ab) ). (k ill«)""t, (t, t, ,
" —t;t;,"+t,'t, ,')

c,k, l, d

+—Q„(—)"P(ab) ) (k lllc d)" "t,'t„(t,,"+t,'. t,".
)

c,k, l,d

+- ).(a bll«)"'t, ', —-E„(—1)"P(ab) ).(a kllc d)"'t,', 4
cqd .,d, k

+- ):(k ill«&"'t';, (Ci + Cti) + —).(k llli j)"'Ci
c,d, k, l k

+-E„(-1)P('~) ).(kill )"t;,'t;+ — ) (kill d)"t,', (t:,"+t,t,')
c,k, l c,d, k, l

(—1) P(ig lab) ) (a kllc i)"'t'& —p (—1)"P(ijlab) ) (a kllc d)"'t „t".
c,k, d
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+g (—1)~P(ijIab) ) (klIIic)""ti,'.t( —p (—1))'P(ijIab) ) (klIIcd)"'"t,.& (t (
+t".t(j

k, l,c c,k, l,d

+g (—1)"P(ab) ) (k bIIcd) "t&t, —P (—1)"P(ij)) (k lIIc j)("}ti,t (

c,k,d c,k, l

—Q (—1)~P(ij) ) (k lIIcd)""t'„t t; —Q (—l)~P(ab) ) (k lIIcd)""t'„t,t,
c,k, l,d c,k, l,d

——P (—1) P(ij) ) (klIIcd)"'"t), t (
——g (—1)"P(ab) ) (klIIcd)' "tiit = 0.

c,k, l,d c,k, l,d

(A2)

Because of the identical structure of equations satisfied by cluster operators Tl ' land, Tl l [compare Eqs. (40) and

(41)i, we can get the equations determining T~o il by replacing the amplitudes ")t; and "')t; by (")t, and (")t;
and d;~ by h'; in Eq. (A2) above. Equations which determine ("'t; and (")t, are

(d, ~ i
(KcT(t t) )c + (OtT(o t) )c + (OoT(t o) )c y (H(oT(t o)T(o tl }c)~t(o)

) f (1 1)t + ) f (( )t (1, )t ttk (1,1)t tC) f (1,1)

c k,c k

—) (k aIIi c)""t'+ ) (a kIId c)
c,k c,d, k

i i

—) (klllcd)
I

-"'" ' "+""t't t'+ ""t t"+-"'t t't" —"'t't'ti )tl i )k (
c,k, l, d

( )t ttitk ( 1)t td + (1,1)t ttk + (1,1)t tckli ik l 2 il le 2 kl i

—).(l kII") I
""(ti + ""t)t( + -""t() I—

c,k, l

k,c c,k

and

(1,0)~ ~ + i I I ( ,o)~ i g ((o, )g ( ,o)g ( ,o)g (o i)g

c,k c,k c,k

—) ( t'ai kd)t e(""ot'"t +("t' "('t )'+ ) ( oii k')e (d"'t "'t + "''t "'t)'
c,k, l,d c,k,d

(kt~i d) (e'"t "'t +""t'. ". "t,
~

—) (kl~~ d)t (''t'. "(t'+''t "'t')
k, l,c,d k, l,c,d

—) (k li~ie) (""t,""t,+ ' "t, ""t ) ——) (kli~ed) (""t„' (t,,'+ " 't„""t
c,k, l c,k, l,d

)

—) (kl~ied)t'(""t ""t +""t ""t
) + ) (ki~~ d) ("')t ""t i& t&")t o) =)"(t

c,k, l,d k, l,c,d
(A3)

(Cj~l ((HtoT("()c+ (OoT( (')c+ (OoT(tot)c'+ (HtoT('o)T(o')}c) it(o)

= g„(—1)"P(ab)) f( (")t; + P (—1)"P(ab) ) (k bIIcd)t& "t,
c,k,d

—p~( —1) P(ab) ) f(, t), "'t;z ——g„(—1)~P(ab) ) (k lIIcd) "t; (t&(+ 2t&ti).
k,c c,k, l,d
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-E.(- )' ( j)):f,"'t —Z„(-1)"P('j)):f., "'&t;,'t;
k c,k

+P (—1)~P(ij) ) (k lflcj)t'„"'t, ,
c,k, l

——p (—1)'P(ij) ) (klllcd)"'t, , (t„'. +2t', t. )
ckld

+p (—1)'P(ij) ) (ablli c)"'t,'+ p (—1)'P(ij) ) (abllcd) ""t.t
c csd

—P (—1)~P(ijlab) ) (k allci) ""t t& —P (
—1)"P(ij)) f~, ""t'.t.&~

c,k c,k

-2 (-1)"P(jlab) ) (kbllcd) ""t,'(Ct";+@";)
c,d, k

+-E (-1)'P('j) ) (kill j) ""t,'{Ci+t'ti')
c,k, l

—p ( —1)"P(ij) ) (k lllcd) "'"t, (t&t|" —t&ti" +t& t. &.)
c„k,l,d

+-E (-1)"P('j) ) (kill«) "'t,'t,"(Ct+t;ti)
c,k, E,d

(—1)"P(ab) ) (k a
f Ij i) ""tA, + p„(—1)~P(ab) ) (k l

I fi j) "'~t&t&
k k, l

—P (—1)"P(iglab) ) (k allci) "'t&t' —P (
—1)"P(ab) ) fi„"'&t t '

c,k k, c

+p (—1)'P(ijlab) ) (l kllc j) " '&t,'(tg+ t'. t„)
k, c, l

- -' E„(-1)P(.b) ) (l .Il. d) "'~t,' (t;,"+ t, t, )
l,c,d

-Ep( —1)"P(ab) ).(k ill«) ""4(t,'4' —t,'t,'("+ t( t,", )
c,k, l,d

+—Q„(—1)"P(ab) ) (k lllc d) ""t,t„(t,',"+t,'. t,".
)

c,k, l, d

+—) (abll«) ""t,, ——P„(—1)"P(ab) ) (akllcd) ""t,', t„
c)d c,d, k

+— ) (kl fled) ""t,', (t„,'+t„t,') + —) (k if fi j) ""t„,
c,d, k, l k, l

+-E,(-1)'P(ij) ).(k ill'c) ""Cit;+ ). (k ill«) "—"t'i {t;,"+t,'t,")
c,k, l c,d, k, l

—2 (—1)"P(ijlab) ) (a kllci) "'t"„—p (
—1)"P(ijlab) ) (a kllcd) "')t.„t'.

c,k

+g (—l)~P(ij lab) ) (k iffz c) "'t&'.t&~

k, l, c

-& (-1)"P('~l b) ) (kill d) "'t.;(t", +t't,')
c,k, l,d

e,k, d

+g„(—1)"P(ab) ) (k blfcd) "'t&t,~" —g„(—1)"P(ij)) (k lflc j) "'t&t, i~

c,k, d c,k, l

c,k, l, d c,k, l, d

—E„(—1)'P(ij) ) . (k ill«) "'t't,"t;i' —E„(—1)'P(ab) ) . (k ill«) "'t:tit,',"
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——P (—1)"P(ij) ) (k l((cd) ""ti, t;&
——P (—1)~P(ab) ) (k i~~cd) ")t&&t;.

c,k, l,d c,k, l,d

+E,(-1)"P(-b)).""t;-; d' )-:t'd.. -E„(-1)P(V)). ""t. d., +):d..t;
-E.(-1)"P('~)).d' ""t;t,"- E,(-1)"P(.b) ).d..""t',t;;

k,c k,c

+P„(—1) P( b) ) ""t,,' h',.—) t'„h'„, —P„(—1) P('j) )
k

—P (—1)~P(ij)) h'„, ""t,t,„' —g (—1)&P(ab) ) h'„. ""t„t,,
k,c k, c

t)cp( b) ) j (&
. &t

c,k

—Q (—1)cP(cb) ) ( lk)~ dc)t„("'t,'"'t, y "', "t '&t,', )
c,k, l,d

+~ (-')" (a') ) (kb~icd) I""t'k""t'2 +""t'"'"t*9"
I

c,k,d

1--P,(-1) P(cb) ) (k i~~cd) ("t 't&,t,
' j- ' t,", "t,,"~

c,k, l,d

( 1) P(cb) ) (kl~~ dc)t (&' tc ' 1 + ' tt ' 1 ~

)
c,k, l,d

1)cp(, ) ) j (&. &1'&. &t

c,k

-Ec(-1)'P(tj) ) (ktllcd)tel, """t&" it&+"'1,""1&')
c,k, l,d

—Q (—1) P(ij) ) (kt(~ j)
~

"'&etc "t& +"'tt "'t
&)

c,k, l

1——p (—1)"P(ij) ) (kl~~cd) (('')t'. "t.2 P kj
c,k, l,d

—E,(- )' ( j) ) (kl)(. d)t'. ~' '1; ' 1,'+ & '&, &. &.c)
c,k, l,d

'"t' h' + h' t'ijt kj, kc j
c

+p„(—)" ( j)) (a bllc d)""t;"t~ —p„(—1) P(ij~ab) ) (a k~~cd)t~ ")t &")t
c)d c,k, d

1+-p (—1) P(ij) ) (kl~~cd)toI &')t'&, )t~

c,k, l,d

1+—Q (—1)"P(ij) ) (k i~~cd)tc t~( &'')t'. ('')t.
c,k, l, d

Ec( 1)' (&jl&&b) ) (bc~~«) (""t' &'ct + &'ct' "'& ')
c,k

+,(—1)"P(ij~ab) ) (k b~~c d)t". ((")t„(')t. + &' )to (, )t.
)

c,k, d

+g (—1) P(ij~ab) ) (k l~~C j)t& (")t„'' t'. + "tc (bc)t )c,
c,k, l

+Z„( )"P(ij~ab) ) (k i~~cd)t". t ((")t„(")t'+(o, )t (,o)t
)

c,k, l,d

Ec(—1)'P(&jlcb) ) (kt(~cd)t; (""tt &"&1'. ~& ~ &1 &'. &1 )c,k, l,d
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(—1)cP(ij(ab) ) (k b{{cd)(' "&ta r"'&' i. r"&t "'&&'.
)c,d, k

—Q ( 1—)cP(&j{ab) ) (bi{{cd)tc("'t r
"'t'+""t,

, "'&t')
c,k, l,d

1
1)&P(&l) ) (k l{{cj) (r, &1 r, &1'+ r, &1 r, &1

)c,k, l

1+—P (
—1)cP(tj) ) (kl{{cd)t, ('"'tc, "'t,'+"'ttr "'t') +g (

—1) P(ab) ) (kl((ij) ""t,""tt
c,k, l, d klt

+P (—I)"P(ijlab) ) (lc llli c)t,' ""t( "'"tj,
k, l, e

1
+—g (—1)"P(ab) ) (k lllc d)t'. ". "'"t ""tj,

k, l,c,d

+-,P„(-I)"P(ab) ):(~ lllc d)t,'t," "'"t( "'"61 c d 10

k, c,l,d

+P (
—1)cP(&'j{ab)) (kl{{cj)(""t', a"tc+ ""t,, ""t„)

k, c, l

—P (
—1)cP(ij{ab) ) (k i{{cd)t'(""t,, ""t +""t ""tt)

k, c, l, d

1——P (—1)"P(ab) ) (lr bllcd) ""t "'"t .+ ""t ""t.
2 P ij k ij k

k, c,d

1+-g (
—1)cP(ab) ) (k i{{cd)t', (""t,'., ""tc+ ""t,', ""t

)k, c,l, d

+— ) (k lllc d) (1'o)t~ (o'1't'" + 'o'1't~ (1'ojt~
4 kl ij

'

kl
'

ij
c,d, k, l

+g (—1)"P(ijlab) ) (lc lllc d) ""t~( ""t,j,
c,d, k, l

(A5)

P ( 1)cp(;,) ) (kt{(cd)t;r'(""t;""t,+""1;""1;)
c,d, k, l

—P ( 1)'P(ab) )—(k i{{cd)t', ( tc "' '1& +' ' ''ta' '1&) = 1&' (A4)
c,d, k, l

e permutation operators, P (—1)"P(ij), g (
—1)"P(ab) and g (—1)"P(ig lab), used in the equations above, have

been introduced to mape the algebraic expressions fully antisymmetric with respect to interchange of hole (i, j) and
particle (a, b) indices [5,22]. The symbol P(ab) preceding an algebraic expression means that in addition to the
identity permutation (parity factor +1), there is a single permutation (parity factor —1) of a with b However, th. e
symbol P(ij lab) means that i can be permuted with j and not a and b, and similarly a and b can be permuted amon
themselves and not withe and j,

Finally, we get the algebraic expression for E(i' ) as defined in Eq. (43) to be

&""=) fj,."'t'+ ). (l ill d)
l

""t't" —""t
( l+)

k, c k, c,l, d c:,k

+) dg, ""t(,+ ) (k lllcd) ""t'„"'t( .
c,k k, l,c,d

In the equations above, f„q represents the one-electron matrix elements, and (pqllrs) = (pqll jri2lrs) —(pqll/r l
ir2)s

denotes the antisyrrnnetrized Coulomb repulsion matrix elements of the unperturbed Hamiltonian H.
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