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Ramsey fringes in atomic interferometry:
Measurability of the influence af space-time curvature
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The in8uence of space-time curvature on quantum matter which can be theoretically described

by covariant wave equations has not been experimentally established yet. In this paper we analyze
in detail the suitability of the Ramsey atom beam interferometer for the measurement of the phase
shift caused by the Riemannian curvature of the Earth or alternatively of two parallel oriented
lead blocks. It appears that for the lead blocks the detection should be possible with realistic
modifications of existing devices within the near future. For the Earth's gravitational field the
experimental difficulties are too big. The paper is divided into two parts. The first one is concerned
with the derivation of general relativistic correction terms to the Pauli equation starting from the
fully covariant Dirac equation and their physical interpretation. The inertial effects of acceleration
and rotation are included. The calculation makes use of Fermi coordinates. In the second part
we calculate the shift of the Ramsey fringes for the two difFerent sources of curvature and examine
various possibilities to enlarge the sensitivity of the apparatus to space-time curvature. Since the
two parts may be more or less interesting for physicists with diferent research fields they are written
in such a way that each one may be read without much reference to the other one.

PACS number(s): 42.50.Wm, 04.80.—y, 42.62.Fi

I. INTRODUCTION

The connection between general relativity and quan-
tum theory has been the subject of intense theoretical in-

vestigations for decades. Nevertheless, due to the small-
ness of the inHuence of gravity on quantum systems in the
laboratory, there is presently still a huge gap between the
top theoretical level of quantized gravity on one hand and
the level of empirical verification on the other. The latter
is the subject of this paper. If we neglect any quantum
effects from gravity itself as they are predicted by, e.g. ,

quantum gravity or superstring theory, we have to formu-
late quantum theory and the laws of physics in general
for arbitrarily moving observers in a given curved spare-
time and to look for empirical implications. Based on
the results of special relativity this formulation is done
by means of several theoretical principles such as Ein-
stein's equivalence principle, for example. The results
are empirically well confirmed for classical matter such
as test particles and light rays. For quantum systems, on
the other hand, special relativistic eKects of course are
demonstrated up to extremely high energies. But up to
recent years there were practically no experiments estab-
lishing how quantum systems react on gravity and inertia
in genuine quantum eKects.

This situation changed when matter wave interferom-
etry with electrons, neutrons, and especially atoms took
advantage of technological progress in the development
of, e.g. , single crystals or lasers. By the study of the
induced phase shift of the fringe pattern it was possi-
ble to establish the inHuence of noninertial motion and
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of the homogeneous Earth gravitational field on quan-
tum systems: Colella et al. [1] measured the effect of
the Earth's acceleration on neutrons. In contrast, Bonse
and Wroblewski [2] have demonstrated the influence of
the constant acceleration of the reference frame, thus
showing the equality of inertial and gravitational mass
for neutrons (restricted version of the equivalence prin-
ciple). For atomic beam interference the inHuence of the
homogeneous gravitational acceleration has been shown
by Kasevich and Chu [3] and Shimizu et al. [4]. The
Sagnac effect for matter waves representing the inHuence
of the rotation of the reference f'rame has been measured
for neutrons and the rotating Earth by Werner et al. [5],
for atomic beams on a turntable by Riehle et al. [6], and
for electrons by Hasselbach and Nicklaus [7].

Turning to the theoretical discussion we mention that
the measurability of the corresponding effects for atomic
beam interferometers has been discussed by Clauser
[8] and for the Ramsey interferometer by Horde [9].
Mashhoon [10], Silverman [11], and Audretsch and
Lammerzahl [12] have pointed out that in addition to
the Sagnac eff'ect a spin-rotation effect may be measur-
able for neutrons and atoms, respectively. Audretsch et
aL [13]have shown that Lorentz invariance may be tested
with atomic beam interferometry.

In this paper we discuss the next step in this context
and turn to the deepest feature of gravity, to space-time
curvature. Our main aim is to demonstrate the measur-
ability of the inHuence of curvature on the dynamics of
a quantum system under laboratory conditions, a ques-
tion also addressed by Anandan [14] in the context of
neutron interferometry. Typical results couM be a shift
of energy levels or a phase shift in an interference ex-
periment. In the laboratory the first effect is hopelessly
small whereas the curvature caused shift of the optically
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induced Ramsey fringes in atomic interferometry seems
to be in the range of today's equipment. This will be
shown below. To prevent misunderstandings we point
out that presently quantum systems are not able to serve
as probes which are capable of discriminating better be-
tween alternative space-time theories of gravity [such as
parametrized post-Newtonian (PPN) parameters] than
astrophysical "test particle" systems such as the binary
pulsar do. The conceptual importance of the interfer-
ence experiment must rather be seen in the fact that it
will be possible to demonstrate that and how Einstein's
curvature tensor becomes effective within a quantum sys-
tem under laboratory conditions. This would be a very
important experimental investigation of the connection
between quantum theory, which is typically valid on mi-

croscopic scales, and general relativity, which describes
well our world on very large scales. Seen &om another
point of view, this would be an experiment which en-

larges the range of validity of general relativity to much
smaller scales and especially to scales where the classical
description of matter breaks down.

Experimental quantum optics is a rapidly evolving Geld

with quick progress in the development of new methods
of measurement and the improvement of sensitivities. It
therefore seems to be most promising to examine also fu-

ture possibilities offered by this field of physics. Accord-

ingly, it is the second aim of this paper to give a short
and transparent derivation of the respective infiuences of
the curvature on different levels of approximation start-
ing &om the Hamiltonian operator of the complete theory
of quantum mechanics in curved space-time based on the
general relativistic Dirac equation. The underlying phys-
ical principles, the different approximation steps, and the
theoretical status of the experiment will thereby become
clear. This theoretical part is also intended to be a con-
tribution to quantum optics in curved apace-time, which

may be regarded as a special domain of quantum optics
under non-Minkowskian conditions.

In addition to curvature we include below inertial influ-
ences &om the beginning as in Audretsch et aL [15]. The
corresponding single effects obtained on the final level
of approximation are not new. This unifying approach
seems nevertheless to be justified because other authors
specialize on acceleration or rotation or curvature only.
An alternative approach based on the quantization of the
Hamiltonian of a point particle in a weak gravitational
field [16,17] is less general because it cannot handle spin
eH'ects.

The paper is organized as follows. In Sec. II we derive
the Dirac Hamiltonian with an electromagnetic potential
for stationary space-times and rewrite it with reference
to the Fermi coordinates attributed to an accelerated ro-
tating observer. The influence of inertia and curvature
on the energy levels of a hydrogen atora is worked out in
Sec. III. In Sec. IV we go to the nonrelativistic limit and
discuss the resulting correction terms in the Pauli equa-
tion. For weak gravitational Gelds the curvature terms
are related to the Newtonian potential in Sec. V. This
serves in Sec. VI as a foundation for the discussion of
the theoretical relevance of the proposed experiments.
In Sec. VII we turn to the experiments and work out the

inHuence of acceleration (as deviation from &ee fall), ro-
tation, and space-time curvature on the fringes of a Ram-
sey interferometer. The resulting phase shifts are given
for diferent orientations of the interferometer. Finally,
in Sec. VIII the orders of magnitude of the phase shifts
are discussed for existing experimental setups and modi-
Gcations of the Ramsey interferometers which should be
technically possible in the near future. For the gravita-
tional Geld we thereby refer to the Geld of the Earth and
alternatively to the field of laboratory sized lead blocks.
Details of the calculations are presented in the four Ap-
pendixes.

Due to the twofold aim of the paper its sections may be
more or less interesting for physicists with difFerent re-
search fields. We have taken this into account. Those
who are interested in the derivation of the correction
terms to the Pauli equation and not in interferometry
should focus on Secs. II—V and the Appendixes. Those
who would like to see the experimental implications may
skip these sections and start reading with Sec. VI.

We use natural units (h = c = 1) unless otherwise
stated. Further conventions can be found in Appendix
A.

II. DIRAC HAMILTONIAN AND
FERMI COORDINATES

In a first step we derive the Dirac Hamiltonian in a
stationary curved space-time in a rigorous way and intro-
duce Fermi coordinates as a local coordinate system. We
thereby generalize the work of Parker [18] to an observer
in arbitrary motion including rotation and acceleration.

A key assumption of this approach is that hydrogen-
like atoms can be modeled by an electron in the given
Coulomb field of the nucleus. In another approach Fis-
chbach, Freeman, and Cheng [19] have treated the hy-

drogen atom as a two-body system in the gravitational
field of the Earth and have found that there are differing
correction terms depending on whether one uses center
of mass or center of energy coordinates. Especially they
obtained correction terms to the Hamiltonian which do
not vanish even in the limit of very high proton to elec-
tron mass ratio (Table I of Ref. [19]). For the purpose
of interferometry this causes no difBculties since these
terms act on the internal degrees of freedom which can
be neglected in the phase shift (see below).

Since the calculations in Secs. II and III are close to
those of Parker we keep the presentation concise and refer
to Ref. [18] and to our Appendix A for more details.

We rewrite the Dirac equation in an electromagnetic
field with four-vector potential A„ in curved space-time
in the form

iBpvP = HQ

with

II = i(g") 'e 'ei—'—p pp(a; —r—; —iqA;)

+il'o —qAO —i(g ) me —p

Because of
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{g,H@) —(H@,g) =i d zing+& -—(Q—g e~7"—)Q,

(3)

T„("dE"=: (Q, HQ) . (5)

The result is

Hg = ("n„(ip"n„mQ —i(p"p —g" )n D Q)
+i(b„"+ n„n")( D„g

+ -(v"v —g"") (D,(-)0 —q@'0, (6)

where n„ is the normal vector of the hypersurface, D„=
D„—iqA„, and C is defined by

8„4 =F„(
Choosing the hypersurface x = constant, i.e. , n„=

(1,0, 0, 0)/g —g, and using the fact that
(1,0, 0, 0) is a Killing vector if Bpg& = 0 holds, we can
easily prove the agreement of this definition with the
one of Eq. (1), provided the Maxwell field is stationary
BOA" = 0. The stationarity condition on the Maxwell
Beld prevents us &om running into trouble with gauge
invariance as indicated by Yang [22]. Consider first the
case of fIat space-time. The only term that is not gauge
invariant is then the one proportional to Ap [in Eq. (6)
this corresponds to the 4 term]. The stationarity condi-
tion restricts the gauge transformations to those of the
form A'„= A„+B„y with y = g(z) + kz for some con-
stant k. A gauge transformation leads therefore only to
the addition of a constant k to the Hamiltonian which
does not affect the eigenfunctions of it. In Eq. (6) the
situation is even simpler since 4 is determined by Eq.

the operator H is in general not Hermitian with re-
spect to the conserved scalar product (A2) given in Ap-
pendix A. It can therefore be interpreted as the Hamil-
tonian only in certain space-time geometries, especially
when the metric is stationary. This refIects one of the
numerous conceptual problems which arise for quantum
theory in curved space-times (compare Ref. [20]). In
the following we assume stationarity. H of Eq. (2) is
then Hermitian. It is then interpreted as the Hamilto-
nian operator representing the observable total energy of
the massive quantum object.

This can be seen more clearly if we apply the method
of Lammerzahl [21] and refer to the energy-momentum
tensor T„„ofthe Dirac Geld:

1

g—g he" —"

(C is the Lagrangian). Let P be the timelike Killing
vector of the stationary space-time and assume that the
Maxwell Geld is also stationary. Then the integration
of T„f"over a spacelike hypersurface gives a conserved
quantity which can be interpreted as the energy of the
Dirac Beld which includes the gravitational potential en-
ergy. The Hamiltonian operator is deGned by setting its
expectation value equal to the conserved energy

(7), which is manifestly gauge invariant. The remaining
freedom to add a constant to 4 corresponds to the effect
of allowed gauge transformations in fIat space.

Turning to Fermi coordinates we attribute to our quan-
tum system an observer moving along the world line

Pp(w) with four-velocity u (r). i is its proper time along
the world line. The experimental setup (e.g. , the inter-
ferometer) is assumed to remain fixed with regard to a
comoving orthonormal tetrad e „representing a frame of
reference, which is introduced as follows: eo is identical
to u and the orthonormal spatial triad e, (7 ) (i = 1,2,3)
rotates together with the setup with proper angular ve-

locity u. Nongravitational forces lead to a proper three-
acceleration a causing a deviation &om the trajectory
of the free fall (a = 't7„u ). The gravitational field is
represented by the Riemann curvature tensor R„„~ {~)
along the world line.

Fervni coordinates are the local coordinate system
which is designed to analyze experiments in the proper
kame of reference of an accelerated rotating observer in
curved space-time. They are introduced as follows. The
time coordinate on Pp(w) is the proper time of the ob-
server. The spatial coordinate lines are constructed by
sending out geodesics orthogonal to the observers world
line corotating with the spatial triad e,. (w). Each event
near the observers world line is intersected by one space-
like geodesic with tangent vector n orthogonal to eo in
the point Pp(w) with observer time i. Let s be the dis-
tance of the event measured along this geodesic. The
Fermi coordinates of the event are then given by x
and z" = 8n e—.At the observers world line they rep-
resent a rectangular grid attached to the experimental
setup, which is accelerated with a and rotating with ~
(compare Ref. [23]).

The metric in this coordinate system is Minkowskian
on the whole world line Pp(7 ) and can be calculated up
to a given order in the spatial coordinates x'. To second
order it is given by [24, 25]

gpp = —(1+(7'z)2+ (9 x z)2 —Rpip z z + O((z ) ),
gp;

—s,,g~'-z" —,'-Rpi; z'z + O((z')'), (8)

g,, = b,, —
—,'R;(, z'z + O((z')s),

where a = (a;), 2 = jw;), and the curvature tensor

R„„~ are space-time scalars obtained by projection with
respect to the tetrad on the observer's world line. They
may depend on z . The use of Eq. (8) represents an ap-
proximation which is good as long as the characteristic
dimension s of the quantum system is small compared to
the characteristic lengths attributed to inertia and cur-
vature:

1 1 1 IRp~p~ I

The expressions for the curvature given in Appendix C
show that this can be very well fulfilled for quantum sys-
tems up to extremely strong curvature.

We rewrite Eq. (2) with reference to Fermi coordi-
nates using the results of Appendix A and obtain for the
Hamiltonian operator
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H = —im([1+ a z+ -', Rolprnz z ]go + ,'R—oi'mz z p') —~ Jo + qz (A x ~) —qAo

+(~;+a *~;+.'[—Roi*~+Roio~~. + —.'Rij~~~ + —.'Rpijmvg&dz'z }(—»* —qA')
—

—,'&;o. + ,'p;—p&Ro; jz + 4~j—[R~ —Rojo ]z

III. ENERCY SHIFT OF THE
HYDROGEN ATOM

Once the complete Hamiltonian is given one can use
time independent perturbation theory for degenerate
states to calculate the infiuence of a, 2, and R„„~ on
the energy levels of the hydrogen atom. The knowledge
of these energy corrections is important also in connec-
tion with Ramsey interferometry since we have to answer
the question whether the corresponding modification of
the internal degrees of freedom has to be taken into ac-
count or not. They are given to lowest order by the
eigenvalues of the matrix (a~H~„i~P), where H~„q is the
difFerence between Hamiltonian in Fermi coordinates and
the Hamiltonian Ho in Minkowski space

QZc
Hp = —io.;8; + —imppr (12)

and ~a) and ~P) are two degenerate states of a hydrogen-
like atom written as Dirac spinors. We assume that the
multiplicity of the unperturbed energy level is two.

To calculate the shift of the energy for the ground state
of the hydrogen atom we have to insert the field of a point
charge resting at the origin of the Fermi coordinate sys-
tem into the Hamiltonian. In fiat space this is the or-
dinary Coulomb field, but the presence of curvature and
the noninertial motion of the atom lead to corrections to
the Coulomb potential which have to be included in the
energy calculation. In Appendix B we give a derivation
of these correction terms. Generalizing the calculation
of Parker [18] we find, for the energy shift of the ground
state,

2p+ 1 q 2 1R+-

R
2 2(2 2

(13)

where g = —qSe and p = (1 —(2)i~2.
Most of these energy shifts are far outside the measur-

ing range of modern experiments. If one assumes Ein-
stein's field equations, B and Roo vanish in a vacuum
where the experiments should be performed. The terms
quadratic in the rotation and acceleration give the con-
tributions 8.4 x 10 eVx[a/(1 Hz)] and 9 x 10
eVx(a/g), where g = 9.81 ms . The last term, caused
by rotation, has a magnitude of 6.6x10 is eVxid/(1 Hz).
This may be big enough to be detected via an induced
optical activity in atoms [26].

where Jp ———i(z x V) + Z/2 is the total angular mo-

mentum in absence of an electromagnetic field. We have
used R,~i,

c'~" = 0 and

p;pjpg = 6 jpi —6.i pj + 6ji 7' + is'ji, vsvo .

To return to interferometry, supposing one can man-

age that the time of fiight of the atoms is very long, say,
1 s (1.5 x 10 eV i in natural units), we can see that
the energy shift of the ground state results only in a very
tiny phase shift AP by setting approximately AP = AEt.
Again, only the last rotational term may cause measur-
able effects. For Ramsey interferometry we may therefore
refer to the unperturbed energy levels of the atoms.

IV. NONRELATIVISTIC LIMIT

In general the phase shift of an interferometric pattern
caused by some external force increases with decreasing
velocity of the particle beam. It is therefore adequate to
derive a nonrelativistic approximation of the Hamiltonian
which leads us at last to the modified Pauli equation. In
a systematic way this is best done by use of the Foldy
Wouthuysen transformation FWT (see, e.g. , Ref. [27]).
The idea of this transformation is to construct a unitary
transformation Q = exp( —iS)g' with (P, Sg) = (Sg, g)
such that in the operator H' acting on g',

1H' = H+i[S, H] —-[S,[S,H]] —S —-[S,S]+"
(14)

1
l&j( '&j qAj)

+gRplimz z Yo Yi Yj( ii9j qA, ) + ,Rijirnz pj]—
(15)

and leads, to lowest order in each perturbation, to

H' = —im(l + a. z+ ', Rpip z z )pp —,'m-Roi;~z z-
x p; —

—,'„po (—iB; —qA;) (—iB; —qA') —qAo
+—2 . Jp + qz . (A x id) + i~ppE rotA

+~pj (A,- —BjAp) . (16)

the odd operators, which couple the small components
of the spinor to the large ones, are relativistically sup-
pressed, i.e., are of higher order in 1/m. Because of this
intended separation of the large and small spinor com-
ponents the calculations are usually done in the stan-
dard representation of the ClifFord algebra in which,
with our conventions for the sign of the metric, pp ——i
diag(1, 1, —1, —1) holds. It should be stressed that S
must be Hermitian with respect to the scalar product
(A2) in curved space-time in order to preserve the re-
spective Hermiticity of transformed operators. In Fermi
coordinates the scalar product is given by Eq. (A7).

We now proceed with the derivation of the FWT in
Fermi coordinates in constructing the operator S. In
Minkowski space it is chosen to be pj ( »j —qAj)/2m in-
order to suppress the a; (—iB; —qA;) term. Its Hermitian
generalization in Fermi coordinates is
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It is remarkable that, though S does not depend on the
acceleration, all odd terms containing a are removed to
this order.

The Hamiltonian 0' still contains two odd terms. The
last one (oc qadi) can be treated as in the textbooks [27].
We will omit this. The first one (oc Rot; ) needs partic-
ular attention. It cannot be removed by a second FWT,
because only the combination

—im(po + ,'Ro(,—z'z (17)

{y',y') = (oj, oq) = (j,y), -= d'z P+ g. (18)

in H is Hermitian. If a Hermitian operator S suppress-
ing the Ro~, term would exist, it would produce a non-
Hermitian Hamiltonian in contradiction to the scheme.

To solve the problem in a consistent way we propose
the following approach: Although we refer to the quasi-
Cartesian Fermi coordinates we still have to make use of
the scalar product (A7), which does not agree with the
nonrelativistic scalar product in Cartesian coordinates.
To make the correspondence complete we look for an op-
erator 0, which transforms g' to g = 0 Q' in such a,

way that the scalar product is changed to the one in fj.at
space:

0 =- P+ Qe '-a,
, {25)

where

and

[V 9~ —V'—9 e"-]'"
v'29z

[~9m —v' —9 e"-] '~'.
/29'

(27)

gg is the determinant of the spatial part of the metric.
With respect to Fermi coordinates and the related ap-
proximation, the operator 0 becomes

0—1 isAI —is0 0—1 isOAO —1 —is0
=e' Ae {24)

If we perform the quasiunitary transformation first we

simply have to take the transformed operator S to do
the FWT. This sequence is in fact more convenient since
the Hermiticity of S with respect to (, )o is more easily
checked than the one of S with respect to the curved
scalar product.

For the general scalar product (A2) the operator 0
takes the form

(0' 4') = (O' T4')o T:= v' 9'„1'7-" -(19)---
The condition (18) for 0 then takes the form

(P', Q') = (OP, TO/)o ——(P, Q)o, {20)

where the last equality is the demand. This leads imme-
diately to

0* TO=1, 0* T=O (21)

Accompanying the transformation of states with the
corresponding transformation A' ~ A = 0 A'0 of op-
erators we obtain

Given this condition the conserved scalar product re-
mains conserved after the transformation. One can do
this transformation formally for arbitrary coordinates
and the general scalar product (A2), which may be writ-
ten as

0 = 1+—R;('mz'z + Rph~z'z—n, +0((z') ) .
12

{28)

Application to H' of Eq. (16) removes the curvature
induced odd term so that we finally find, for the Hamil-
tonian in the nonrelativistic limit, the result

H = —im(l + a z + ~~Rp~p~z z )po

—,—*-pp( —iB, —qA;) (—iD, —qA, ) —qAp

Jo+ qd (z x A) + i,-~gpss 'rotA

+ —;~-p,(Ag —Bg Ao),

where Jo ———i(z x V') + Z/2 is the total angular momen-
tum in absence of an electromagnetic field. The correc-
tion terms in the Pauli equation are thus

{p',A'g') = {p,O' TA'Og) p
——(p, AQ) 0 . (22)

for acceleration,

Jp+q (zA x M)
Similarly one can show that

(A'@' @') = (A& &)o. {23)

Using these two equations (22) and (23) it is not difFicult
to see that if any operator A' is Hermitian with respect
to the curved scalar product (P', A'g') = (A'P', g'), then
so is A with respect to (, )o. In the same sense the unitar-
ity of an operator is conserved under this transformation.
Because of its properties the product changing transfor-
mation will be called quasiunitary. Of great importance
for the consistency of the FWT is the fact that the or-
dering of the two transformations exp(iS) and 0 plays
no role since

for rotation, and

2
+OEOm, & & (32)

for curvature. The term proportional to the rotation and
the electromagnetic field can be understood to arise from
the minimal coupling of the spinor and the four-potential
so that no problem with gauge invariance occurs. Each
term is Hermitian with respect to the Schrodinger-type
scalar product (, )o of Eq. (18) in Cartesian coordinates
even if the term is time dependent. Due to the approxi-
mation (8) of the metric, which is correct only to second
order in the spatial coordinates, we Gnd no mixing be-
tween a, ~, and B„~ . Only a and u are mixed in the
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g
' components of the metric and this leads to a corre-

sponding term in the vector potential (B7). A higher
expansion of the metric [28] leads also to a mixing be-
tween a, 2, and R„„~ and would presumably produce
corresponding eH'ects in the vector potential and in the
Schrodinger equation.

Our results for acceleration and rotation are in agree-
meat with previous calculations [29—31] and have an ob-
vious physical interpretation (compare Ref. [12]). The
curvature term confirms Parker's [18] approximative ap-
proach to the hydrogen atom and coincides with another
derivation which, instead of starting from a covariant
quantum theory, takes a classical point particle in a weak
gravitational field as starting point [16, 17, 32].

so that

Rpip ——BiB P(z). (4o)

These curvat;ure components are gauge invariant to linear
terms in h„„so that the components in the Fermi coordi-
nate system agree with those of (40) (compare Ref. [42]):

&p,vaP = &p,vaP . (41)

holds. The components of the curvature tensor take the
values

1
R~~~p = —[B~O~hpp+t9~8ph~~ BiJ—B~h~p B~—Bph~~]pva

2
v a p

V. WEAK GRAVITATIONAL FIELDS

g„~ = q„~ + h„~ ) ]h„„~ (( 1.

Defining

1h„„:=h„„g„„h
2

(33)

(34)

and choosing harmonic coordiaates so that h" = 0 the
linearized field equations become

3

l9pl9php~ + ) B~B~h~gg = 2KT~~, —

For later use we give a physical interpretation of the
curvature term in relating it to the Newtonian potential
in the limit of weak gravitational fields (compare, e.g.,
Chap. 18 of [23]). To do so we turn in a last step to
the linearized approximation of general relativity which
is fulfilled in the solar system or for gravitational waves.
In this case the metric is written as

+O((z) ) (42)

so that, in this case, the acceleration term and the curva-
ture term in the Hamiltonian are simply the Grst; terms
of the Taylor expansion of the Newtonian potential dif-
ference. The potential P(0) on the world line of the ob-
server is absorbed into the proper time r via (38) and
does therefore not appear if the Hamiltoaiaa is written
in Fermi coordinates.

This illuminates the physical meaning of the curvature
term (32). For the general structure of Fermi coordinates
in weak gravitational fields see Ref. [33].

One may look at these results also from a difFerent
point of view starting with the Newtonian potential. If
we expand mP(z) around z = 0 we get

mP(z) = mg(0) + mz'Big(0)

+ Ot8 P(0—) z'z + O((z')')

= mg(0) + ma'z' + —Rpip (0) z'z
2

a =z =0, a'=t9;P(0)(z ) =8;4(0). (37)

We see in accordance with the interpretation given in
Sec. II that ma is exactly the force needed to resist the
Newtonian gravitational force, i.e., the negative of it.
Note that, due to x~x~ = —1, the equation

(r) = r[1 —~(0)] (38)

where T„„is the energy-momentum tensor of the matter
producing the gravitational Geld and the constant v. is
defined to be x = 8~G, where G is Newton's constant.
Static nearly Newtoniaa sources obey Tpp &) ]Tp&~ and
Tpp &) ~T~A, ] with Tpp = p(z). In this case the solution of
the Geld equation is ho~ ——h~I,

——0 and

hpp(z) = h (.l(z) = —hpp(z) =2G, d z',p(z')
2 iz —z'i

(36)

which corresponds exactly to the Newtonian potentiat:
P(z) = —hpp/2.

Let us consider an observer resting in this space x' = 0.
Without loss of generality we can take z = 0. From Eq.
(C2) the observer's acceleration is found to be

VI. CURVATURE AND NEWTONIAN GRAVITY

The basic conceptual tool used above to mesh quan-
tum mechanics with gravity was Einstein's equivalence
principle, which demands that ia a local inertial frame
(local Loreatz frame) all laws of physics must take their
special-relativistic form. This leads to the general rel-
ativistic Dirac equation which fixes the dynamics. Be-
cause operators and states are attributed to hypersur-
faces of equal "time" additional considerations were nec-
essary. Following a succession of approximations we
obtained the Hamiltonian (29) for noninertial reference
&ames which includes the space-time curvature compo-
nents Rpip . For weak static gravitational fields Rplp
may be related according to (40) to an inhomogeneous
Newtonian gravitational potential P(z).

Three approximation steps were imposed on us by the
characteristic physical scales of quantum systems in non-
inertial frames in the solar system (in particular on and
near to the Earth).

(i) The extension of the quantum system is small com-
pared to the characteristic lengths of curvature, acceler-
ation, and rotation [compare Eq. (9)]. A treatment in
Fermi coordinates is therefore physically mell justified.
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(ii) In atomic beam spectroscopy atoms are very slow.
The Foldy-Wouthuysen transformation provides also in
curved space-time a systematic approach to the non-
relativistic limit.

(iii) The interferometer experiments will be done in a
laboratory on Earth. Because of the precision which can
be obtained today we will not be able to test the respec-
tive post-Newtonian terms which would correct relation
(40). With the exact expressions for R„„~ provided in
Appendix C it would be easy to work out these correc-
tions for Einstein's theory.

In going to the correspondence limit of weak gravity
and low velocities of the quantum objects, have we lost
the concept of space-time curvature in this way? Equa-
tion (42) demonstrates that this is not the case. Space-
time curvature manifests itself as inhomogeneous gravita-
tion and vice versa. The trajectories of freely falling test
particles are geodesics of space-time. Curvature shows

up in the deviation of two nearby geodesics. This ef-
fect is physically equivalent to the relative acceleration
of the test particles. The respective tide-producing grav-
itational forces are expressed in terms of the curvature
tensor R„~ . Space-time fiatness would be equivalent
to the absence of tidal gravitational forces. But there
is relative acceleration of freely falling test particles in
the limit of weak gravitational fields. Accordingly, there
is Einstein curvature also in this case showing the same
characteristic infiuence on matter as in strong gravita-
tional fields. Its particular inHuence on quantum objects
has been described above.

It has been pointed out by Misner et at. (p. 305 of
Ref. [23]) that the deepest features of Newtonian grav-
ity are (i) the equivalence principle and (ii) space-time
curvature. They manifest themselves in the second and
third terms of the Taylor expansion of the potential P(z),
as can be seen in (42).

It must be stressed that this Taylor expansion is tied
to the traditional Newtonian picture of gravity. Seen in
this way, curvature is simply the next Taylor coeKcient
of the potential. In general relativity, however, acceler-
ation and curvature have a completely different origin.
Acceleration is something that is bound to the motion
of the observer [see Eq. (C2)] and is produced by any
nongravitationat forces. Accelerational effects arise if we

describe nature in the natural kame of reference or the
Fermi coordinates of the accelerated observer. In this
frame freely falling, forceless objects (such as the apple)
seem clearly to be accelerated because their speed rela-
tive to the accelerated observer is changing. Curvature,
on the other hand, is the quantity that describes the de-
viation of space-time Rom a Hat manifold. It has nothing
to do with the observer or his motion in space. Since on
large scales general relativity describes the world better
than Newton's theory, this point of view is more appro-
priate. It follows that the measurement of the inBuence of
tidal forces on quantum systems would be a qualitatively
new contribution to the understanding of the microscopic
world. The in8uence of the acceleration of an observer
resting on the Earth has been tested for quantum me-
chanical systems, whereas the infiuence of space-time it-
self via curvature is only established on large scales, in a

classical region, where the problems of the description of
quantum matter in a curved space are absent.

The validity of the equivalence principle for quantum
systems has already been tested; see Sec. I. To demon-
strate that not only classical test particles but quantum
systems too react in a measurable way on tidal forces
and therefore on space-time curvature is the aim of the
subsequent part of this paper.

The gravitational field available in a laboratory is the
Held of laboratory sized objects and the field of the Earth.
To detect the inHuence of the Earth's field there are two
possible types of motion of the interferometer. It may be
at rest at the surface of the rotating Earth or freely falling
either on a path towards the Earth or fixed to an orbiting
satellite. The difference between the Grst and the last
two cases is a I,orentz boost and possibly a rotation. To
obtain the order of magnitude of the effects in question
it is therefore sufficient to consider different orientations
of the interferometer in a laboratory on Earth because
the relative velocity of a flying laboratory is so small
that the respective relativistic corrections caused by the
boost will not show up. We now turn to the description
of the interferometer.

VII. PHASE SHIFT OF THE RAMSEY FRINGES

With the results (30)—(32) of Sec. V we have the abil-
ity to examine the inHuence of acceleration, rotation, and
space-time curvature on nonrelativistic experimental se-
tups. With regard to a demonstration of the inQuence of
curvature, the Ramsey atom beam spectrometer seems to
be well suited. Most experiments done with this setup
are concerned with high resolution spectroscopy. But re-
cently Horde [9] has pointed out that it can also be used
as an atom interferometer. It is this aspect that we are
interested in.

To describe the apparatus we fix the comoving observer
tetrad to the interferometer so that the respective Fermi
coordinates can be interpreted approximately as the ordi-
nary Cartesian coordinate system (zi, z, z ) with range
over the apparatus. The setup consists of an atomic beam
which moves initially in the x direction and four travel-
ing laser waves parallel or antiparallel to the x3 direction.
The laser waves are tuned to be nearly in resonance with
a particular transition between two states of the atoms.
The first two laser beams are copropagating in the z
direction and the third and the fourth beam copropagate
in the —z direction (see Fig. 1). See Ref. [36] for more
general laser configurations.

The lasers are assumed to be arranged in such a way
that the time of Hight T between the two lasers of a co-
propagating pair is the same for each pair. Between the
two pairs the atoms move for a time T'. While pass-
ing the lasers, the atoms absorb or reemit photons. By
the corresponding recoil the atomic wave function is co-
herently split and recombined so that the two pairs of
interfering atomic beams of Fig. 1 are obtained. The
outgoing wave functions bc+ ~ and b~ ~ correspond to
an excited part of the wave function. The index denotes
the pair. The respective population can be read out by
detection of its fiuorescence radiation. It oscillates with
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)(hx
~ .~ - b(+1)

k—a, T(T+ T').

A rotation 2 leads to

(45)

ay~+'~ =—ap = ~,p, k T(T+T').
m

(46)

b(-1)
Both shifts agree for the two interferometer geometries
(compare also Ref. [37]). The phase shift Ap~, which

(+x)
is caused by space-time curvature, is the sum Aypyp3 +
leek'pQSQ3 + Ay ~ of the terms(+x)

FIG. 1. Ramsey atom interferometer: Four traveling laser

waves (1—4) running parallel or antiparallel to the z direction

split and recombine an atomic beam. The partial beams build

up two interferometer geometries. Dashed lines correspond to

excited atoms. The atoms are initially deexcited. They travel

for the time T and T' between the lasers. Az represents the

relative distance between the partial beams.

(+1) ~ (+1) + ~ (+1) + ~
The inQuence of the acceleration a is given by

(44)

the laser detuning. The resulting oscillations are called
Ramaey fringe8. With regard to their resolution, note
that the excited atoms (dashed lines in Fig. I) may de-
cay according to their lifetime r&. For further details of
the experiment and its theory see Borde et al. [34].

In a previous paper [35] we have calculated the first
order contribution to the shift 6y of the Ramsey fringes
due to a fairly general perturbation

(43)

proportional to powers of the coordinates with 1V; be-
ing integer. H(p) contains an arbitrary dependence on
the center of mass momentum operator p. In a paper
to be published [36] higher orders of non-Minkowskian
influences have been taken into account. It is important
to note that these calculations are not made within the
usual WKB approach. One does not deal with classical
paths but follows a unitary time evolution of quantum
states. Any bending of a beam is automatically taken
care of. It does not appear explicitly in the calculation.
In addition, the time evolution implies that the specifica-
tions of the experiment refer to the times of the interac-
tion between atoms and light and not to spatial locations
of the atoms.

This time evolution can be illustrated as in Fig. 1 as a
sequence of splittings and recombinations of the atomic
beam. For sufBciently localized wave packets the vertical
axis can approximately be interpreted as the relative dis-
tance Ax between two partial beams. Since atoms get
simply a kick, i.e., some definite transfer of momentum

by the lasers, this relative distance grows linearly in time
even if a homogeneous gravitational field (acceleration)
is present.

The resulting shifts Ay( ) and Ly(+ ) corresponding
to the two interferometer geometries of Fig. 1 are given
in Ref. [36] and Eqs. (28) and (31) of Ref. [35] (note the
change in the notation). Specializing H&i~ of Eq. (43)
to our correction terms (30)—(32) we obtain, for the first
order phaae shift,

(+z)
+V 0103 = +V 0103

C2

Roios kpiT[2T +3TT'+ (T') ],2m
(47)

6tposos = — Rosos k (sT + T T'),3 2m
(48)

hc2
Dry~+ ~ = — R k T[4T + 6TT'+ 3(T') ],

2m

(49)

C2
Arp It = Roso~ka—T(T+T')(7T +7TT'+2T' ) .

12

(50)

For convenience we have reintroduced h and c and have
set k = 2vr/A, where A is the wavelength of the lasers. vi
is the initial mean velocity of the atoms incident in the
z direction and pq the corresponding initial momentum.

The calculation of the phase shift done in Ref. [35]
includes only the derivation of Eqs. (47)—(49). The
mixed term (50), which includes also the acceleration,
must be calculated in a different manner. Details will
be given elsewhere [36]. Because this expression can-
not be found in an already published paper we give some
heuristic arguments which may clarify its structure. Note
that the phase shift is a pure number. If curvature is

(to first order) included Ap R must be proportional to
RQ~Q v~m, where v and. m are certain vectors. Further-
more, b, rp ~ is an interference effect and must therefore
include something which indicates that the atomic beam
was split and recombined. The only quantity that can
do this is the wave vector k = kP of the lasers. Hence
b,y oc Roio ki. The rest of the argument is based on
the comparison with the curvature shift (47), which is
in general proportional to Ro oskp . If the atoms were
classical balls their momentum in an accelerated f'rame

of reference would change according to p —+ p+ maT. If
we do this replacement in Eq. (47) we get an additional
expression of the form (50). Only the exact form of the
fourth order polynomial in the Qight times T, T difFers.

In Ref. [36] a nonperturbative approach is performed.
It leads to the interesting result that all acceleration de-
pendent phase shifts are linear in a. No powers of a can
appear if only acceleration, rotation, and curvature are
considered. This is one point why it may be of advantage
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to use atoms instead of neutrons. The work of Anandan

[14] demonstrates clearly that for neutrons there are sev-

eral contributions to the phase shift from different orders
of the acceleration alone so that it may become more dif-

6cult to distinguish between acceleration and curvature
effects. Note also that the approach of Anandan uses the
WKB approximation and is therefore completely differ-

ent from our calculations which are based on a unitary
time evolution and make no reference to classical paths.

VIII. ESTIMATION OF THE MAGNITUDE
OF THE EXPERIMENTAL EFFECTS

In the following we want to discuss in detail the mea-
surability of the influence of space-time curvature on the
phase shift. We thereby take as a basis the specifications
of two already existing experimental setups described by
Riehle et al. [6] and Sterr et aL [38]. In Ref. [6] the
intercombination transition sPi ~ iSo of 4oCa has been
used. In Ref. [38] the laser waves are resonant with the
intercombination transition sPi m iSo of 24Mg. In the
first and third row of Table I the lifetime vi of the excited
metastable Pi, the wavelength A of the transition, the
mass m, and the initial velocity vi of the atoms in the
zi direction as well as the times of flight T, T' between
the laser beams in the respective apparatus are given.

A. Space-time curvature of the Earth

In a first step we want to examine whether the space-
time curvature caused by the Earth may be measurable.
Acceleration, rotation, and Riemannian curvature tensor
components are then given by Eqs. (C13), (C14), and
(C15), respectively, in Appendix C. The three angles n,
P, and p describe the orientation of the interferometer
(which is fixed to the coordinate system as described in
Sec. VII) relative to the Earth. They are defined as fol-

lows. In the initial orientation for which all three angles
vanish, zs points towards the ceiling of the laboratory,
x to the south, and x to the east. We now perform
three rotations. The erst is around the x axis with the
angle n and turns the apparatus so that the zi axis does
not point further in north-south direction. The second
is around the new z axis (this is the axis perpendicu-
lar to the atom beam and the laser waves) with angle

P. The third rotation is around the resulting zi axis
(turning around the incident atomic beam) with angle p
(compare Fig. 2 for the case a = 0).

To get an impression of the order of magnitude of the
phase shifts caused by gravitational acceleration, rota-
tion, and space-time curvature on Earth, we have worked
out on the basis of Table I and Eqs. (C13)—(C15) the re-

spective maximal values of Ap, Ay, and Ay~. The
results are listed in Table II. They are obtained in each
case for an optirnally adjusted orientation of the inter-
ferometer. Note that for a maximal inBuence of a an
orientation is needed other than that for 2 or the curva-
ture terms.

Table II clearly demonstrates that for the two existing
interferometers No. 1 and No. 3, only Ay is measurable.
The influence of the Earth's rotation is too small and the
influence of the space-time curvature is many orders of
magnitudes too small.

Because of the cubic time dependence of the curvature
induced phase shift this situation changes if the flight
times are in the order of 1 s. To enlarge the times of
flight T, T' between the lasers it is necessary to slow down

the atoms and to build a device with larger distances be-

tween the laser beams. Modern laser cooling techniques
allow us to build spectrometers in which the mean ve-

locity of the atoms is as low as 2 m s i (see, e.g. , Ref.
[38]). There are some limitations on the magnitude of T
and T'. Since in the interferometer geometry of Fig. 1

leading to 6( ~ one part of the atomic beam is excited be-
tween the laser pairs 1-2 and 3-4 the corresponding time
of flight T is limited to be at best of the order of the life-

time r& of the excited state. If it is substantially larger
the coherence of the atoms will be destroyed by spon-
taneous emission happening between the copropagating
laser beams. However, this argument does not hold for
the time of Bight T' between the second and third lasers
since all atoms moving to the 6( ~ output are unexcited.
It is clear that even T' cannot be made very large since it,

is very difficult to collimate the atomic beam over large
distances. The loss of atomic Bux for a larger T' leads
to a growing integration time for a given accuracy of the
statistics. Referring to the experiment of Kasevich and
Chu [3] where the time of flight is about 0.5 s and the
atomic Bux decreases with a factor of about 30 we think
that a total time of flight of 1 or 2 s should be possible
within the near future. This leads to the modi6ed speci-
fications No. 2 and No. 4 of the Ramsey device given in

Table I.

TABLE I. Lifetime, wavelength, atomic mass, atomic mean velocity, and Bight times of the
atoms between the laser beams of two existing and two hypothetical Ramsey devices. The question
mark means that we have not succeeded in finding the corresponding value in the literature.

No.
[

Reference

[6] mori«d
3

I
[36)

4
i

[3&] mode«&
]i

7i ms

o.4
04
4.6
4.6

A (nm)

65v

65v

45v

45v

rn (kg)

6.7 x 10
6.7 x 10
4 x 10

4x10

vy m s

voo

voo

T (ms)

1.86 x 10
o.2

1.Vx1O '
3

T' (ms)

4.7 x 10

1000

6x 10 (~)

1020
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FIG. 2. Orientations of the interferometer for the mea-

surement of the space-time curvature of the Earth. The par-
allel latitude of the laboratory is g = s /2 —8. The dashed axes
show the orientation of the interferometer for a = P = p = O.

For a = 0 a rotation of the interferometer around the x ' axis

by the angle P leads to the solid line axes. A subsequent p
rotation is indicated. The case —P = 8 = y = x/4 is shown.

The atom beam entering the interferometer is directed along
the z axis and the laser beams are parallel to the x axis.

Based on these modifications we obtain, for the phase
shifts, the results given in the rows 2@ and 4@ of Table II.
The curvature induced phase shift Ay~ has now become
large enough to be measurable if one manages to sepa-
rate it from the shifts hy and A&p, which have become
very large and will contribute to the resulting shift b,y
of Eq. (44). This separation could formally be achieved
by laser and atomic beam reversal [35]. This employs
the fact that the shifts (45)—(50) have different powers
of k and pi and therefore behave difFerently under beam
reversal. For instance, to isolate Apollos one can invert
the atomic beam (pi ~ —pi) and set the device on a

turntable so that b, rp = 0 or perform the experiment at
a parallel latitude y = m/2 —8 where ~2 of Eq. (C14) is
zero for certain orientations. In addition, it is necessary
to perform the experiment at least in two diferent ori-
entations (by changing the orientation of the lasers) in
order to vary the magnitude of Ro]03 and therefore the
isolated phase shift Apoyp3. Similarly, one could reverse
the laser beams (k ~ —k) in order to isolate Blois. In
this case both T and T' have to be in the order of 1 s,
otherwise b, &poso3 would be too small.

Unfortunately, for all practical realizations these
changes in the orientation are sources of big errors since
the acceleration induced phase shift is much larger than
the curvature shift. According to row 4@ of Table II we
have Ay 10 Ap~. In order to get proper results the
relative error in the contribution of the acceleration has
to be of the order of 10 . Neglecting for simplicity the
centrifugal force Eq. (C13) states that the relevant com-

ponent of the acceleration is given by as cos P cos p 9.81
m s 2. To estimate the corresponding allowed error bP
in the fixation of the angle P we expand as around P = 0.
Then the error has is proportional to bPs, which shows
that bP has to be smaller than about 10 s rad, which
is too difficult to manage. Furthermore, for the orienta-
tion P = 0 the component RQ]Q3 of the curvature tensor
vanishes so that we would lose a part of the efFect. On
the other hand, the expansion around P = x/4 for which

Rodeos is maximal leads to hP ( 10 rad, which is clearly
out of reach.

It should be stressed that the experimental situation is
even worsened by the fact that the atomic beam is bent
through the acceleration of the Earth. Thus, to match
the atoms, the laser beams have to be adjusted after each
change of an orientation, although the times T and T' can
be held constant by using laser pulses as in Ref. [3].

Anandan [39] and Clauser [8] have made a proposal to
eliminate the rotational and accelerational phase shift,
respectively. An interferometer with crossing beams
("figure eight") is only sensitive to relative acceleration
(curvature). To obtain this configuration in using four
running laser waves the waves must be traveling in the
same direction. In this case always one of the atomic
partial beams must be excited. We therefore lose the
possibility of enlarging the times of Sight T and T'.

Accordingly, our 6nal conclusion is that it is not possi-

TABLE II. Calculated phase shifts induced by acceleration, rotation, and space-time curvature
for the Ramsey devices speci6ed in Table I. and Pb indicate the measurement of the in8uence of
the Earth or of two lead blocks, respectively. The orientation of the interferometer with respect to
the Earth or to the lead blocks is given by the angels n, P, p, and 8. See text and Figs. 2 and 3 for
details.

No. [

its

2s,

4~
I

4pb

$ Reference
orientation M

Earth, [&]

Earth, [6] modifled

Earth, [38]
Earth, [38] modifie
lead, [38] modifie

Ages

P, V=O
—0.11

—1.9 x 10
—0.17

—4 x 10

p =0,a =8=sr/2
1.9 x 10

0.55

28 x 10
11.8

+PI
p=s/4, 7=0

—8 x 10
—0.01

—14x10
—0.4
—0.08
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ble to demonstrate the influence of space-time curvature
on Ramsey interference if the gravitational field of the
Earth is used.

To close this section we remark that even if both Bight
times T and T' are of the order of 1 s one would nei-
ther be able to detect the reaction of quantum systems
on gravitational radiation (because of the corresponding
Ro p~ = 5 x 10 m ) nor the Lense- Thirring effect,
i.e., the dragging of the inertial reference kame in &ee
motion caused by the rotation of the Earth (because of
the relevant uLy 5 x 10 s ).

B. The space-time curvature of two lead blocks

The origin of the difhculties with the Earth s gravi-
tational field is the fact that the influence of curvature,
although measurable as far as its magnitude is concerned,
cannot practically be separated &om the influence of the
acceleration, which is larger by many orders of magni-
tude. We therefore have to look for other sources of grav-
itational fields where this separation can be performed
easier.

That bodies of laboratory size can produce in their
vicinity a curvature comparable to that of the Earth can
be seen by the following heuristic argument. Consider for
this purpose a spherical body with homogeneous mass
density p, radius R, and mass M = 4vrpRs/3. Its New-

tonian potential at the distance r & R is proportional to
M/r. As discussed in Sec. V, the acceleration and cur-

vature registered by an observer at rest relative to the
body are given by the first and second derivatives of the
potential, respectively. Thus Rp~p oc M/r (here we ne-

glect any angular dependence). Accordingly, we obtain
near the surface of the body RQ~Q oc p. The curvature
is therefore independent of the radius of the body. It is

the same for the Earth and a laboratory sized body if the
respective mass densities p agree.

The question remains whether for laboratory sized
bodies the influence of the curvature can at all be sep-
arated from the inHuence of (a) the acceleration pro-
duced by the body itself and (b) the Earth's rotation
and gravitational field. To eliminate influence (a) we

simply work with two appropriately shaped bodies and

place the center of the interferometer at a point z = 0,
where the first derivative of the generated potential van-

ishes: a = VP(0) = 0. Note that we are dealing with
a Taylor expansion of P(z) [compare Eq. (42)]. In the
Newtonian picture the space dependence of a is repre-
sented by Rlo (0). A separation from inHuence (b) is

easy. For a fixed interferometer we reniove the 1",boratory
sized bodies, thereby changing the interference result by
Ay~. This is the measured eÃect.

In the following we discuss a setup with two identi-
cal squared blocks of lead which are parallely oriented.
They build a gap. The point 0 in the middle of the

gap is taken as the point x = 0 discussed above. Here
we put the interferometer and orient it relative to the
Earth's gravitational field in the following way (compare
Fig. 3): The laser beams are traveling horizontally (in
the x direction). ~h" atomic beam inoves initially ver-

tically upwards (ii '.h~ r directiou) with initial velocity

FIG. 3. Orientation of interferometer, lead blocks, and
Earth gravitational 6eld for the measurement of the space-
time curvature of the lead blocks: The origin of the coordinate
system is in the center 0 of the interferometer in the middle

of the gap. The z direction is orthogonal to the surface of
the Earth. The interferometer lies in the plane z = 0. It
forms a kind of atomic fountain. The envelope of the atomic
partial beams is shown with a strongly overdone separation of
the rising and falling part. The lead blocks are rotated by an
angle —P around the x axis from the position in which their
surfaces are parallel to the coordinate planes. P is chosen to
be 7r/4 so that the curvature efFect becomes maximal.

vq. This setup could be called a Ramsey fountain. The
plane surfaces of the two squared blocks are not cho-
sen to be parallel to the coordinate planes. Instead the
blocks are tilted &om this position by a rotation with
angle —x/4 around the z axis orthogonal to the inter-
ferometer plane. This amounts to the choice P = 7r/4 in

Eq. (D6).
To estimate according to Eqs. (47), (48), and (50) the

magnitude of the phase shift ApR caused by space-time
curvature we use two lead blocks specified by li ——l2 ——

0.7 m, l = 0.5 m, and lt, ——1.3 m as in Fig. 3. The
corresponding volume is 1.57 m, which amounts to a
weight of 17.2 x 10s kg for one block (p = 1.1 x 10 kg
m ). The acceleration entering Ey R is the negative
Earth's acceleration (ai ——9.81 m s and a2 ——as = 0).
The components of the curvature tensor can be obtained
f'rom the result (D6) of Appendix D by inserting P = ~/4
and replacing Ro i o i by Roiei of Eq. (D5), etc. The
function g(u, v, uj) is defined in Eq. (D2). We omit the
details of the calculation. The result is

Gp
&oxo3 = 2-98—= 2.43 x 10 m

c
G

RQ3Q3 —0.99
2

= 8.5 x 10 m
—24

c
where G is Newton's constant.

As the interferometer we choose the modified Ramsey
device specified in row 4 of Table I. The traveling time
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T' between lasers 2 and 3 is then given by T' = 2vr/ar
1.02 s. The height of the fountain which has the point 0
in its middle is vr2/(2ar) —1.27 m, so that the atoms do
not enter the blocks. For the contributing phase shifts we

obtain Ay0$03 —0.236, Ap~~ 0.158, and Ay03Q3
(-~)

10 . The resulting curvature induced phase shift is then

g = —1+2(a z) —3(a. z) + Rosoiz"z'

g
' = (1 —2a. x)((D x z)' ——;Rod;~x'x

g'~ = h'i+,'R;-i~ x'x —((J x x)*(ur x x)i.
(A3)

After some lengthy algebra we find for the Christoffel
symbols [to O(z')]

Ap~ —0.08 .

This should be measurable. The essential limitation of
the Ramsey setup is the fact that the time T must be
smaller than the lifetime of the excited state of the atoms
(compare Fig. 1). There is no such limitation in the foun-
tain of Kasevich and Chu [3] so that for it we can expect
the phase shift to be larger by one or two powers of 10.

To sum up, for the gravitational field of two lead blocks
we have shown that the curvature induced shift hy~ of
the Ramsey fringes is within the range of measurability
for experimental setups which may be realized in the near
future. They should make it possible to demonstrate
experimentally for the first time the influence of space-
time curvature on a quantum system under laboratory
conditions.

ACKNOWLEDGMENTS

We thank Professor Dr. F.Riehle, Dr. C. Lammerzahl,
T. Pfau, and C. Kurtsiefer for valuable discussions. Help-
ful critical comments of J.Clauser are gratefully acknowl-
eged. This work was supported by the Studienstiftung
des Deutschen Volkes and by the commission of the Eu-
ropean Community, DG XII.

APPENDIX A

r'oo = a . z + a (2 x x),
I'

oo = Rp'piz' + (1 + a z)a; + ((d) x z);
—[((d x z) x d];,

I'
();

——Rp,(gz'+ (1 —a z)a;,

r (); =Romijz ~jir(d a'(~ x z)j

s (Roirnj + Rojrni )x

(Rs;, -+Ri„; )*
and for the tetrads

e-o=1+ (a z) —,'R ,o z'—z-

~rP l m l me 0 — ~~ lOm~ ~ +~elm~ ~

e . = —~B xz0 0 l m
i & lim

P rQ i 114

i i e lim

The spinor connections in Fermi coordinates are

ro = —,'gpss;(R, pp z —a;)
+ d'Yi'Yj (Rij omx + ~ill(d)l) )

m mI'; = ,pope Rp—i;z +,p~pi, R~-s; z

(A4)

(A5)

(As)

We use the conventions of [23], i.e. ,
diag( —1, 1, 1, 1) and R"„&——r"„& — ~ . Latin indices
run from 1 to 3 and tetrad indices are underlined. We
sum over equal indices regardless of their position (upper
or lower). Nonsummation over equal indices is denoted
by setting one of them in parentheses. The tetrads ful-

fill e—„e—g"" = rj~. The Dirac matrices obey the an-
ticommutator relation (p, pp} = 2)7~14. Note that
the sign convention for the metric implies that the p„
matrices have an additional factor of i compared to the
matrices used in particle physics. We define cr;—:ppp;,
ps = ip~~~ , and Ei, = is;~sp;p~—/2 Th—e spinor.
connection is given by

and the scalar product is given by

(d, d) = J d~2:d+[1 —', B'r; z z —', R-o&' xz-
(A7)

APPENDIX B

Here we generalize the calculation of the corrections
to the Coulomb potential in Fermi coordinates given by
Parker [18) to the case of an accelerating and rotating
observer.

With reference to the vector potential A„ the covariant
Maxwell equations in curved spacetime are given by

PF„=—
—,'p pp e—V„e—„, (A1)

V"V'pA„—B„"A = —4mj„,

(d, d) = —/ d'xv' dd+~-' e'„~-d—(A2)

The contravariant components of the metric in Fermi co-
ordinates are up to order O((xi)2) [compare (8)]

where V'„ is the covariant derivative acting on vectors.
The hypersurface independent scalar product between
spinors is [18]

j„=—Zeb (x) (1,0, 0, 0) . (B2)

Inserting the metric (8) and the current (B2) into Eq.
(Bl) we arrive at

where we have used the Lorentz gauge V'„A" = 0. In
order to determine the inauence of noninertial motion
and space-time curvature on the electromagnetic field of
a point charge we write the Maxwell equations in adapted
Fermi coordinates. Since the charge is now resting at the
origin of the coordinate system the current is given by
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[8*'+ ~R... x'x —(2 x x);(2 x x), ]B,B,Ao+ Ao, ;( ——;R;~x —',-Roio~x + (a x —l)a,

+[(2 x x) x 2];) + A, ~(2Ro~;~x + 2[(~ x x),a~. —(2 x x)~ag+ 2e,~~a~) = 4+Ze8(x) (83)

and

[$U +,'R,&-~~x'x —(2 x x);(2 x z)~]B*BqA. x + Ao, ~ [-', (Roe~~ + Ro~~I )x —2(~ x x),ai]

+A, ;[i(R,;s +R,i,; )* +2e,xl~l(~ &&*),]+As,,( (Ro,o
—2' )x +(1 —a x)ag

+[(g x x) x 2]&) ——R~ Ap+ iRoso&A&+ (2 x a)sAo —ai, (a A) + [(0 x (A x ~)]i, = 0. (84)

All equations are understood to be correct only up to
second order in the spatial coordinates x', derivatives of
second order equations are of first order, and so on.

We now divide the electromagnetic potential into two
parts, one unperturbed, which is simply the Coulomb

potential in Hat space-time, and one A„, which contains
the corrections up to order O(xi):

Zc A(i) A A{i)+ pr

The second derivatives of A„are then of the order
O((x~) i), so that we can drop all terms which are of
higher order in the Maxwell equations. This leads to

8,8;Ao —a VAo + 2e;~)(u(A, ,

(a x(l —a x)+ (2 x z)'
r3

APPENDIX C

In this appendix we sketch the derivation of the com-

ponents of the Riemannian curvature tensor in Fermi
coordinates for the rotating Earth, modeled by the
Schwarzschild metric, as seen by an observer resting on
it and for two lead blocks in the limit of weak gravity.

The first case was already studied by Parker and Pi-
mentel [40] for an observer in radial and circular geodesic
motion. We will modify their results for the world line

Po(r) given by r =8 = 0'and P:=a with u = 2m. day
given by the rotation of the Earth. The overdot denotes
the derivative with respect to the observers proper time

let R, = 2GM/c2 be the Schwarzschild radius of
the central body where M is its mass and c is reinserted

(R, —8.9 mm for the Earth). G is Newton's constant,
Defining X—:1 —R, /r, the components of the curvature
tensor in standard Schwarzschild coordinates (see, e.g. ,

Ref. [40]) are given by

+-.'(Ri +4Roio )*'* ),

(86)

R,
r'

R,X
Rgtgt = s&n )2r

R,X
2r

R,
Rv 8r6- 2rX (C1)

B,B;A„' + a, A& .

;Ro~ i,x x~ +—;—Ri,or2 + (ur x —a)i,r2) .
r

The curvature terms of Eq. (86) are in disagreement with

Eq. (7.9) of Ref. [18]. The solution of these equations is
found to be

Ap~ ——— + Ze{—,'2 ——;a + —,'. (R ~ 5Roo) }rr
& m

+Ze(';u1~~ + ', aia~ —
—,', (Ri~-+ 4Roio~) )

(87)

(y) Zc Zc xx
Aq — (Roi, + ((0 x a)g)r + Roi

2 6 r
which satis6es the Lorentz condition. Again, the curva-
ture terms are slightly diR'erent &om those given in Ref.
[18].

Rs~e~ ——R,r sin 8, R„~„~= — ' sin
2rX

The acceleration c" of the observer can be read ofF from
its equation of motion

(C2)

which describes the world line Po(r) with tangent vector
u" = x". Taking into account the conditions u"u„= —1

and u"a„= 0, we find

R, , t' 3R iwr
~

1—
i

sin—8, a = —u sin6cos6.
2r g 2r )

We observe that the first part of a" is the negative of
Newton's acceleration. This is reasonable with regard to
the physical meaning of a~ since the surface of the Earth
prevents the observer &om falling &eely. The second part
and a represent the centrifugal force. Note that in a" a
general relativistic correction —3R, /2 is present. This is

negligible for the Earth, but is of interest in the case of
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a black hole where for r ( 1.5R, the radial component
of the centrifugal force changes direction (see also Ref.
[41])

We assume the comoving tetrad (eo, = u ) to be fixed
to the rotating Earth according to ez Oy and e3 0„
(dashed lines in Fig. 2). With eor oc B and e . e]sr ——

' p it is found to be

eo —— Bq + [dB~, e1 ——r By,X

Ro(ii pi ii

Ro'2 o'2'

—R2i3) 2i3i

—Rii3(ii3i

R,s(1+ 3r [d sin 8),2r3
R,
2r3 '

R, 3 2Ro 3rpr3r—r Rj—r 2r go 2r
——— (1 + r(d— slI1 19jr

3R,
2Lr

(C8)

~r sin8 We„= B, + . B, , e, = vXB„,r sin 8

(c4) For the f'reely falling observer see Ref. [40. The case
of gravitational waves is discussed in Ref. 42]. Corre-
spondingly we obtain, for the acceleration,

De",
D~

= -[a"u" —a"u" + u [dpi' ~""]e (C5)

where W = gl+ r2u2sin 8. The rotation [d of the
tetrad represents physically the rotation relative to a
Fermi transported tetrad, which may be fixed by gyro-
scopes. It is this rotation that enters the metric in Fermi
coordinates as in (8). Mathematically u is given by
(compare Ref. [23])

air —— r[d —sin 8 cos 8,

( 3
2r2 X X ( 2

and for the rotation,

(C9)

W[d sin 6 ( 3R, )
~

1 — '
~, [dss ——W(Gcos8.

X ( 2r)
(C10)

Inserting (C5) we find

S'u cos 8 W[dr sin 8 t' 3R, )
2r )

(c6)

To describe arbitrary orientations of the experimental
setup "fixed" to the tetrad, we go over to a different orien-
tation of the three vectors e; ~ e; by means of a Lorentz
transformation. Vector components change according to

pl
ea = Aa epi,

v PR p 7 $:Rpvp~e epa 7 (C7)

we find, for the curvature in the Fermi coordinates of the
observer,

Note again the general relativistic corrections propor-
tional to R, /r.

Still referring to the tetrad (C4) we work out the com-
ponents of a„, [d„, and R„„z on the world line P[](r) in
the respective Fermi coordinates adjusted to the tetrad.
This amounts to a projection with the tetrad. Using

v P o
Rap78 = Aa Ap A7 A~

—Rpivl pi~'

(C11)

In detail we perform three rotations: the first around
the z axis with angle a (turning the apparatus on the
earth's surface), the second around the new z2 axis with
angle P (the axis perpendicular to the atom beam and
the laser waves), and the third around the new xi axis
with angle p (turning around the atomic beam). This
results in a matrix

1 0
0 cosacosP
0 —sinacosp+ cosasinPsinp

(0 sinasinp+ cosasinPcosp

0
sinacosp

cosacosp+ sinasinpsinp
—cos a sin p + sin a sin p cos p

0
—sin p

cos psinp
cospcosp )

(C12)

The relevant components of the various physical quantities which enter into the phase shift (44) are now given by

R. r —3R,/2os = ' cosi]cosy —ts sinri rc ops[ isnaisnp+cosasinPcosp]+ ' sinricosPcosp),2r2 X X' (C13)

2r —3B,
srs = ii sr cossi coo[ising+ ' sinsi[sinacosp —coo asinPsina]),

2r X (C14)



JURGEN AUDRETSCH AND KARL-PETER MARZLIN

3R,
Romps = cos P {sillP cos

2T3

+r ~ sin 8[sinacosnsinp

p(1+ cos n) sin P cosy]},

Rpsps — {1—3W cos P cos
2r3

+3r2u2 sin 6 (sina sing+ c osnsi nPcosp) }.
In Sec. VII r becomes the radius R@ 6378 km of the
Earth.

APPENDIX D

We derive the components Rp~p of the Riemannian
curvature tensor for two squared lead blocks of laboratory
size. The limit of weak gravity discussed in Sec. V will
be appropriate and we may therefore base our calculation
on Eq. (4G) using the Newtonian potential P(z) given by
Eq. (36). We make again the convention that the frame
of reference remains always fixed to the interferometer as
specified in Sec. VII.

In a first step of the calculation we orientate the two
identical blocks such that their surfaces are parallel to
the coordinate planes and that they are separated in the

x direction (direction of the laser beams) by 2l . The
first block has constant mass density p in the volume
-~1&z &&1 —~2&z &&2
Ib. The second block of the same mass density p lies
symmetrically with respect to the plane z = 0. The
center of the interferometer is in the middle of the gap in
the origin z = 0 of the coordinate system with an atomic
beam moving initially in the z direction. Because of the
symmetry of the setup the acceleration a~p caused by the
blocks is vanishing at this position,

apb(G) = G .

Inserting the specification in Eq. (4G) and introducing
the functions

g(u, v, m)

(m' —u') (v' y u') —2u'm'
:= sgn(uvre) arcsin

(D2)

1 . t'u't
h(u, v):= —arcsinh

~

—
~

v (v)
and the abbreviations lz

..——+lq —z, t2 .——+t2 —z,
and w+:= (lz ) + (z + q) as well as l~y .= l~ + z
and tgy .= lt, 6 z, we find, for the relevant components,

R (z) = {h(l+,m+) —h(l2, m+) —h(l2, m ) + h(l. , ur, ) —h(l2, mb ) + h(l2, wb )
Sm

+(hl 2+m
b)

—h(l~, mb ) + h(l2+, m+b) —h(l2, ~+b) —h(l 2~ b) + h(l 2u) b)

—h(l2+, u)+ )+h(l, , ~+ ) +h(l,+, m )
—h(l, , u) ~)} (D3)

Rpsps(z) = {—g(l +, l~, l2) + g(l +, l~, l2 ) + g(l +, lq, l2 )
—g(l +, l~, l2 )16'

+g(lb+, lq+, l2+) —g(lb+, l, , l2 ) —g(lb+, l~+, l2 ) + g(lb+, l~, l )

+g(lb — l~+, l2+) —g(lb, l, , l2 ) —g(lb, l+, , l2 ) + g(lb —,l, , l2 )

g(l l+, l+) + g(l, l, , l2 ) + g(l, l,+, l2 )
—g(l, l, , l2 )}. (D4)

The other terms Rpg& (x) are of a similar structure. We

have worked out the space dependence of Bp(p to be
able to test whether the curvature components are suffi-

ciently constant throughout the interferometer. For the
speci6cation of the experimental setup given in Sec. VIII
this turns roughly out to be the case. Our approxima-
tion of Sec. IV is therefore justified. Hence it is sufficient

to restrict to the curvature at the point 0 in the middle

between the blocks (z = G):

Roioi = —[g(li, 4, lb) —g(li, l2, l-)],Kp

2'
Rp2o2 ——[g(l2, ll, l&) —g(l» l» la)] q

Kp

2'
Rosos = —[g(lb, lx, l2) —g(l, lx, lq)] .Kp

27K

All other components Rp[p are zero.
In Eq. (D5) we have worked out the coordinate com-
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ponents of the Riemann tensor which correspond to
Eq. (Cl) in the calculation for the Earth's gravitational
field. In the approximation of a weak gravitational
field the coordinate components (D5) agree according to
Eq. (41) with the projections on the comoving tetrad rep-
resenting the measured quantities so that Eq. (D5) is in
fact already the analog of Eq. (C8): Rp~i p ——Rpt0

Finally, for the experimental application, we change
the orientation of the interferometer (to which the coor-
dinate system remains attached) relative to the blocks.
We rotate the interferometer around the z2 axis orthogo-
nal to its plane by an angle P (or equivalently the blocks
by —P). The resulting setup is shown for P = z/4 in

Fig. 3 where in addition the xi axis is oriented vertically
on the Earth. The components of the curvature gener-
ated by the rotated blocks are worked out according to
Eq. (C11) in using Eq. (C12) with a = p = p. We obtain

Roios = (Ro'I'o'I' Ro 3 o 3 ) sin P cos P,
(D6)

R0303 = Ro'1'0'1' slil p + R0~3~0~3~ cos p,
~ 2 2

where the primed components agree with those of Eq.
(D5). This is the final result, which may directly be
inserted into Eqs. (47)—(50).
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