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Numerical tests of the Lande subtraction method for the Coulomb potential in momentum space
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The Lande subtraction method is a technique for removing the singularity which arises when one
solves the Schrodinger equation in momentum space for the Coulomb potential. Using this technique,
numerical solutions for eigenvalues and eigenfunctions are presented and compared to exact results. Ap-
proximately 50 eigenvalues can be calculated very accurately for various values of the angular momen-

tum. Numerous eigenfunctions can a1so be found very accurately. In addition, it is shown how to imple-

ment the Lande subtraction method for potentials which are a linear combination of the Coulomb poten-
tial and some other potential. Using a basis-function expansion technique, it is shown how to obtain
solutions in those cases where the momentum integrals must be evaluated explicitly.

PACS number(s): 03.65.Ge, 02.60.Nm, 31.15.+q, 32.30.—r

I. INTRODUCTION

Momentum-space solutions of bound-state and scatter-
ing equations are of great importance in solving relativis-
tic quantum problems. For example, the most straight-
forward relativistic generalization of the kinetic-energy
operator is very cumbersome in configuration space, but
rather simple in momentum space [1]. In addition the
handling of retardation and nonlocality is much simpler
to implement in momentum space [2—4], as well as other
relativistic aspects of strong-interaction physics [2—6].

Momentum-space bound-state and scattering equations
[1,6] are usually written as integral equations and except
for the simplest of cases must be solved by numerical
techniques. Consequently, it is of importance to study
numerical solutions of momentum-space equations for
the many standard potentials that are widely used in
physics such as the Coulomb, Yukawa [6,7], confining
[8], Cornell [9],Hulthen [6,7], etc. , potentials. Such solu-
tions are far from trivial, especially when the potentials
possess momentum-space singularities, as is the case for
the Coulomb [10]and confining potentials [8].

Our interest in the present work is the solution of the
momentum-space, nonrelativistic Schrodinger equation
for the Coulomb potential. Actually, the analytic solu-
tion to this problem has already been presented [11].
Nevertheless, it is still important to obtain numerical
solutions as well. The reason for this is that the Coulomb
potential often appears in combinations with other poten-
tials that cannot be solved analytically. One example is
the Cornell potential, which consists of the Coulomb po-
tential plus a linear confining term [9]. One must have
numerical solutions for the pure Coulomb problem when
solving the Cornell potential in momentum space [10].

Another example in which one needs numerical solutions
to the Coulomb problem occurs in the study of hadronic
atoms [2-4].

The most significant difficulty in obtaining numerical
solutions to the Schrodinger equation is in the handling
of the momentum-space singularity, which the Coulomb
.potential possesses. Lande [12]has suggested a technique
for removing this singularity, which has become known
as the Lande subtraction method. This procedure has
been used by Landau [2,3] and Kwon and Tabakin [4] in
their studies of hadronic atoms. It has also been used in
Refs. [13,14]. In these works the Lande subtraction
method was only tested numerically for a few low-energy
eigenvalues and with low accuracy.

The aim of the present work is to test the Lande sub-
traction method by calculating a wide variety of eigenval-
ues and wave functions. The accuracy of these results
will show that the Lande method can be used very
confidently for almost any physical system that one
wishes to study. We will show that the Lande subtrac-
tion method is capable of yielding of the order of 50 ei-
genvalues for any angular momentum and is also capable
of yielding very good wave functions. This means that
the method should be very suitable for the study of Ryd-
berg atoms. %e will also show that the method enables
low-energy eigenvalues to be calculated with great accu-
racy. This particular aspect of the Lande method has not
been investigated before. Being able to do this is very
significant, because it means that fine-structure effects
can be investigated with xnomentum-space techniques.
For instance, it is known that relativistic kinematic
corrections are of the order 10 smaller than a first-
order calculation of the energy [15]. One needs to be able
to calculate at least to this accuracy if relativistic effects
are to be explored.
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As mentioned above, the Coulomb potential often ap-
pears in combination with other potentials. If these other
potentials also possess momentum-space singularities,
then one may not be able to implement the Lande
method because the integrals must be performed explicit-
ly. (For a detailed discussion of this point, see Ref. [10].)
We present a technique that gets around this problem by
expanding the wave function in a certain set of known
basis functions. Again we will show that this method can
be used confidently for a more restricted range of studies.

II. LANDE SUBTRACTION METHOD

2

i(p)+ f p' dp'Vt(p, p')Vi(p')=Eti(p), (2)

where, for the Coulomb potential,

The Lande subtraction method is described in Refs.
[1—4, 10,13,14], to which the reader is referred to for full
details. We shall follow the method outlined in Ref. [10],
which provides the clearest discussion of the singularity
structure for arbitrary partial waves, and we shall write
down some of the equations here for completeness. We
write the Coulomb potential in configuration space as

7]f

V(r)=A, lim
g~O

This form is important in developing the Lande subtrac-
tion method. The momentum-space Schrodinger equa-
tion for the lth partial wave is

Qi(y)
V, (p,p') =—lim I'3)

'7T r) 0 pp

with p =
~p~ and y =—(g +p +p' )/2pp' and QI(y) being

the special Legendre functions of the second kind. The
singularity structure for arbitrary partial waves is most
easily seen by writing [10]

QI(y) =PI(y)Qo(y) —w~- &(y),

where
I'

~(y)= g +I —(y)p &(y) .
m=i ~

Qo(y) is singular at p'=p. Substituting the Coulomb po-
tential into the Schrodinger equation (2), we obtain

p Qo(y)
pt(p)+ f p' dp'P&(y), y, (p')

2p Kp 0 p

f p'dp'w( )(y)q)((p') =Eel(p) . (6)
7Tp 0

Only the first integral possesses a singularity. The
essence of the Lande subtraction method is to make use
of the relation

, Qo(y v=0)
dp

Q p 2

This result is then added and subtracted from Eq. (6) to
obtain a singularity free equation [10],

p Qo(y), , p V I(p)
pl(P)+ P~ pl(p) + f dP P!(y) P q l(p

2p m.p 2 harp o p' P&(y)

oo

p "p wl 1(y)f'I(p )=—EV'l(p) .
alp 0

(8)

Note that now when p'=p the integrand of the first in-
tegral is zero, so that the whole equation can now be cast
into discretized form and solved with standard matrix
techniques [1,4, 10].

The new feature of the present work is the precise cal-
culation of a very large number of eigenvalues and wave
functions. Eigenvalues calculated from Eq. (8) are
presented in Tables I and II together with a comparison
to the exact results. Results in Table I have been given in
atomic units (A =e =m =c = 1). One can see that the
Lande subtraction method yields a large number of
correct eigenvalues, and that the lowest ones are repro-
duced extremely accurately. Some of the calculated
eigenfunctions are presented in Figs. 1 and 2 and corn-
pared to the exact results as discussed by Bethe and Sal-
peter [11]. (Our normalization is the same as theirs. )

The significance of the present work is that the exten-
sive results presented in Tables I and II and Figs. 1 and 2
show that the Lande subtraction method yields outstand-
ing results for energies and wave functions. As men-
tioned above, the fact that the energy levels can be calcu-
lated so accurately means that the Lande method can be

used to investigate fine-structure e6'ects. In addition, our
demonstration that about 50 eigenvalues can be accurate-

ly calculated means that the method should be suitable
for studying Rydberg atoms.

II. LANDE SUBTRACTION METHOD
WITH BASIS-FUNCTION EXPANSION

In many physical applications, one often uses the
Coulomb potential with another potential added on
[2—4,9,10]. Sometimes this potential may have a singu-

larity structure that prohibits the use of the method de-
scribed above. Specifically, one may be forced to evaluate
the integrals in Eq. (8) explicitly because of additional
singular terms appearing in the integrands due to other
potentials. This situation occurs for the Cornell potential
in momentum space [10]. However, one cannot evaluate
the integrals explicitly without first knowing the wave
functions, which is what we wish to solve for. The way
around this is to expand the wave function in a suitable
set of basis functions [16],as in
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q(p)=pc;g;(p) .

Then instead of solving for the wave functions, one solves

for the expansion coe%cients. More details (but no re-

TABLE I. Energy eigenvalues (in 10 a.u.). A negative sign

before the energy has been omitted everywhere. Reduced mass

is equal to 1 a.u. 1700 integration points were used to generate

numerical eigenvalues.

suits) can be found in Ref. [10]. Clearly, the accuracy of
this technique depends very much on the choice of the
expansion functions g, (p). Obviously, one will be in-

clined to choose functions suitable to the physical prob-

TABLE II. Energy eigenvalues (in electron volts) for a spin-

less electron in an external Coulomb potential (hydrogen atom

problem). A negative sign before the energy has been omitted

everywhere. 1700 integration points were used to generate nu-

merical eigenvalues.

Exact l=o
Numerical

l=2 Exact 1=0

Numerical

1=1 l=2

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

45
46
47
48
49
50

500.000000 0
125.000000 0
55.555 555 56
31.250 000 00
20.000 000 00
13.888 888 89
10.204 081 63
7.812 500 000
6.172 839 506
5.000 000 000
4.132 231 405
3.472 222 222
2.9S8 579 882
2.551 020 408
2.222 222 222
1.953 131250
1.730 103 806
1.543 209 877
1.385 041 551
1.250 000 000
1.133786 848
1.033 057 851
0.945 179 584 1

0.868 055 555 6
0.800 000 000 0
0.739 644 970 4
0.685 871 056 2
0.637 755 102 0
0.594 530 321 0
0.555 555 555 6
0.520 291 363 2
0.488 281 2500
0.459 136822 8

0.432 525 951 6
0.408 163 265 3
0.385 802 469 1

0.365 230 095 0
0.346 260 387 8
0.328 731 098 0
0.312 500 0000
0.297 441 998 8
0.283 446 7120
0.270 416441 3
0.258 264462 8
0.246 913 580 2
0.236 294 896 0
0.226 346 763 2
0.217 013 888 9
0.208 246 563 9
0.200 000 000 0

500.000 000 3
125.000 000 6
55.555 557
31.250002
20.000 004
13.888 89
10.20409
7.812 51
6.172 86
5.00002
4.132 26
3.472 26
2.958 62
2.551 07
2.222 29
1.953 19
1.730 19
1.543 3
1.385 2
1.250 1

1.1339
1.033 2
0.945 4
0.868 3
0.8002
0.739 8
0.686 1

0.638 1

0.5949
0.555 9
0.520 7
0.488 7
0.459 6
0.433 0
0.408 7
0.3864
0.36S 8

0.346 9
0.329 4
0.3132
0.298
0.284
0.271
0.259
0.248
0.237
0.227
0.218
0.209
0.201

125.000 000 2
55.555 556
31.250 002
20.000 003
13.888 89
10.20409
7.812 51
6.172 86
5.00002
4.13226
3.472 26
2.958 62
2.551 07
2.222 28
1.953 19
1.730 19
1.543 3
1.385 2
1.250 1

1.1339
1.033 2
0.945 4
0.868 3
0.800 2
0.739 9
0.686 1

0.638 1

0.5949
0.555 9
0.520 7
0.488 7
0.459 6
0.433 0
0.408 7
0.3864
0.365 8
0.346 9
0.329 4
0.3132
0.298
0.284
0.271
0.259
0.248
0.237
0.227
0.218
0.209
0.201

55.555 554
31.250 006
20.000 002
13.888 89
10.20409
7.812 51
6.172 85
5.00002
4.13226
3.472 25
2.958 62
2.551 07
2.222 28
1.953 19
1.730 19
1.543 3
1.385 2
1.250 1

1.1339
1.033 2
0.945 4
0.868 3
0.8002
0.739 9
0.686 1

0.638 1

0.594 9
0.555 9
0.520 7
0.488 7
0.459 6
0.433 0
0.408 7
0.3864
0.365 8
0.346 9
0.329 4
0.3132
0.298
0.284
0.271
0.259
0.248
0.237
0.227
0.218
0.209
0.201

1 13.60569795 13.60569799
2 3.401424489 3.40142450
3 1.511744217 1.51174423
4 0.850 356 122 2 0.850 356 14
5 0.544 227 9182 0.544 227 94
6 0.377 936054 3 0.377 93608
7 0.277 667 305 2 0.277 667 35
8 0.212 589 030 5 0.212 589 08
9 0.167971 579 7 0.167 971 65

10 0.1360569795 0.1360571
11 0.1124437848 0.1124439
12 0.094484013 6 0.094484 2
13 0.080 507088 5 0.080 507 3
14 0.069 416 826 3 0.069 4170
15 0.060469 768 7 0.0604700
16 0.0531472576 0.0531475
17 0.047 078 539 6 0.047 078 9
18 0.041 992 894 9 0.041 993 3
19 0.0376889140 0.0376893
20 0.034014244 9 0.0340147
21 0.030 851 922 8 0.030 852 5

22 0.0281109462 0.0281115
23 0.0257196559 0.0257203
24 0.023 621 003 4 0.023 621 7
25 0.021 769 1167 0.021 769 9
26 0.020 126 772 1 0.020 127 7
27 0.018 663 508 9 0.018 664 5

28 0.017 354 206 6 0.017 355
29 0.016 178 0000 0.016 179
30 0.01S 1174422 0.015119
31 0.014 157 854 3 0.014 159
32 0.0132868144 0.013288
33 0.012493 753 9 0.012495
34 0.0117696349 0.011771
35 0.011 106692 2 0.011 109
36 0.010498 223 7 0.010500
37 0.009 938 420 7 0.009 941
38 0.009 422 228 5 0.009 425
39 0.008 945 232 1 0.008 948
40 0.008 503 561 2 0.008 506
41 0.008 093 812 0 0.008 097
42 0.007 712 980 7 0.007 716
43 0.007 358408 8 0.007 362
44 0.007 027 736 5 0.007 031
45 0.006 718 863 2 0.006 723
46 0.006 429 9140 0.006 434
47 0.006 1592114 0.006 163
48 0.006 905 250 8 0.005 910
49 0.0056666797 O.OOS 671
50 0.0054422792 0.005447

3.401 42449
1.511 744 23
0.850 356 13
0.544 227 94
0.377 93608
0.277 667 34
0.212 589 08
0.167 971 64
0.136057 1

0.112443 9
0.094 484 1

0.080 507 2
0.069 4170
0.060 470 0
0.053 147 5

0.047 078 8
0.041 993 3
0.037 689 3
0.034 014 7
0.030 852 4
0.028 1115

0.025 720 3
0.023 621 7
0.021 769 9
0.020 127 7
0.018 664 5
0.017 355
0.016 179
0.015 119
0.014 159
0.013288
0.012495
0.011771
0.011 109
0.010500
0.009 941
0.009425
0.008 948
0.008 506
0.008 097
0.007 716
0.007 362
0.007031
0.006 723
0.006434
0.006 163
0.005 910
0.005 671
0.005 447

1.511 744 22
0.850 356 13
0.544 227 93
0.377 93607
0.277 667 33
0.212 589 07
0.167 971 63
0.136057 1

0.112443 9
0.094 484 1

0.080 507 2
0.069 4170
0.060 470 0
0.053 147 5
0.047 078 8
0.041 993 2
0.037 689 3
0.034 014 7
0.030 852 4
0.028 1115
0.025 720 3
0.023 621 7
0.021 769 9
0.020 127 7
0.018 664 5

0.017 355
0.016 179
0.015 119
0.014 159
0.013288
0.012495
0.011771
0.011 109
0.010500
0.009 941
0.009 425
0.008 948
0.008 506
0.008 097
0.007 716
0.007 362
0.007 031
0.006722
0.006434
0.006 163
0.005 910
0.005 671
0.005 447
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FIG. 1. Exact vs numerical radial wave function in momen-
tum space for 1=0 and n =20. Exact wave functions and nor-
malizations are taken from Ref. [11]. All quantities are in atom-
ic units. Reduced mass is equal to 1 a.u. 600 integration points
were used to generate numerical wave functions.

p (atomic units)

FIG. 4. Same as Fig. 3 except 1 = 1.

lem being studied. Thus what is presented here is only
intended to illustrate the technique and to show what ac-
curacy one might expect.

Choosing
3000 -'
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FIG. 2. Same as Fig. 1 except 1=1.

I

0.14

we proceed to solve the corresponding matrix equations
for the eigenvalues and expansion coefficients as dis-
cussed in Refs. [8,10].

The results are shown in Table III and Figs. 3 and 4.
Even though the results obtained are not as extensive as
those obtained without basis functions, nevertheless those
eigenvalues and wave functions which are able to be cal-
culated are seen to be very reliable. Clearly one can op-
timize the results by much more careful choice of the
basis functions. %e choose not to explore this more ex-
tensively here because the choice will more likely depend
on the other potentials that one is considering. Our ma-
jor point is that if other potentials force one to evaluate
the integrals explicitly, the Lande subtraction method
can still be used very usefully in the above rnodi6ed form.

To illustrate this point for a specific potential, we con-
sider the Cornell potential [9]:

TABLE III. Energy eigenvalues (in 10 ' a.u.). A negative
sign before the energy has been omitted everywhere. Reduced
mass is equal to 1 a.u. Numerical eigenvalues were calculated
using a set of 12 basis functions and 48 integration points as ex-
plained in the text.

Numerical

Exact
0 0.2 0.4 0.6 0.8

p (atomic units)

FIG. 3. Exact vs numerical radial wave function in momen-
tum space for 1=0 and n =6. Exact wave functions and nor-
malizations are taken from Ref. [11].All quantities are in atom-
ic units. Numerical wave functions are calculated using a set of
basis functions as explained in the text. Reduced mass is equal
to 1 a.u. 14 basis functions and 48 integration points were used
to generate numerical wave functions.

1

2
3
4
5

6
7
8

9

500.000 000 0
125.000 000 0
55.555 555 56
31.250 000 00
20.000 000 00
13.888 888 89
10.204 081 63
7.812 500 000
6.172 839 506

499.999
124.997
55.553
31.247
19.996
13.884
10.197
7.79
5.7

124.996
55.552
31.246
19.995
13.882
10.189
7.78
5.8

55.556
31.249
19.997
13.885
10.199
7 ~ 80
5.9
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TABLE IV. Energy eigenvalues (in GeV) for the Cornell po-

tential for 1=0. Numerical eigenvalues (momentum space)

were calculated using a set of 18 basis functions and 80 integra-

tion points as explained in the text. The basis function used was

g, (p)=1/[(i /M) +p ] P. arameters were m, =m&=1.5 GeV,
k =0.18 GeU~, and ~= —0.3.

Numerical
(coordinate space)

0.4756
1.0215
1.4433
1.8094
2.1408
2.4477
2.7362
3.0100
3.2717

Numerical
{momentum space)

0.4757
1.0216
1 AAAA

1.8119
2.1459
2.4582
2.7524
3.0359
3.4247

IV. SUMMARY AND CONCLUSIONS

Using the Lande subtraction method for the Coulomb
potential in momentum space, numerical solutions for ei-
genvalues and eigenfunctions were presented and com-
pared to exact results. Many eigenvalues and eigenfunc-

V(r)=kr+ —.
r

The momentum-space solution of the Schrodinger equa-
tion with the linear part of this potential has been dis-
cussed in Refs. [8,10]. Using our basis-function expan-
sion technique, we compare the momentum-space results
for the energy eigenvalues to the results obtained with a
coordinate space numerical solution in Table IV. One
can see that the technique works well for this particular
case.

tions were able to be found very accurately. In addition,
it was shown how to impletnent the Lande subtraction
method in those cases where the momentum integrals
must be evaluated explicitly. The technique used was to
expand the wave function in terms of a known set of basis
functions. Very good numerical results were also ob-
tained with this method, although the results were not
nearly as extensive as those obtained without basis func-
tions.

In summary, we have very thoroughly tested the Lande
subtraction method numerically and found the results to
be excellent. This yields confidence that the method can
be arbitrarily applied to momentum-space solutions of
problems that involve the Coulomb potential and some
other potential. This is true even if the other potential
has singularities of higher order than the Coulomb singu-
larity, which requires modification of the Lande tech-
nique using the basis-function expansion technique.

One of the most significant results of the present work
is the demonstration that eigenvalues can be calculated
with very high accuracy using the Lande method. This
means that the method will be very useful in the investi-
gation of fine-structure effects and other small corrections
to the energy levels. In addition, being able to calculate
as many as 50 eigenvalues means that the method should
be quite suitable for the study of Rydberg atoms.

ACKNOWLEDGMENTS

We wish to thank Franz Gross for suggesting the
basis-function expansion technique. We would also like
to thank Peter Tandy for arranging a week-long meeting
of our collaboration at Kent State University. J.W.N.
would also like to thank Warren Buck for arranging a
visit to Hampton University. K.M.M. was supported by
NSF Grant No. HRD-9154080.

[1]R. H. Landau, Quantum Mechanics II; A Second Course in
Quantum Theory (Wiley, New York, 1990).

[2] R. H. Landau, Phys. Rev. C 27, 2191 (1983).
[3]R. H. Landau, Phys. Rev. C 28, 1324 (1983).
[4] Y. R. Kwon and F. Tabakiu, Phys. Rev. C 18, 932 (1978).
[5] W. Buck and F. Gross, Phys. Rev. D 20, 2361 (1979).
[6] F. Gross, Relativistic Quantum Mechanics and Field

Theory {Wiley, New York, 1993).
[7] C. Stubbins, Phys. Rev. A 48, 220 (1993).
[8] J. W. Norbury, D. E. Kahana, and K. Maung Maung,

Can. J. Phys. 70, 86 {1992).
[9] E. Eichteu, K. Gottfried, T. Kinoshita, K. D. Lane, and T.

M. Yan, Phys. Rev. D 17, 3090 {1978).
[10]K. Maung Maung, D. E. Kahaua, aud J. W. Norbury,

Phys. Rev. D 47, 1182 (1993).
[11]H. A. Bethe and E. E. Salpeter, Quantum Mechanics of

One and Two Electron Atoms (Plenum, New York, 1977).
[12) A. Lande, as quoted in Ref. [4] above.
[13]G. Hardekopf and J. Sucher, Phys. Rev. A 30, 703 (1984).
[14]W. Dykshoorn, R. Koniuk, and R. Munoz-Tapia, Phys.

Rev. A 41, 60 (1990).
[15)D. Griffiths, Introduction to Elementary Particles (Wiley,

New York, 1987).
[16]F. Gross (private communication).


