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Transition radiation and Bragg resonances
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Both spontaneous and stimulated radiation emitted by an electron beam traversing a periodic medium

are studied in the approximation of neglecting the influence of the field on the motion of the electrons.
The results are valid both in the vicinity of the Bragg domain as mell as far from it. In the latter case, we

recover previous results with some corrections. In the Bragg domains the result is of interest since in

this case the emission of quanta increases considerably.

PACS number(s): 12.20.—m, 41.60.8q

I. INTRODUCTION

Ginzburg and Frank [1] Iirst suggested the existence of
"transition radiation" (TR) when charged particles move
from one medium to another with different dielectric con-
stant. TR has been studied both theoretically and experi-
mentally for a long time [2—10]. The interest in the prob-
lem is due to the fact that TR is a bright source of x rays.
As noted in Ref. [11],TR produced per electron is at
least two orders of magnitude greater than synchrotron
radiation. This efFect grows considerably if TR is gen-
erated in a periodic medium where there is phase addi-
tion between the emitted photons at each interface [so-
called resonant transition radiation (RTR)]. That is why
the study of RTR is a subject of special interest both ex-
perimentally [11—18] and theoretically [18—22]. We refer
to Refs. [11,12] for a discussion of the applications of
RTR to medical imaging, spectroscopy, microscopy, and
x-ray lasers. The effect of intensification of TR is even
more pronounced in the vicinity of the Bragg domain
which thus acquires special interest. Thus far, the prob-
lem has been discussed only in Ref. [22] where an exact
treatment of the Maxwell equations in a periodic medium
is presented. The results were, however, obtained iri
terms of the solutions of an infinite-rank system of cou-
pled equations in a rather complicated manner. Only
outside a Bragg domain can one decouple the system and
derive an answer which has proved to be equivalent to
the work in Refs. [18—20].

RTR in the Bragg domains is the main subject of this

work; our results are based on the approximation of
neglecting the influence of the radiated fie1d on the

motion of the radiating particle. RTR of wavelength k
which occurs in the direction given by the angle 0 mea-

sured from the velocity v of the particle satisfies the fol-

lowing condition [23,24]:

& e &'"cose=c A n1 /1, —

where ( e ) is the average dielectric index, 1 is the period
of the spatially varying dielectric index, c is the velocity
of light, and n is an integer. At first, the theory of TR
was studied within the %'entzel-Kramers-Brillouin
(WKB} approximation [24], provided that the period 1

greatly exceeds the wavelength k. However, as noted by

Kaplan and Datta [18—20], progress in coating technolo-
gy (for example, molecular-beam epitaxy [25]},has made
it possible to grow periodic multilayered microstructures
with layers less than 5 mm thick. Using these structures,
one can obtain radiation in the range 1 —30 nm with the
aid of nonrelativistic electrons of energies 70-300 keV.
To study such systems, it is necessary to go beyond the
limits of the WKB approximation. For example, in Refs.
[18—21], RTR generated by an electron traversing a
periodic stratified medium was considered to be the result
of interference of waves emitted at different interfaces
E i /Ei and e2/~, As p. ointed out by Pardo and Andre
[22], this approach is justified if ~b,e/e (& 1 and the sys-
tern is not in the vicinity of a Bragg domain.

A number of people have also explored stimulated
emission in cases of ordinary Cerenkov radiation [26—28]
and TR [8—10, 18—20]. It should be mentioned that the
results for the stimulated emission deduced from
quantum-mechanical and classical approaches are at vari-
ance, in contrast to the case of spontaneous emission
[18,29] {for a detailed summary, see Ref. [18]). Concern-
ing this point, we note that in the case of TR the current
behaves classically in the sense that the radiation does
not influence it (i.e., the recoil under emission is negligi-
ble) and consequently the quantum-mechanical and clas-
sical results should coincide [30]. In this paper, we adopt
the quantum-mechanical approach so that the problems
of spontaneous and stimulated emission can be treated
within the same formalism.

The paper is organized as follows. In Sec. II we obtain
a general expression for the spectral density of the radiat-
ed intensity in terms of the Bloch function of the electric
field in a periodic medium e(z) in the approximation in
which we neglect the influence of the generated radiation
on the motion of the particle. In Sec. III, the general re-
sult is specialized to the case of a periodic stratified struc-
ture. In the Appendix, we briefly outline a solution of the
classical problem of TR and demonstrate the identity of
the classical and quantum-mechanical results.

II. QUANTUM THEORY OF TRANSITION RADIATION
IN A. PERIODIC MEDIUM

We consider the case when the wavelength of the radi-
ation k is such that
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A, »A, e, (2)

where A,, is the de Broglie wavelength of the electron in

the beam. Under this condition, the current behaves
classically. The radiation of y depends on the Lagrang-
ian of the interaction between the electrons and the field

[311,

L'"'= j "—(r, t) A„(r, t),
e

(3)

A=+(g/2Qtv) c[g& „e& „(z)e' ~'
v, k

ee (z)e l(k r —n&t)]— (6)

where 0 is a normalization volume and k is the Bloch
wave vector. The vectorial function
ez „(z)exp[i(k r —tot)] corresponds to the Bloch mode
with a wave vector k and polarization v, and it is normal-
ized as follows:

I
ek z e z z=4~ (7)

The frequency ~ depends on both k and v and is
governed by the dispersion relation

to = toq „=to„(k„k~),

where j"and A are the four-dimensional current densi-
P

ty and potential, respectively. It is convenient to choose
the Coulomb gauge of the potentials whereby

A =/=0, diveA=O, E= —c 't}A/t}t . (4)

Thus we have from Eq. (3)

'j A.—
e

Let us expand the operator A in a series of Bloch
modes in the periodic medium e(z):

l f
L/2 Pz Pz

X ef(z}exp i —k, — z dz,
L/2

(12)

where E', p', and u' (Ef, pf, and vf) are the initial (final)

energy, momentum, and z component of the velocity of
the electron, and ez(z) is the z projection of the Bloch
mode vector ez „(z) with the polarization corresponding
to the three vectors k, v, and ez „(z) being coplanar (the z
direction is along the velocity v}. The normalization
length L is 0'~ . Next, we expand the function e&(z) in a
Fourier series

e&(z) =ge&exp(in 2mz/I) (13)

and substitute it into Eq. (12). After integrating over z,
we obtain the following result:

M,f =ev(A'/2cvQ )'~ (2n. )

Pz
Xgeq 5 —k, —2~n Pz

f
1

l f
x5' "-k-"

j. (14)

Next, substitute this expression into the standard-
quantum mechanical formula for the transition probabili-
ty per unit time

dtv 2m
IM Iz5

E' E &z dk d p
(2m)' (2M)'

where nk represents the number of photons in the final
state in the mode k, v. To obtain the value Mf, we sub-
stitute Eqs. (6) and (9). The result is

E f
Mf =

—,'e(u'+v )(fi/2cuQ )' (2m) 5 —kj-Pl Pl

where the specific form of co,(k„kj ) depends on the func-
tion e(z}. Under this condition, the Hamiltonian of the y
quanta is given by

and perform the integration over d3p recalling that

(15)

—gf1cok (Qg &g +&g &g ), (9)
v, k

where 8 and & are the creation and annihilation opera-
tors of the y quantum in the state k, v. The expansion of
the operator j in plane waves is as follows:

j(r, t)=c (2Q) 'g(p/E+p'/E')b b ~

P~P

(2m )'[5'(k)] =05'(k) .

As a result we obtain

n

k~dkjdk,
'R Cv

(17)

X exp[i(p' —p) r/fi

i (E' E)—t /fi], —(10)

In the subsequent calculations it is necessary to take into
account the approximate equality

where E and E' are the relativistic energies correspond-
ing to momenta p and p' and b and b are the creation
and annihilation operators of the electron in the state p.
In the lowest order of the fine-structure constant, the ra-
diation is dependent on the matrix element

Ef=E' —v k + 2mn
Z

which arises from both the momentum conservation con-
dition and Eq. (2). Taking into account Eq. (18), we can
rewrite the 5 function in Eq. (17) in the following way:

&fl fL'"'ZrIi&

=M,.f (n&, )'~ exp i +to — t, (11)
277n

Z (19)
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and then integrate over dki. %e obtain 6E—=E'—Ef+ Acuk . (26)

(20)

where vo is the polarization at which the three vectors k,
v, and the electric field are coplanar. The last factor in
the integrand of Eq. (20} stems from differentiating the
argument of the 5 function in Eq. (19) with Eq. (8) and
suggests that the function to,(k„ki) has only one branch,
that is, there is no degeneracy on k j .

To obtain the radiated power in the frequency interval
dc@, it is necessary in Eq. (20) to take into account the fol-
lowing relation:

2mn
co=vk + v r

which arises from integrating the 5 function in (19). The
result is

5E =—+Pi ~ tu —u k ++ 2m.n
k z

Z~n

2my
'

1

y =(1—u~/c2) ii2

2

(27)

The last relation can be deduced by analogy with Eq.
(18), if we consider the next term in the expansion in the
smallness variable (fico&/E). Since (iE+~ —iE ~) is not
zero, there is an efFective number of emitted photons

The upper (lower) sign corresponds to emission (absorp-
tion). M+ is given by Eq. (14), and M differs from M
in the sign in front of both k and n in the argument of the
5) function in Eq. (14). Using momentum conservation
pf=p'+ hk, we can obtain the following approximate re-

lation:

dU= ' "
lel", I'~

4n
(22) ink =ink —Ank (28)

As a rule, authors are interested in the result for the
power per unit area radiated by an electron beam with
the current density Jduring a time t, i.e., q= —,'[to —u(k, +2nnl ')]t, (29)

Substituting Eqs. (15) and (24) —(27) into Eq. (28) and ex-

panding the function (sin g/rt ) in powers of the small
variable

we obtain the following result for the gain I:
(23)

J= "tlePI'~
dco e dt 4n. ~nk JQ

nk ev
(30a)

r= " ie„"i' k', +y-' k+
4 k l 7 z Ft', (30b)

where, as in Ref. [18],we have called

(31)F= (g sin rt) .
d YI

Finally, taking into account (23), we rewrite the result

(30b) as

Bto, (k„ki)
my

dI
Q)k

dc'

2

2+ 2 I +'V z I
(32)

Notice that far from the Bragg domains and when

~
e(z) —1 « 1, Eq. (32) provides the result (31) of Ref. [18]

only for n =0, whereas for values n&0 it yields some
corrections to that result.

III. RADIATION FROM PERIODIC STRATIFIED
STRUCTURES2 + 3 f

hn„=A n — iM, ~t 0
(6 ) (2M) To use the results (23) and (32) for a given periodic

function e(z}, it is necessary to have specific expressions
for both the dispersion relation (8) to calculate the deriva-
tive Boo /Bk i and the coefBcients ek of the Fourier expan-

where

=(t5E*/2A), — (25)

For further convenience we have multiplied and divided
Eq. (20) by co=co„(k„kj ).

The result Eq. (23) should be compared with Eq. (29) of
Ref. [18]. The two answers differ in two respects: (1}the
factor [Bc@,/Bkz ]

' is replaced by c, and (2) the fac-

tor iel", i is replaced by 4m. sin Oic„, i (our el", /ek=c„, ).
The two formulas are equivalent to each other only far
from the Bragg domains provided ie(z) —1 i «1. In this
connection, it is worth recalling the approximation of
Ref. [18]: the result for ordinary Cerenkov radiation is
obtained first and then adapted to a spatially periodic
medium e(z) by a heuristic method which consists of
multiplying the answer by ic„, i

. The stimulated emis-

sion is treated in Ref. [18] in an analogous manner, the
result being Eq. (31) of Ref. [18]. Our exact result ob-
tained below yields a correction to this approximation
even when ~e(z}—1 i

&& 1 and far from the Bragg
domains.

To treat stimulated emission, we assume that there are
nk &&1 photons in a mode characterized by a wave vector
k and a polarization vo. The standard quantum-
mechanical formulas give the following rate of photons
emitted (or absorbed) in this mode:
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sion of the Bloch function ek(z}, Eq.(13), in terms of e(z).
Let the function e(z) have a periodic stratified structure
and consist of layers with thicknesses! „i2 with dielectric
constants e„E2, respectively (Fig. 1). Let us label these
layers with two numbers (s, q), where q is the number of
periods of the function e(z) (q may be positive or negative
integers, including zero) and s is the number of layers in a
period (s may have values 1 or 2). As the function e(z) is
discontinuous, the electric field E(r) is circumscribed by
the different analytical expressions for various layers.
For a radiated photon mode, let us write the Bloch func-
tion of the z component of the electric field in the layer
(s, q) as

Ek, (r}=Ek, (z)exp(ik1 ri), rC(s, q) . (33)

As e is a constant inside a layer, we may represent the
function Ek,~(z) as

E~ (z)=Ek, exp(ik„z)+Ek, exp( ik„—z),
where Ek, are some constants and

k =(k k ) =(6 c co k ) $=1

(34)

(35)

klz(Ekl0 Ek10) k2z(Ek2 —1 Ek2 —1 } &

k„[Ek,0exp(ik „i,) —Ek,0exp( ik„i,—)]

(38)

=k» [Ek20exp(ik2, i, )
—Ek20exp( ik» i, )

—] .

(39)

fwo additional equations can be deduced from the Bloch
representation

beam
Z=U~ 0

FIG. 1. Schema of radiation by an electron beam traversing a
periodic multilayer structure.

All the values E~ are deduced from the appropriate
boundary conditions if the constants E&0 have been
found. To find E&o, recall that any radiated photon
mode has the polarization at which the vectors E(r), v,
and k are coplanar. For such a polarization the condi-
tions of continuity of the normal component of the vector
D and the tangent component of the vector E at z =0
and z = i, yield four equations:

~1(Ek10+Ek10) +2( k2 —1+Ek2—1 ) &

+

el[Ek10exp(ik „i,)+E„*,0exp( ik„i—, )]

=E2[Ek20exp(ik2 !1)z+Ek20exp( ik2zi, )], (37)

Ek, (r) =ekexp(ik. r) (40)

where the function ek(z) is periodic. From Eqs. (33), (34),
and (40) it follows that

Ek„=Ezsoexp(+i k„'ql), (41)

where

At q =1, Eq. (41) yields

Ek2, =exp(+1'k2, !)Ek20 ~

(42)

(43)

Xsin(k„i, )sin(k2, i2) . (44)

This equality is a specific realization of the dispersion re-
lation Eq. (8) for the periodic stratified structure and it al-
lows us to compute the Bloch parameter k, as a function
of co and ki, taking into account Eqs. (35). Equation (44)
can be compared with the dispersion relation obtained in
Ref. [22] [see Eq. (39), which contains a determinant 6 of
infinite rank]. The authors of Ref. [22] report that they
have elaborated an algorithm for approximating h. As
an example, they exhibit curves of the variation of both
real and imaginary parts of the Bloch parameter versus
the escape angle 8 (Fig. 2 in Ref. [22]) provided
~e(z) —l~ &&1. But a detailed analysis shows that these
curves contradict the exact equality (44) near the boun-
daries of the Bragg domains. Indeed, let us keep the fre-

quency co constant and expand Eq. (44) in powers of the
small values b,k, =k, —k, and b,kl—:ki —ki, near the
boundary values k, , ki (where m is the number of the
boundary). We derive

+[1—
—,'(hk, !) ]=+[I+A (ski!)], (45)

where A are constants (it is worth mentioning that both
the right- and left-hand sides of Eq. (44) are equal to il
on the boundaries of Bragg domains). From Eq. (45) we
conclude that the variation vs ~i&i ~

of ~Red&, ~
in the

allowed zone near the boundary and of ~1mb, k, ~
vs

~
b,k i ~

in the forbidden zone near the same boundary, are
identical. These conditions are not satisfied in Fig. 2 of
Ref. [22] where the slope of Imb, k, near the left-hand
boundary of the Bragg domain is larger than near the
right-hand boundary, while the opposite is true for
IRe~k, I.

In addition to the dispersion relation, we can also
specify the general results (23) and (32) for the radiated
intensity and the gain in the case of periodic stratified
structures. To that end, we must deduce the Fourier
coefficients ek for the structures [as well as the dispersion
relation which has been specified already in Eq. (44)].
The appropriate program can be realized on the basis of
the system of Eqs. (36)—(39) and (43) under the conditions

The condition of compatibility of the system of six homo-
geneous equations (36)-(38) and (43) with the six un-

knowns yields the following relation:

cos(k, !)=cos(ki, ii+k2, i2)

—(2e,e2k„k2, ) '(kiz62 k2z61)
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Eqs. (44) and (6). It is convenient to write the results of
rather lengthy calculations of e& in the following forms:

ea =e it+ezk (46)

a +—=( —1)'+'(4')'~ (R e, ) 'a,—

I
X sin ~n +—( —1)'k„ l, (48)

e,"& =2(2nn —k,, I) 'a,++2(2mn +k,+, I) 'a, , (47)

where k —are given by Eq. (42}, and

=(I, /e, l)[1+(k„/k~)](1+~a,
~

)

+(Iq/e21)[1+(k2, /ki)](ia2+
i

+ ia i~)

+(2a, /e, )[1—(k„/k, )][sin(k„l, )/k„l]
+(2a2+a2 /e2)[1 —(kz, /k f, )] . (51)

k, l =k„l, +k2, l (52)

If the inequality ~be/e~ &&1 holds, we may expand the
results in powers of b,e/e. To the first order in (be/e),
we obtain a very compact expression. For example, the
dispersion relation Eq. (44) has the form

(k), ez —kgze$)»n[(kgglp —k], l) )/2]
Qi =1) Q)

( k &, ez+ k 2, e &
)sin [(k &+, I, +k 2+, 12 ) /2 ]

This result means that the extensions of the Bragg
domains (inside which the Bloch parameter k, is imagi-
nary) tend to zero to the first order in (b,e/e). To the
same order, we also have

(e,k„+e,k „)sin(k „I,)

az =
2e~k2, sin[(k,+, I

&
+kz, l2 ) /2]

(50)

dI =(4'') 'eJurur~e„")',
dc'

where

(53)

R„(be/e)sin[(~nl, /I) ]sin8,2(ng P )

n g(2 ngl3'}—
—2

(54)

2 1 he
16 e

cos 28 1
sin 2nn 1—

cos 8 'gn

~zX,—sin 2m. n
I I, p'g2n

~z . ,+ srn 2m'n
l t2 IB gran

(55)

where

g, =I'I, ', g, =I'I, ', g=X'I

P'=uc 'e' ' tan8=k, 'k

IV. CONCLUSIONS

In this paper we have considered both spontaneous and
stimulated transition radiation which occurs when an
electron beam traverses a periodic stratified medium. %e
have adopted an approximation that neglects the
inAuence of the external field on the motion of the elec-
tron. It is interesting to find corrections to this approxi-
rnation in the case of stimulated radiation in a strong
external field (for example, our approximation yields zero
gain for the mode with k~ =0). But it is more important
to investigate corrections arising from the imaginary part
of the dielectric index. The latter can be done in the
framework of the approach we have introduced. The re-
sult for the intensity of the spontaneous radiation is given
by Eqs. (23) and (46)—(51) from which we have derived
Eqs. (53)—(55) for the case

~
be/e~ && 1. These results are

valid both far from and near the Bragg domain. As can
be observed from Eq. (55), the approximate equality
8„—1 is realized far from the Bragg domain and from
Eqs. (53) and (54) we can obtain a result that coincides

with Eq. (5) of Ref. [18];the latter, however, becomes in-
valid near the Bragg domain where P'nq-2. On ap-
proaching the Bragg domain, the second term in the
right-hand side of Eq. (55}grows sharply and prevents an
unlimited growth of both Eqs. (54) and (53). This is the
main prediction of our paper in the Bragg domain. Away
from it, as noted in Ref. [11], the agreement between
theory and experiment has been quite satisfactory. Re-
grettably, we cannot compare our results for the Bragg
domains with experimental data since the Bragg reso-
nances have not yet been investigated with ultrarelativis-
tic electrons in periodic structures (Refs. [11—17]). How-
ever, due to the considerable increase of emitted y's in
those regions, it is hoped that experimental data will soon
become available.

Finally, let us mention that, as g~0, Eqs. (53}—(55}
become invalid in contrast with the exact results Eqs.
(46)—(51) which are valid for any g. On the other hand,
we recall that we are interested primarily in microstruc-
tures for which g & 1. As to the stimulated radiation, the
result for the gain is given by Eq. (32) which corrects the
approximate expression in Ref. [18] even far away from
the Bragg domain.
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APPENDIX: CLASSICAL THEORY
OF TRANSITION RADIATION

Starting from the Maxwell equations, we can deduce
the equation for the z component of the induction vector
0 under the conditions which have been considered:

0+ D(r t}= ev —5(r v—t)g 4~ a
c}t

Gi, (z) =exp(ik, z)gi, (z)

2772=exp(ik, z)ggl, exp im (A12)

Si,(t)= QSI",exp( i c—o„t), (A13)

Taking into account Eqs. (A10)—(A12), we can obtain the
solution of Eq. (AS) in the following form:

+4~e [5(r—vt)/e(z)],
Z

where we use the notation

D(r, t) =D, (z, t), (A2)

co„=k,u+n 2&V

le &~ Vdk CgS~=-
2n v co2 —coz (k„ki )

0

(A14)

(A15)

(A3)

OD:b, [D/e—(z)]+ [De'(z)le(z)] .
Z

(A4)

We can check that the operator 0 is Hermitian (it is
worth noting that if we write the equation for E,(r, t), the
analogous operator will not be Hermitian), so a system of
its eigenfunctions is complete and orthogonal. Let us la-
bel eigenfunctions with the proper Bloch vector k and
normalize the functions Dl, (r) as follows:

D& rD&. r r= 2m —k (A5)

E(t)=E,(ri—=O, z =vt, t) . (A16)

Taking into account Eqs. (A16), (A13), and (A10) we ob-
tain

E(t)= f dk Sl, (t)E&(vt),

where the functions Ei, (ut) may be represented as

(A17)

To deduce the emission intensity we implement the
method used by Landau and Lifshitz [32], according to
which we must deduce the z component of the electric
field acting on the particle itself (i.e., at the point
ri=O, z =ut):

The eigenfunctions Dl, (r) satisfy the relation

OD&(r) = —[co„(k„ki)Ic ]Dl,(r), (A6)
Ez(vt) =Dz(ut) le(vt)

=exp( ik, ut)el, ( ut)

where co, (k„ki) is the function defined by Eq. (8) with
0

the polarization vv specified below Eq. (20). Let us ex-
pand the function D(r, t) in eigenfunctions Dl, (r),

D(r, t)= fSi,(t)D&(r)dk, (A7)

and substitute Eq. (A7) into Eq. (Al). Multiplying the re-
sult by Dl', (r) and integrating over dk yields the follow-

ing differential equation for the coefficient function Si,(t):

2m.vt
=exp(ik, vt)QP|, exp im

l

so that

E(t)=f dk QSkexp( ico„t) Qadi, ex—p(ico~t)

(A18)

(A19)

[co —co, (k„ki ) ]Si,(t)

=e(2m. ) [v —[c Ive(ut)]] Dz (ut), (A8)

where

D„(z)=—D„(ri=0,z) . (A9)

2~Z
Dl, (r) =e '"'d (z }=e '"'gd i, exp im

m

(A10)

It is convenient to introduce the functionG&(z), where

According to the Bloch theorem, we can represent the
function Dl, (r) as follows:

It is worth noting that the functions el, (z) and el, (z) [see
Eq. (13) above] differ only due to the normalization. The
energy radiated by one electron is equal to the work of
the electric field acting upon the electron. The work
along the path of the electron per unit length is equal to
the average force

F = eE(t) = —lim f —E(t)dt .
T oo 2T T

Substituting Eq. (A19) for E(t) and taking into account
Eq. (15), we obtain the following representation for F:

F=g f F(co„)dco„, (A20)

where

1 d dD„(z)—: G„(z) .
e(z) dz dz

(A 1 1}

On the basis of Eqs. (A10) and (All), it is possible to
represent the function Gi, (z) as

ge ooF(co„)= f (co„ /u)e 1",

m.dki

(A21)
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The spectral density of the radiated intensity is then

F(co„):F—(co„)+F(—co„), co„)0 . (A22)

As Landau and Lifshitz [32] have shown, to calculate the
integral (A21) it is necessary to consider the contribution
only near the pole of the integrand (A21), provided that
the pole must be rounded on the lower half plane of the
complex plane of k, if co„(0. We obtain

dI =e 'JvtF=eJvtto„[t)to„(k„k j ) lt)k ~ ]

which follow from the reality of the function e(z).
To verify the equivalence of the results (A23) and (23),

it is necessary to perform the proper algebraic transfor-
mations taking into account the following relations:

a =~~e it+~2erk

ei(~i +~t ) R
e, e, (2mn +k, l)

ez =ez(R/R ), e,"k =e,"k(R !R ), s =1,2,

XRe lg 2 gg
U

(A23) (ll4m)R =[1+(a& ) ]I&+[(a&+ ) +(az ) ]lz

To deduce this formula, we have taken into account the
equalities

(A24)

sink &, 3& sink2, Iz
+2a l +2a+a I

where e&, a,+—
, and R are given by Eqs. (46)—(51).
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