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Computation of tunneling rates in time-dependent electric field: Electrons on the surface
of liquid helium, a one-dimensional hydrogen atom
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We have solved, by numerical methods, the time-dependent Schrodinger equation for the known po-
tential of electrons over the surface of 1iquid helium. The computed tunneling rates for a static field

agreed with experimental measurements of the rates. We describe here the extension of the computation
to time-dependent electric fields. The results provide quantitative details of the amplitude and frequency
dependence of the tunneling rates. They show very large photoassisted enhancements of the tunneling
rates. In addition, we find a modulation of the tunneling rates at the frequency of the applied field. The
modulation amplitude decreases sharply at frequencies that are integer fractions of the frequency corre-
sponding to the energy difference between the electron ground state and the top of the barrier. We find

no evidence of finite transit-time sects.

PACS number(s}: 03.65.Ge, 73.40.6k

I. INTRODUCTION

In previous work [1,2], we have shown that electrons
escaping from their shallow potential well, on the surface
of liquid helium, are accurately described by a modified

[3) one-dimensional (1D) hydrogen atom potential. We
did so by comparing a numerical solution of the 1D
Schrodinger equation, with this potential, for the tunnel-
ing of electrons from the surface of liquid He to tunneling
rates measured experimentally. With no adjustable pa-
rameters, we found good agreement between experiment
and theory over a wide range of applied electric fields and
electron density.

The cleanliness of the physical system and the accura-
cy and simplicity of the algorithm provide an opportunity
to investigate fundamental questions about tunneling and
the interface between classical and quantum physics. We
examine here the response of the system to time-
dependent electric fields. Although there is evidence that
these tunneling rates are substantially increased by mi-
crowave radiation [2,4], no quantitative measurements of
the effect have been made. In anticipation of such mea-
surements, we have computed the response to time varia-
tions spanning the range between the sudden and adiabat-
ic limits. In the response to periodic variations of the
field, we find that photoassisted tunneling becomes im-
portant at frequencies approaching the ionization fre-
quency. In that case, tunneling rates can be enhanced by
factors as large as 10 for modulations of as little as 10
of the static electric field. We have searched for evidence
of the inhuence of a finite tunneling time or "transit
time" through the frequency dependence of the tunneling
rate. None has been found. A search for possible
infiuence of classical chaos in this tunneling system is not
yet completed.

II. COMPUTATION OF TUNNELING RATES

A simple and frequently used method for estimating
tunneling rates uses the %'KB approximation. However,

the accuracy of the measurements in the case of interest
here exceeds the accuracy to which the prefactor to the
exponential is determined by this method. More detailed
methods that have been used include complex scaling and
asymptotic wave functions [4,5). In our case we require
absolute accuracy for the static field case and we compute
tunneling in tiine-dependent potentials where the WKB
method cannot be used. We compute both the short-
term transient response to sudden changes in the poten-
tial as well as the steady-state response to periodic varia-
tions. For this purpose, we exploit the fact that the prob-
lem is one dimensional to allow us to solve the time-
dependent Schrodinger equation numerically with modest
computer power. In this approach, no approximations
are required other than the necessary representation of
the equation in the form of finite differences. The
infiuence of the size of the differences on the solution is
readily tested to limit errors to a desired level. No adjust-
able parameters are introduced into the computation.

Previous computations for this problem by other work-
ers [4] used a combination of analytical and numerical
techniques to determine the wave function at large dis-
tances from the well, the quasienergies of the states, and
the lifetimes (tunneling rates) of the states. Those au-
thors found many of the qualitative features that we de-
scribe here. However, in our work, the computation is
entirely numerical and much simpler so that a personal
computer or workstation can perform the computations
rapidly. This has allowed us to explore details of the
problem that were not accessible by the earlier methods.

III. THE NUMERICAL ALGORITHM
AND TECHNIQUES

The computational algorithm that we use was original-
ly published by Goldberg, Schey, and Schwartz [6,7] and
used to generate computer movies of a 1D wave packet
scattering o6' a square barrier. It was later extended to
more general 2D scattering problems [8].

The algorithm works by transforming the one-
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dimensional time-dependent Schrodinger equation into
an implicit, stable, and unitary difference equation. For
the implicit scheme to work, boundary conditions must
be imposed such that the wave function is zero at the spa-
tial end points of the computation. This is equivalent to
placing infinite potential barriers at both of the end
points. In the present case the problem is not severe at
the liquid-helium surface since the barrier to penetration
into the liquid is very high. However, in the vacuum
space above the liquid, the portion of the wave function
which has tunneled out of the well will eventually reflect
back from the far barrier and interfere with subsequent

tunneling.
%e have used two different methods to circumvent this

problem. The first placed the upper end point of the spa-
tial grid sufficiently far above the surface so that a
steady-state tunneling rate was established before the
reflected wave reached the barrier. The second method
introduced a smoothly varying, negative pure imaginary
potential Y& starting outside the outer classical turning
point zz. This attenuates the portion of the wave func-
tion which escapes such that any reflection from the far
boundary is negligible. Reflections from V, itself are
negligible so long as it is sufficiently small and smooth.
In that case, we find that the calculated rate is insensitive
to the exact form of V, . The computed rates for the
two methods agree to within a fraction of a percent.
Since it is possible to use a much smaller spatial grid
when refiections are eliminated, the second method was
used for all computations described here.

Figure 1 illustrates the potential, the basic geometry,
and the technique followed in calculating the tunneling
rate. The full potential of an electron above the surface
of the liquid is

V(z) = VD(z)+eEz+ Vc(z) .

VD is the hydrogenic part arising from the dielectric im-

age potential in the liquid helium. It has the form

50

Ic 1 e z)0
V (z)= 4(~+1) z+P '

+Vo, z &0, (2)

where x is the dielectric constant of liquid helium. The
added term p (p= 1.04 A) in the denominator accounts
for the finite distance over which the liquid-helium densi-

ty changes at the surface. The value we use for it was
previously determined by measurement of the microwave
absorption spectrum of the bound states [3]. Vo is the
barrier to penetration of an electron into the liquid [9]
(=1 eV). The second term of Eq. (1) is that of the exter-
nally applied electric field E. The third term Vc is the
electric field due to the other electrons on the surface.
The electron densities n that we have studied are not far
from those at which the electrons form a two-
dimensional crystal so that locally, they are close to that
crystalline order. In this range of densities, we have
shown [1]that Vc(z) is well represented by a static poten-
tial obtained from the Ewald sum [10] over neighboring
lattice sites. The vertical component of this electric field

E,(z) varies continuously from zero at z =0 (where all the
other electrons are in the plane and thus contribute no
vertical component) to Ec= 2nne —for . z »n '~ (the
effect of the correlations washes out for heights much
greater than typical electron gas nearest-neighbor dis-
tances). It is the last two terms of Eq. (1) that decrease
the potential at large distances and thus create a wide
barrier (=2000 A) through which electrons can tunnel.

The electron is typically started, at t =0, in the ground
state $0(z) of the potential with E=0 and n =0 and al-

lowed to evolve in time under the inhuence of the poten-
tial with E applied and finite n This a. mounts to a sud-
den application of the electric field to allow tunneling
from the ground state of the bound electron. The tunnel-

ing potential has inner and outer classical turning points
z& and zz, respectively. In a typical case, an imaginary
potential of the form

V, (z')= —4.807X10 '
Ed, z'

X exp[0. 3z'/(z, „d
—zi )], z & zi
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is introduced at a point z& =10000 A, where Ed, is the
applied dc electric field in V/cm, z'=z —z, , and z,„d is

the upper boundary of the spatial grid (typically 20000
A). The wave function is initially normalized. The es-

cape rate is determined by integrating the probability
density from the helium surface to a fixed point z„„(typ-
ically z„i,=zi) at successive time intervals. With a spa-
tial step size 6z and a time step 6t, one has
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FIG. 1. Geometry of the time-dependent Schrodinger equa-
tion alogrithm for static electric fields. In this case Ed, = —26
V/cm and the density is n=0. 6X10' cm . Although the
ground-state energy does not enter into the calculation (it is the
initial wave function that is significant), it is also shown in order
to show the barrier.

= J
"'

g*(z, t )P(z, t)dz
0

and the escape rate is given by

F,„(t)—F,„(t 5t)—
W(t)=

5t

(4)
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Suitable step sizes 5z and 5t were determined empiri-
cally by repeating the calculations for a range of values
for both. If we use an idealized hydrogenic potential

x —1 e z)0
y (z}= 4(K+1) z

+~, z&0 (6)

in place of the actual potential of Eq. (2), the results do
not depend on the step sizes for 5z & 2 A and
5t & 2 X 10 ' sec. However, using the actual potential of
Eq. (2), the results are not independent of 5z, even for
spatial step sizes as small as 5z =0. 1 A. We describe, in
the Appendix, the methods that we used to obtain accu-
rate computations for the actual potential in the static
field case.

features have been seen in an exact solution of escape
from a 5 potential bound state in the presence of a dc
electric field [5]. For the range of experimental fields and
densities under consideration, the integrated escape prob-
ability in this surge corresponds to approximately
0.1 —0.2%. After approximately 2X10 ' sec the escape
rate settles down to a constant value, which we define as
the tunneling rate. Typically the calculation is carried
out to t=4X10 ' sec. The maximum escape rates we
have considered in the dc case are approximately W= 10
sec ', so that the total escape during the initial transient
surge is &10 . The exponential decay of the rate is
therefore negligible for these short times.

%e have also computed the tunneling rate as a func-
tion of time for cases in which the potential was applied
gradually according to the following expression:

r

IV. ESCAPE IN THE PRESENCE
OF TIME-DEPENDENT FIELDS

Since there is, at present, no experimental data to com-
pare to in time-dependent electric fields, the idealized hy-
drogenic potential [Eq. (6)] was used for these calcula-
tions so as to allow computation of a large number of
cases in a reasonable amount of time.

Efina Efina
cos 7T
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E„„,& = —36 V/cm,

ffi„ 1
=9X ]0 sec

n=Ocm

« tfin. l

A. Sudden and adiabatic limits

If the potential is changed very slowly relative to other
characteristic times of the problem, a quantum state can
adjust adiabatically to the changing potential. In that
case, an electron starting in the ground state of the origi-
nal potential will end up in a corresponding state of the
final potential. On the other hand, if the potential is
changed very rapidly, an electron originally in the ground
state of the initial potential will be in a mixed state of the
final potential.

Plots of typical escape rate vs time are shown in Fig. 2.
For the "sudden" limit there is an initial surge of very
rapid escape, lasting on the order of 2 X 10 ' sec. At the
end of the surge there are oscillations in the rate whose
details depend on the choice of z„„. Similar general
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FIG. 2. Comparsion of 8'(t) in the sudden and adiabatic
limits. When the field is turned on slowly enough, there is al-
most no transient and the rate follows the rate for the instan-
taneous potential. The scatter around 8'(t) =0.1 sec ' is due
to least bit errors.

As the field is turned on more slowly, by increasing t„„„,
the initial surge of escape becomes smaller (smaller peak
rates and smaller total integrated escape in the surge).
Figure 2 shows a comparison of the sudden and adiabatic
responses for a stripping field of Ed, = —36 V/cm, n =0,
and ts„,&

=9X 10 ' sec. The only sign of nonadiabatici-
ty is the small oscillations in the rate immediately after
the field has reached its final value. The noise at the 0.1-
sec ' level is due to the least bit error of the 64-bit calcu-
lation. The steady-state tunneling rate is exactly the
same for both cases [11].

B. KS'ect of an applied periodic electric field

Two frequency scales of interest are the inverse of the
Buttiker-Landauer [12] time fBt =1/~a„(typically on
the order of 30 GHz for this problem ) and the ionization
frequency f;,„=1/hE;,„ofthe electron in the well (of or-
der 100 GHz).

Periodic fields also provide a tool for studying the tran-
sition to classical chaos [13—15]. For this purpose, a
large amount of theoretical and experimental work has
been done on the effect of oscillating electric fields on
(three-dimensional) hydrogen atoms [16—18]. However,
that work has been concerned with ionization in which
the electron starts in a high quantum number Rydberg
state. Ionization calculations have also been made for a
similar semiclassical response of electrons on the surface
of liquid helium [19], pointing out that more accurate
computations were possible in this case then for the 3D
system.

Beyond this question of semiclassical ionization, elec-
trons on helium provide a system in which tunneling and
ionization can be explored from the deep quantum re-
gime, in which only one or a few quasibound states exist.
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The number of quasibound states is easily varied by
changing Ed, and n. The Floquet formalism shows that
each of these states is coupled to the continuum in the
presence of an oscillating field so that complicated paths
in phase space are possible. The application of periodic
fields has been shown to lead to the suppression of tunnel-
ing in the two-well problem [20] and to enhance decay
from metastable states [21]. Shaped pulses of light have
been used to "guide" chemical reactions [22]. In our case
the light pulses mould be replaced by pulses of microwave
radiation and the computations to be tested by the exper-
iments, described here, involve no approximations.

V. DETAILS OF THE NUMERIC METHOD

In the experimental system, the tunneling barrier can
be modulated by adding an oscillating term to the electric
field

0

z& =z2+2000 A .
(9)

In addition, an analytic approximation for V& is used.
It is obtained from a fit of the potential from the Ewald
sum [10] to a model [23) in which the charge density is
zero inside a correlation hole of radius Ro and is a con-
stant n for p ~ Ro. The constants used for the hydrogenic
part of the potential are slightly different from those in
the static field case discussed in the Appendix:

2

V(z) = —Ao +eEd,z+ Vc(z),'z
Ao= 1.606 76 X 10

V~(z)= —1.45161X10 ' n z +
1/2

(10)

E„,(t) =Ed, [1—a„sin(2mf, t )],
where f, is the applied frequency and a„ is the frac-
tional amplitude of the modulation expressed in terms of
Ed, . In order to allow rapid computation of a large num-
ber of cases, we compute the tunneling with the following
parameters. The spatial grid is ended at z =12000 A.
The annihilating imaginary potential is started close to
the outer turning point z2 and is made steep:

Vt~(z')= —9.613X10 ' Ed,z'

Xexp[0. 6z'/(z, „d
—zt )], z )zt

trate on the effects of the ac field, we use the quasiground
state of the dc tunneling potential as the initial wave
function P(t =0). It is obtained in one of two ways, ei-
ther of which is equally efficient at minimizing the initial
transients. The first is to use the wave function from the
dc problem, after it has run for a long enough time to
reach the steady-state tunneling rate. The second is to
find the quasiground state directly by numerical means.
In either case, the sudden application of the ac field leads
to some initial surge of tunneling similar to that caused
by suddenly applying the dc field in the static case.

VI. GENERAL CHARACTERISTICS OF THE ESCAPE

We present calculations made in two regimes, corre-
sponding to the upper and lower limits of the tunneling
rates observed experimentally in static fields. In the first
case, the dc electric field is Ed, = —36 V/cm and the den-
sity is n=0. 5X10 cm . In the second case Ed, = —24
V/cm and n =0.0 cm . Frequencies and fractional am-
plitudes in the ranges 2 ~f, ~ 130 6Hz and
0.0001 a„~0. 1 have been explored.

For each calculation, information was obtained by
computing both the escape rate as a function of time
W(t) and the wave function at a position z„&, as a func-
tion of time g(z„~„t). Our case difFers from most
theoretical investigations of time-dependent barriers in
that the ac field has a much greater effect on the width of
the barrier than on its height.

The presence of an ac component has three general
eff'ects on W(t). The first is that the escape rate is higher
than in the dc case. The second is that the rate itself is
modulated at the applied frequency f, „. When the
modulation of the tunneling rate is of order 10% or less it
is nearly sinusoidal. The third is that the energy of the
escaping particle can be modified by the absorption or
emission of quanta of energy hf, . In the discussion
that follows, this will be referred to as the absorption and
emission of photons even though the computation is not
explicitly for radiation fields.

Figure 3 shows an example of a case with large non-
sinusoidal oscillations. Figure 4 shows details of the
sinusoidal oscillations for small modulation. It also
shows the sinusoid which is least-squares fit to the
steady-state oscillations. The fit function is of the form

W„,(t) = W,„—W„,sin(2', t+Pd, ),„),
1/2

0.500 66

These values result in small changes in the calculated
rates relative to those used in the static ease where a test
of the absolute value of predictions against experiment
was the objective. However, the changes are small com-
pared to the effects of using the ideal hydrogenic poten-
tial instead of the actual one. Our objective here is to
determine the dependence of tunneling rates on the am-
plitude and frequency of the applied field and these are
effected little by these smaH changes.

In order to reduce the initial transients and to eoncen-

where W,„, W„„and Pd, &,„are the fit parameters and
correspond to the average dc rate, the amplitude of the ac
component, and the phase delay of the ac component rel-
ative to the applied ae field, respectively. The phase de-
lay can be interpreted as a delay time
t &,„d=P~„,„/2nf, ~~

of the wavelets of escaping wave
function with respect to the oscillating applied field. The
absolute value of td, »~ is not meaningful as it depends on
exactly how "escape" is defined (in these calculations,
therefore, on the position of z„&„since a part of the delay
time is due to the time for the wavelets to propagate from
the outer turning point to z„&,}. However, changes in the
delay time as a function of frequency, for fixed z„&„re-
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FIG. 3. Example W (t) for applied periodic field (large modu-
lation). Escape rate as a function of time for the case Ed, = —36
Yam, n =0.5 X 10' cm, f,~~

=4 GHz, and a„=0.10. After
the initial transient due to the sudden application of the ac field,
there is a steady nonlinear modulation of the rate at the applied
frequency. This type of response is typical when the modulation
of the rate is comparable to the rate average.

veal some curious features of the tunneling process.
In order to determine the energies of the escaping elec-

trons we examine 1t/(t) at fixed z. Initially there are large
oscillations which are the response to the sudden applica-
tion of the ac field at t=0 After . -2X10 ' sec these
oscillations die out and are followed by a much steadier
oscillatory pattern which can be decomposed into
discrete frequency components. Figure 5 shows

1(/R,(z„&„t):—ReI1t/(z„&„t)] after t=1.5X10 ' sec. It
also shows the residual after subtracting a best fit func-
tion

r

max

1(/s, (t)= g A„sin 2n —+nf, t+y„
n= —1

h
(12)

for times after the initial transient has died away, with

n,„=4. The A„are the fit parameters and represent the
amount of the escaping wave function which at z =z„„
has an energy corresponding to n photons having been
absorbed. Determination of the A„ thus determines the
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FIG. 4. Sinusoidal fit to W(t) after the transient has died
away. The average rate, the amplitude of the oscillations in the
rate, and the phase lag between the rate and the applied field are
determined from this fit.

FIG. 5. Multiphoton fit to +R,(t) showing the approach of
+R,{t) to its steady-state behavior for times greater than
-2X 10 ' sec. In addition, the residual from a four-photon fit

(n,„=4)of the form of Eq. (12) is shown. The qausi-ground-
state energy corresponds to a frequency fGs

= s~ /h
= —166.2425 GHz. Thus the five-photon component has a fre-

quency f,=fos+5f,~~= —16.2425 GHz, which matches the
frequency of the residual when the transient has died away.
Thus nearly all of the residual corresponds to a five-photon
component.

energy content of the escaped electron. However, it is
not meaningful to attempt to determine whether the elec-
tron is raised to a virtual state inside the well prior to
tunneling or whether the quanta are absorbed in the bar-
rier region itself. We show below that some energy is ab-
sorbed outside the barrier in the region z2 ~ z & z„&,.

In summary, the procedure described allows the deter-
mination of the average tunneling rate, the amplitude of
the modulation of the tunneling rate, the energy spec-
trum of the escaping electron, and the phase lag (and cor-
responding time lag) of the escaping wavelets. In the
next section we describe the dependence of these quanti-
ties on the parameters of the system.

VII. RESULTS

A. Single bound state

Figure 6 shows the transition from escape controlled
only by the dc field to escape resulting primarily from the
oscillatory field. For the low drive level of a„=0.0001
the rate changes very little as a function of frequency
from its dc value of W,„=386 sec ' (the peak average
rate is 437 sec ' at a frequency f, =91 GHz, about
20% above the ionization frequency of 76.1 GHz). For
the case of a„=0.02 there is a clear transition from the
dc behavior at frequencies low with respect to f;,„,to an
escape rate several orders of magnitude greater than the
dc rate at frequencies comparable to or greater than f; „.
This increase in the rate is due to the electron absorbing
one photon and escaping either by direct photoionization
at frequencies greater than f;,„or by photon-assisted
tunneling at frequencies less than f;,„. The rate has a
photoionization peak at f,~

=90 GHz, which is approxi-
mately 18% greater than f;,„.

Figure 7 shows the breakdown of QR,(z„„,t ) into its
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various energy components, corresponding to different
numbers of discrete photons being absorbed as a function
off, for this case. Here also the transition between the
dominance of the dc case (no photons being absorbed} at
low frequencies to the case at higher frequencies where
one-photon absorption is dominant is clear. The one-
photon-assisted escape goes through a peak at f, =90
GHz, corresponding to the peak in the average rate at
the same frequency. The case with a„=0.001 is inter-
mediate between the two discussed above, with a transi-
tion to one-photon-assisted escape becoming dominant,
but at a higher frequency than in the a„=0.02 case.

10'

FIG. 6. Average escape vs frequency for case 1, in which

Ed, = —36 V/cm and n =0.5X10 cm . The vertical lines are

plotted at f=(k /4)f;,„, k =1,2, 3,4, 5, and thus show quarter

multiples of the ionization frequency. As the level of the modu-

lation of the electric field is increased, the escape due to one

photon being absorbed increases. The efFect of one-photon ab-

sorption is to create a peak in the average rate above the ioniza-

tion frequency. At a„=0.1 the efFect of two-photon absorption

can be seen in a small peak at a frequency a little above f„„/2.
0, a„=0.1; (),a„=0.02; 6, a„=0.001; +, a„=0.0001.

When the modulation is large enough, there is an in-

crease in the rate even when no photons are absorbed,
due to the nonlinear dependence of the dc tunneling rate
on the applied stripping field. Thus the a„=0.1 curve of
Fig. 7 shows a low-frequency average rate of approxi-
mately 10 sec ', which is the average rate for this modu-
lation level when the escape rate adiabatically follows the
dc rate of the instantaneous potential. In addition, at this
modulation level there is a small peak at a frequency a lit-
tle greater than one-half the ionization frequency, due to
two-photon-assisted escape. Although only a small por-
tion of the wave function in the well should be in this
doubly excited state, this portion can escape rapidly due
to its higher energy.

Figure 8 shows the average rate as a function of fre-

quency and a„ for Ea, = —24 and n =0. All three drive

levels show clear one-photon-assisted escape peaks at 98
GHz, approximately 8% greater than the ionization fre-

quency of 91.1 GHz. In addition, the two larger drive
levels show two-photon-assisted peaks at 48 GHz, which
is approximately 6% greater than f;,„/2. As in the pre-
vious case, for a„=0.10 the low-frequency limit of the
average rate is significantly greater than the dc rate, due
to the nonlinear dependence of the dc escape rate on the
stripping field. At this drive level there is also an inci-

pient three-photon peak close to f;,„/3.
Figure 9 is a plot of the photon content of ttItt, (z„&,t }

as a function off, ~ for a„=0.10. At frequencies above

approximately 60 GHz one-photon-assisted escape is the
dominant mechanism. The peak in the one-photon es-

cape occurs at the same frequency as the photoionization
peak in the average rate shown in Fig. 8. For frequencies
between approximately 40 and 60 GHz the dominant es-

cape mechanism is two-photon-assisted escape. Its peak
is also at the frequency of the corresponding peak in the
average rate. For frequencies between approximately 20
and 40 GHz the three-photon component is also
significant, causing the incipient three-photon peak in the
average rate close to f;,„/3. At very low frequency the
escape is adiabatic and thus is no longer limited to the
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discrete frequencies f„=s,lh+nf, . Rather the spec-
trum is a continuum of frequencies corresponding to the
range of quasi-ground-state energies of the electron in the
well.

Another feature of this case is that the less dominant
mechanisms tend to follow the frequency dependence of
the dominant mechanism, but at a lower level. We
suspect that this is due to stimulated transitions from the
portion of the wave function escaping in the dominant
mode to states whose energies are difFerent by nhf, (n

an integer) after the electron is outside the barrier. Be-
cause transitions up and down in energy are equally like-

ly, the amplitudes for the total energy corresponding to
zero photons and two photons having been absorbed lie
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FIG. 11. Delay time ~d,&,„vs frequency for case 2, in which

Ed, = —24 V/cm and n =0 cm . There are sudden jumps,
corresponding to a phase change of +n, at f,~~=3f„„ /8,

f,~~
=3f;,„/4, aud f,~~

=5f;,„/4, depending on a„.

on top of each other at high frequencies (both are
separated from the dominant one-photon state by a single
photon). Since tunneling rates depend on energy, these
amplitudes would not be equal if the transitions were tak-
ing place inside of the well.

In regions where single-photon-assisted escape is the
dominant mechanism, the rate varies as the square of the
drive level a„. In the two-photon range the rate varies as
the fourth power of a„. These are consistent with first-

and second-order perturbation theory, respectively.
Figure 10 is a plot of the amplitude of the modulation

of the escape rate, as a function off,~~. Figure 11 shows
the delay time td, &,„=g~,i,„/2m f,~~

as a function of f,~~
for the same case. The most interesting features are the
sharp dips in the amplitude of the oscillations and the
corresponding shifts in the phase by km. . For the lowest
drive level (a„=0.001) these features occur at

f, =5f;,„/4. For the two higher drive levels

(a„=0.02 and 0.10) they occur at f, =3f;,„/4. In all

cases, when the oscillation amplitudes pass through a
minimum the remaining small modulation of the rate is
primarily at twice the frequency of the applied field. In
addition, at the two higher drive levels, there is a large
feature in the delay time and a small one in the amplitude
of the oscillations close to f, =3f;,„IS.

B. Multiple bound states

The number of quasibound states in this system can
easily be changed by varying the applied dc field and/or
the electron density. Such additional quasibound states
have energies close to the top of the potential barrier (the
unperturbed ideal 1D hydrogen potential has energy lev-
els which vary as E„a:1/n ). This region is particularly
interesting to explore both numerically and experimental-
ly since the region close to the top of the barrier (the clas-
sical separatrix) is one of the regions where classically
one expects chaos to first appear.

Only a limited examination of the system in a state in
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which the dc analog has more than one quasibound state
has been made. The only conclusion reached to date is
that frequencies corresponding to the differences in ener-

gy between the quasibound levels and between the quasi-
bound levels and the continuum are important. One way
in which these frequencies manifest themselves is that the
escape rate W(t) can no longer be modeled as a dc rate
plus an ac component at f,

VIII. CONCLUSIONS

Our study of the single bound state case can be summa-
rized as follows. The energy, and hence time scale, of im-
portance in every case is the ionization frequency f;,„.
No features are observed at the frequency corresponding
to the Buttiker-Landauer time ~z„. This includes the
peculiar dip in the oscillation amplitude and phase shift
at f,»=3f;,„/8 even though this frequency is close to
1/rsL

For the relatively low drive levels examined thus far,
there have been no manifestations of chaos. The average
escape rate itself can be explained by photon-assisted tun-
neling or photoionization at high frequencies and by adi-
abatic behavior at low frequencies and large drive ampli-
tude. One-, two-, and three-photon-assisted escape peaks
have been observed at frequencies corresponding to
f;,„,f;,„/2, and f;,„/3, respectively.

The computations have revealed a new feature of the
tunneling process which is a modulation of the tunneling
rate at the frequency of the applied field. Particularly at
the higher drive levels there is structure in the amplitude
and phase of this modulation. These features are also re-
lated to the ionization frequency and have occurred at
3f;,„/8, 3f;,„/4, and 5f;,„/4. They are apparently due
to wave interference, but we have not yet explained it in
detail. Although we know of no method to observe this
modulation directly, its possible influence on the radia-
tion field and thus on the impedance of a microwave cavi-
ty is being examined.

used to obtain sufficient accuracy to compare to the ex-
perimental results.

Since the tunneling rate is calculated by taking the
difference between two nearly equal numbers, for rates
~0.5 sec ' the least bit error in the difference becomes
significant for 64-bit calculations. To resolve this prob-
lem, for rates less than approximately 1 sec ', 128-bit
precision is used in the calculations.

In order to minimize the amount of computing time re-
quired to solve the Schrodinger equation for the actual
potential of Eq. (2), most of the comparisons to experi-
ment in the static potential were made indirectly by first
comparing the WKB results to the exact solution of the
Schrodinger equation for the case in which the hydrogen-
ic part to the potential of Eq. (1) is given by the ideal case
of Eq. (6).

The WKB rate is computed from the usual expression

2W'= C„,—exp ——I +2m [ V(z) —s, ]dz (Al)

s, = —7.6368+0.013 24[Ed, (V/cm) ] K . (A2)

Since [2m [ V(z) —Ei]]
' is slowly varying inside the bar-

rier except near the classical turning points, we expected
that the WKB approximation would yield valid field and
density dependencies for the rate. In practice the WKB
tunneling rates, using the calibration factor, agree [2]
with the exact computation to within 7% for rates be-
tween 10 and 10 sec '. In order to make comparisons
to the experimental data (in static fields) the WKB rate
was then calculated for the actual 1D potential [Eq. (2)]
by using the Rydberg energy and Stark shift computed
for this potential

using the conventional prefactor of e&/R, where s, is the
Stark shifted ground-state energy, C„&=1.38 is the "cali-
bration" factor determined by comparison to the exact
numerical solutions for the idealized potential. In this
case the ground-state energy is
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APPENDIX: ACCURATE COMPUTATIONS
FOR A STATIC ELECTRIC FIELD

In order to obtain results valid for the limit 6z~o,
several lengthy calculations are required for each case.
Ho~ever, an alternative described below was used that
avoided the need to repeat this computation for each
case. The ground-state energy for the actual potential (2)
differs from that of the idealized 1D hydrogen potential
(6) by about S%%uo. This makes a very substantial difFerence
in the tunneling rates so that the actual potential must be

and using Ccats ~ 3 .
For the range of electric fields used in the experiment,

all the excited bound states for the idealized hydrogenic
potential move into the continuum in the presence of the
stripping field. The only quasibound state remaining is
the one corresponding to the ground state in the absence
of the field. If we use the wave function for this ground
state as the initial state for the coznputation, then when
the electric field is applied, it becomes a superposition of
the quasiground state and quasiexcited states of the full
potential. The excited states are not bound so that they
escape rapidly over the barrier. We attribute the initial
surge to this and the oscillations in the surge to multiple
rejections of these continuum states between the helium
surface and the tunneling barrier.
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