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An exact formal Kohn-Sham scheme is derived with the help of perturbation theory. Through the in-

troduction of a basis set this Kohn-Sham scheme can be used to perform, in principle, exact Kohn-Sham
calculations. As a demonstration, only zeroth- and first-order terms in the underlying perturbation
theory are considered. As a result an exact basis set "exchange-only" method is obtained. The present-
ed perturbation theory expansions of the exchange-correlation energy and potential may serve as a start-

ing point for the development of new approximate exchange-correlation functionals based on Kohn-
Sham orbitals and eigenvalues and may be used to check conventional exchange-correlation functionals.
The formal structures of the ab initio and the introduced density-functional treatment of electronic sys-
tems are compared.

PACS number(s): 31.20.Sy, 71.10.+x, 31.20.Tz

I. INTRODUCTION In Eq. (I), the potentials u, (r) are given by

Recently [1], for an electronic system in its ground

state, a perturbation theory expansion for the density-

functional energy [2—7] was derived. Each term of the

expansion is a functional of the Kohn-Sham orbitals y;
and eigenvalues e,. and of the functional derivatives of the

lower-order terms with respect to the electron density.

This expansion of the correlation energy allows one to ex-

press the sum, E, of the kinetic and electron-electron

repulsion energies of an electronic system as follows:

j=0

= X Ej[[9 I [ & ! [ vi(r»v2(r) ' ' ' "j —l(r)I ]
j=0

5EJ[n ]
(2)

&lthough the terms in expansion (1) are explicit function-
als of the y;, s, , and v (r) they are implicitly functionals
of the ground-state electron density n(r) The r. eason for
this is that the y;, s, , and v (r) are functionals of the den-

sity. For the p, and e, this follows directly from the
Hohenberg-Kohn theorem [2]. For the u (r), the fact
that the jth term in expansion (1) contains only potentials
u (r) of order j—1 and lower is also used (see [1] and
later on). The terms on Eq. (1) therefore may be written
as

E, =E,[[p;[n j],Is;[n j],[ui([n];r), v2([n];r), . . . , u, i([n j;r)]]
=E,[n] .

The foregoing equation demonstrates that the range of
density-functional theory is not left with expansion (1)
and that the definitions (2) make sense.

The first terms of expansion (1) are [1]

'pi (rl ) pj (r2) pi(ri ) pj(r2)U=2 g g dr, dr2

tP (ri )(PJ (r2)%J(r2)% (rz)E„=(—1) g g dr, dr~
/r, —r, f

(4b)

E, ={@,iP„ie,)=U+E„,

with

(4a) with

i=1 sO s, i

N

v, =u+v„=g u(r„)+v„(r„)
k=1

(4c)
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and

gU[n ] 5E„[n]u(r}=, u„(r)=

In Eqs. (4a)—(4c), f' stands for the operator of the kinetic
energy, 0'„for the operator of the electron-electron
repulsion, and 4, for the ¹lectron Kohn-Sham
ground-state wave function. (For simplicity, in this work
only finite nondegenerate diamagnetic systems with no
symmetries in ordinary space are considered. For those
systems the Kahn-Sham ground-state wave functions 4,
are Slater determinants consisting of Kohn-Sham orbitals
y;. Each Kohn-Sham orbital y; is occupied by two elec-
trons with opposite sign. However, the results presented
here are also valid for other systems. For example, the
findings of this work can easily be transferred to the sym-
metrized density-functional theory introduced recently
[8]). U and E„arethe classical electron-electron repul-
sion energy and the exchange energy, respectively. The
corresponding Coulomb potential is denoted by u(r), the
exchange potential by u„(r}.In Eq. (4c) the Kohn-Sham
wave function 4, is written as 4, o to demonstrate that it
is the ground-state solution of the Kohn-Sham equation.
The ith excited state to the Kohn-Sham equation is
denoted by 4, ;. The energies of 4, 0 and 4, ; are E, o
and E... respectively. The higher-order terms of expan-
sion (1) can be obtained by means of perturbation theory
[1]. The correlation energy E,[n ] is given by the second-
and higher-order terms of expansion (1) leading to the
following expression for the exchange-correlation energy
E„,[n ]:

E„,=E„+g E
J=2

+ g E,[jy;j, js;],jv, (r), v2(r), . . . , v, ,(r)]] .
J=2

(5)

Similarly, the exchange-correlation potential u„,([n ]:r) is
given by [see Eq. (2)]

u„,(r)=v„(r)+g vJ(r) . (6)
J=2

Equation (1) was derived [1] from the Taylor series of
the total energy of an electronic system with fixed density
with respect to the coupling parameter a with the latter
turning on and off the electron-electron repulsion. It
shall be assumed throughout this work that the Taylor
series converges up to a coupling constant a=1, i.e., to
full electron-electron repulsion, and therefore a was set
equal to one in Eq. (1), which for other values of a reads
as

E(a)= g aJE
j=0

= g a EJ[jf,], je, ], ju, {r),u2(r), .-. . , uj. ,(r)]] .
j=0

Density-functional theory today is applied almost ex-
clusively via the Kohn-Sham [3-7] scheme. In a stan-
dard Kohn-Sham procedure the exchange-correlation po-
tential in the nth cycle of the self-consistency process, or
an approximation to it, respectively, is obtained as a
functional of the electron density of the previous cycle.
In order to calculate the total energy of the system, the
functional for the exchange-correlation energy, or an ap-
proximation to it, respectively, is evaluated for the self-
consistent electron density obtained when self-
consistency is reached. However, if the exchange-
correlation potential and energy were known as function-
als of the Kohn-Sham orbitals and eigenvalues, and not
directly as functionals of the density, the scheme would
work as well. Instead of just the electron density, the
Kohn-Sham orbitals and eigenvalues would be used to
calculate the exchange-correlation potentials and the
exchange-correlation energy.

With knowledge of the potentials vj(r), Eq. (5) gives
the exchange-correlation energy as functional of the
Kohn-Sham orbitals q; and eigenvalues e;. Therefore all
that remains to have an exact Kohn-Sham scheme at
hand is to express the potentials uj(r) as functionals of
the Kohn-Sham orbitals qr; and eigenvalues s;, because
then both the exchange-correlation energy through Eq.
(5) and the exchange-correlation potential through Eq. (6)
would be known as functionals of y; and s;. All that is
necessary to get such expressions for the u&(r) is a pro-
cedure to generate, as a functional of the Kohn-Sham or-
bitals and eigenvalues, the functional derivative with
respect to the density of any quantity which is a function-
al of Kohn-Sham orbitals and eigenvalues. By having
such a procedure, one would start with the lowest-order
term in Eq. (5), the exchange energy which depends only
on the qr; [Eq. (4b)], and derive the exchange potential as
a functional of the Kohn-Sham orbitals and eigenvalues.
Subsequently, the exchange potential, expressed as a
functional of Kohn-Sham orbitals and eigenvalues, could
be substituted into the second term of Eq. (5), i.e., in Eq.
(4c), and then by using the procedure again vz(r) could be
obtained. In this manner all higher terms of the
exchange-correlation energy and potential would also be
accessible.

In this work, by the strategy outlined in the foregoing
an exact formal Kohn-Sham scheme is derived. Further-
more it is demonstrated how this formal scheme can be
implemented within the framework of a basis set method.
As an example for such an implementation, only the
first-order term is considered and as a result an exact
basis set method to carry out "exchange-only" Kohn-
Sham calculations is obtained.

II. EXACT FORMAL KOHN-SHAM SCHEME

The Hohenberg-Kohn theorem [2] proves that for a
fixed number of electrons N, the ground-state electron
density n(r) determines, to within an additive constant,
the local potential v(r) or u, (r) of the corresponding in-
teracting or noninteracting Schrodinger equation, respec-
tively. The other way around, of course, the potential
u{r}, respectively, u, {r},determines the electron density
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fdr5n(r)=0

the space of the functions 5n(r) is restricted also. Equa-
tion (8} follows from the requirement that the number of
electrons is fixed. The invertible operator 0 mediates the
mapping G,

5n =C5u . (9)

n(r) via the corresponding Schrodinger equation. That
means that there is a one to one mapping, 6, between
infinitesimal changes 5u(r} of the potential u(r) and
infinitesimal changes 5n(r) of the electron density n(r} if
constant functions are excluded from the space of func-
tions 5u(r) and if by the condition 5n(r, ) «~ y,'(r, )gr (r, )qr'(r2)ip, (r2)=2+ g' ' ' +cc.

5u, (r2) E; C.

=G(r„r2). (13)

Therefore in coordinate space the operator 0 is given by

fdr, G(r, , r, ) . (14)

The summation gj. in Eq. (12a) and in the following Eq.
(13) runs over all Kohn-Sham orbitals except the one
with the index j=i .From Eqs. (11}and (12a}, the func-
tional derivative 5n(r, )/5u(r2) is obtained as

In the following, a noninteracting Schrodinger equa-
tion is considered:

[T+u, ]@,=E,@, ,

where

N

u, = g u, (r, ) .

(loa)

(lob)

n(r)=2 g p,'(r)q, .(r) .

First-order perturbation theory gives

In Eqs. (10},u, is the operator belonging to the efFective

or Kohn-Sham local potential u, (r), and E, is the Kohn-
Sham energy of the N-electron Kohn-Sham wave func-
tion 4, . The Kohn-Sham orbitals ip; and eigenvalues s;
are obtained by the one particle Kahn-Sham equations
corresponding to Eqs. (10). The ground-state electron
density n(r) is given by

Note that 0 denotes the operator itself whereas

fdr26(ri, r2) is the representation of 0 in coordinate

space. The operator 6 is the linear response operator
giving the reaction of the electron density to infinitesimal
changes in the potential. The inverse operator 6 ' with
its representation fdr2G '(r„r2)belongs to the func-

tional derivative 5u, (r, }/5n (r2) with

5u, (r, ) =6 '(r„r2}.
n r2

The function 6 '(r„r2) and therewith the coordinate
space representation of C ' is not known analytically.
However, as shown later on and in Refs. [10,11] (com-
pare also [12])a basis set representation of C is accessi-
ble and can be used in actual calculations. Because C
is the inverse operator to 6 the relation

r36 r] r3 G 1 3 r2 =
r&

—r2

5ip;(ri) q&J'(r2)p;(r2)
'ip (r, )

5u (r2) &
i ' s —s

E;
q i~(r2)q i(r2) '

u~ 12

(12a)

(12b)

holds.
Next, an arbitrary functional, F[[ip;],[e;]], of the

Kohn-Sham orbitals and eigenvalues is considered. Us-
ing Eqs. (12a) and (12b), the functional derivative
5F /5n (r, ) can be calculated

5F 5u, (r2)

5n(r, ) 5u, (r2) 5n(r, )
2

5I'= f«2
5u, (r2}

5q';(r3 } 5F 5q, (r3 }

5~'. (r, ) Su,(r2),. 5ip, (r, ) 5u, (r2)

gp 5c;
(r2, ri ) ~

Be, 5u, r2
(17}

Equation (17}does not give the functional derivative 5F/5n(r, ) as a functional of the y; and c,;, directly, because of the

presence of 6 (r„r2)which is not known as a functional of the ip; and c,;. Nevertheless Eq. (17}is sufficient to derive

an exact Kohn-Sham scheme by the strategy sketched in the Introduction.
First, Eq. (17) is applied to the exchange energy E„leading to the exchange potential u„(ri),
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Note that no additive constants to potentials occur in Eq. (22b) and in previous equations. This is a consequence of
the restriction of the space of functions 5n(r) by Eq. (8). In Appendix B it is shown that the exchange-correlation po-
tential is defined only to within a constant as usual if the space on which the operator C ' is defined is extended.

By acting with the operator jd r2G(r„r2)on both sides of Eq. (18) and subsequent usage of Eq. (16) the following re-

lation for the exchange potential is obtained:

fdru (r)G(r r )= 2y yy~ fdrdr +'

i j k r3 —r4 &k
(23)

As always the summation g» runs over all Kohn-Sham
orbitals except the one with index k=i Eq. uation (23),
for the exchange potential, also was derived in Ref. [9]
and is the basis for the optimized-effective-potential
method (compare also [13]). Relations equivalent to Eq.
(23) exist for all functionals of the Kohn-Sham orbitals y;
and eigenvalues c,;.

III. BASIS SET FORMULATION
OF THE EXACT KOHN-SHAM SCHEME

Af = g fdrft, (r)
k

1/2

The remaining basis functions f» are linear combinations
of the original basis functions f» such that the new basis
set {f» j again is an orthonormal basis set. This is always
possible, for example, by a Schmidt orthogonalization
procedure. The new basis set has the property

r k r =0 for k 1 (25)

In order to derive a basis set formulation of the exact
Kohn-Sham scheme presented in the preceding section,
orthonormal basis sets {y j, {f» j, and {g' j to represent
the Kohn-Sham orbitals qr, , the Kohn-Sham potential
u, (r) with changes 5u, (r), and the electron densities n(r)
with changes 5n (r ), respectively, are introduced. The
basis sets {f» j and {g' j shall have the same dimension
and furthermore consist of real functions because the
densities and potentials are real. In contrast, the y in
general are complex functions. However, in actual calcu-
lations usually real orbitals y; are assumed and then the

also are real functions. Of course, an arbitrary,
nonorthonormal, linearly independent, basis set always
can be transformed to an orthonormal one with the help
of the eigenvectors and eigenvalues of the corresponding
overlap matrix. To take the constraint (8) for 5n(r) into
account, the basis set {f» j is transformed into the new
basis set {f» j. The first basis function fI of the new basis
set is given by

f] +f ' y f«f»(r) f» (24)
k

with

X g fdrg' (r) g'
m

(26)

Next, for the representation of 5n(r) and 5u(r), the
basis functions f, and g, are excluded from the basis sets

{f» j and {g j, respectively. For simplicity the shor-

tened basis sets also are denoted by {f» j and {g
basis set representation of the linear response operator 6,
as defined in Eq. (9) [see also Eqs. (13) and (14)], is then

given by the matrix G with matrix elements G»

From Eqs. (24) and (25) it follows that the contribution of
f, to a density n(r) is given by N/Af, i.e., the electron
number N divided by the normalization constant Af,
whereas f, does not contribute to any change 5n(r) In a.
similar way, the basis set {g

'
j is transformed into a new

orthonormal basis set {g j with the basis function g, be-

ing the basis function corresponding to a constant. The
basis function g, can be shown to have the same struc-
ture as f, (see Appendix B):

—1/2'2
g, = g fdrg' (r)

m

G» = fdr, dr2f»(r, )G(r, , r2)g (r2)

fdr, f»(r, )g,*(r,)y, (r, ) f dr2y,*(r,)g, (r2)g (r2)
=2K X' +C.C.

j J J
(27)

As before, the summation . runs over all the Kohn-Sham orbitals except the one with index j=i. The basis set repre-
sentation of the inverse of, i.e., of G, is given by the inverse G of the matrix G.

Alternatively, a basis set representation of the operators G and G can be obtained by generating a matrix G by us-

ing the original basis sets {f» j and {g' j in the evaluation of Eq. (27) followed by a singular value decomposition [15]of
G which subsequently allows one to determine the basis functions f, and g, and finally the matrix G. For the case
that the basis sets {f» j and {g' j are identical, the singular value decomposition of G is equivalent to a determination
of the eigenvalues and eigenvectors of Cx', i.e., a diagonalization of O'. For further details concerning the basis set rep-
resentation of the operators G and G ' see Refs. [10,11].

With the basis set representation of the operators G and C, the evaluation of the integrals, expectation values, and
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operators occurring in Eqs. (22a) and (22b) are straightforward. Therefore, in principle, it is possible to perform exact
basis set Kohn-Sham calculations. As an example, when Eqs. (22a) and (22b) are considered only up to first order, a
basis set "exchange-only" calculation results. To generate the basis set representation of the exchange potential v„(r)
first the vector w representing the functional derivative 5E„[n]/5v(r) is defined through its components w

OCC. OCC. P (r4)%j'(r3)Pj (r4)9 k(r3} Pk(r2)'%P'(r2)g (r2)
w = —2 g g g' J dr2dr3dr4

fr3 r4—)
+c.c. (28)

Again the summation $'k runs over all Kohn-Sham orbit-
als except the one with index k =i. The basis set repre-
sentation v„ofthe functional derivative 5E„[n]/5n(r),
i.e., the function v„(r},is given by

vT=wTG '.
X (29)

This immediately leads to the basis set representation V„
with elements V„;J.of the operator U„connected with the
function v„(r):

k
~x, ij

= & Vx, k ~x,ij
k

with

(30)

EE„=v„LL„,
with the elements b„kof b,„being

h„k=fdr fk(r)hn(r),

(31)

whereas the action of the operator v„on a Kohn-Sham
orbital q; is given by the product V„c;of the matrix V„
with the vector c; representing y; in the basis set [y }.
The elements c; of c; are given by

c, =f dry'(r)qr, (r) . (32)

Now, to carry out an "exchange-only" Kohn-Sham cal-
culation, just a standard Kohn-Sham calculations has to
be performed with the only difference that instead of
some approximation to the exchange potential, the ex-
change operator V„ofEq. (30), is used. That means, in
every iteration of the self-consistent process, Eqs. (27)
and (28}have to be evaluated and V„hasto be construct-
ed according to Eqs. (29}and (30).

IV. DISCUSSION AND CONCLUSIONS

The results derived in this paper give new insight into
the nature of theories for the description of electronic
structures. Equations (22a} and (22b) not only allow the
formulation of an exact formal Kohn-Shaxn procedure,

V„;J= dry,* r k r y~ r

In Eq. (30), v„kare the elements of the vector v„ofEq.
(29). Note that the basis set representations of the r
dependent function v„(r),which is the functional deriva-
tive 5E„[n]/5n(r), and of the operator v„belonging to
v„(r},are difFerent.

The first-order or linear change bE„ofthe exchange
energy corresponding to a change hn(r) is given by the
scalar product

they also unveil parallels between ab initio [16] and
density-functional [2—7] theories. In ab initio theory, the
Hartree-Fock wave function is the zero-order wave func-
tion which is obtained in a self-consistency procedure.
The exact energy of the system then may be determined
by perturbation theory (Mdller-Ples set perturbation
theory [16], for instance}. In density-functional theory,
the Kohn-Sham wave function is the zero-order wave
function and the corresponding perturbation theory is
given through expansions (1), (22a), and (22b). Whereas
the Hartree-Fock wave function is that "one-
determinantal" wave function which gives the lowest-
energy expectation value with the full interacting Hamil-
tonian, the Kohn-Sham wave function gives the correct
ground-state electron density. An important difference
between the ab initio approach and the density-functional
approach, as given in this work, is that the self-

consistency procedure to determine the Kohn-Sham wave
function, in contrast to the one leading to the Hartree-
Fock wave function, already depends on perturbation
theory which therefore comes into play at an earlier
stage.

With the basis set formulation of the exact Kohn-Sham
scheme, the formal results of this paper may also be ap-
plied in computational procedures as outlined in Sec. III.
The performance of exact "exchange-only" calculations
according to Eqs. (27)—(30), i.e., Eqs. (22a) and (22b) to
first order, should not cast up any significant computa-
tional difficulties. Note, in this context, that a basis set
representation of the operator 0 ' already has been used
successfully in actual calculations [11 . In these calcula-
tions the property that the operator '

gives the linear
response of the Kohn-Sham potential on changes of the
electron density was used to generate the Kohn-Sham po-
tentials for given electron densities. Whether higher-
order Kohn-Sham calculations within the suggested
scheme can compete with ab initio methods
(configuration interaction, Mgfller-Plesset perturbation
theory) depends on how rapidly expansions (22a) and
(22b) converge. The computational demands of exact
basis set Kohn-Sham calculations is of the same order as
those of Hartree-Fock calculations as far as the evalua-
tion of the necessary integrals is concerned. On a first
glance the evaluation of Eqs. (22a) and (22b) leads to
three (and higher} electron integrals, e.g., Eq. (18) for the
first-order term. However, due to their origin in pertur-
bation theory and due to the use of a basis set representa-
tion of 0 ' these integrals factorize and can be resolved
into sums of at most two-electron integrals [see Eqs.
(27)—(30) for the first-order term]. The extent of the
necessary linear algebra depends on the order up to
which the calculation is performed. Hereby one should
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keep in mind that linear algebra is carried out highly
efficiently on modern computers. Nevertheless, before
being applicable in higher-order calculations the scheme
probably has to be modi6ed because now the required
amount of computer time would scale very unfavorably
with the size of electronic systems to which the pro-
cedure would be applied. It should be mentioned here
that the disadvantage that the operator 6 ' is not known
analytically, but only in its basis set representation, is not
that serious because calculations on the electronic struc-
ture of larger systems are usually done within basis set
methods anyway.

The reported results [Eqs. (22a) and (22b)] allow the
calculation of the exact exchange-correlation energy and
potential (up to some finite order) belonging to an arbi-
trary Kohn-Sham wave function or equivalently to the
ground-state wave function of a noninteracting
Schrodinger equation with an arbitrary effective poten-
tial. The only requirement for the effective potential is
that it is a local potential and that the corresponding
noninteracting Schrodinger equation therefore can be in-
terpreted as a Kohn-Sham equation. The effective poten-
tial need not be the correct Kohn-Sham potential of a
real system like an atom or a molecule. Instead it ean be
arbitrarily chosen or it can be an approximate potential
obtained by one of the commonly used standard Kohn-
Sham methods. Being able to obtain, up to some 6nite
order, the exact exchange-correlation energy and poten-
tial for any Kohn-Sham wave function may be very help-
ful in the construction of new or improved approximate
functionals for the exchange-correlation energy and po-
tential. For any chosen effective potential, respectively,
for its corresponding Kohn-Sham wave function and
electron density, the exchange-correlation energy, and
potential, from approximate functionals can be compared
to the exact values.

In combination with the recently introduced basis set
procedure to generate the Kohn-Sham wave function and
potential for a given electron density [10,11], Eqs. (22a)
and (22b) also allow one to determine the exact
exchange-correlation energy and potential for this given
e1ectron density. Again, this is of interest in the develop-
ment and improvement of approximate exchange-
correlation functionals.

%ith knowledge of the exact expressions for the
exchange-correlation energy and potential, as given in
Eqs. (22a) and (22b), it seems reasonable to pursue more
thoroughly attempts to construct approximate
exchange-correlation functionals directly from the
Kohn-Sham orbitals and eigenvalues. Most approximate
exchange-correlation functionals are based on the densi-

ty; the Kohn-Sham orbitals are merely used to obtain the
density. As demonstrated in this work, it is not necessary
to know how exchange-correlation functionals, based
directly on the Kohn-Sham orbitals and eigenvalues, can
be formulated as explicit functionals of the density in or-

der to use them in a Kohn-Sham scheme. As discussed in
the Introduction, those functionals are always imphcitly
functionals of the density. By considering functionals
based directly on the Kohn-Sham orbitals and eigenval-
ues as approximate exchange-correlation functionals
more freedom in the construction of the latter is gained.

The expansion for the exchange-correlation potential
[Eq. (22b)] and the exact Kohn-Sham scheme derived in
this work are a consequence of the results of Ref. [1], i.e.,
the perturbation theory expansion of the exchange-
correlation energy. Further investigations starting from
the formalism introduced are desirable.
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APPENDIX A: FUNCTIONAL DERIVATIVE
OF 6 (I'] I'2) WITH RESPECT TO u, (r)

The functions 6(r&, r2) and 6 '(r~, r2), through the
Kohn-Sham orbitals q; and eigenvalues c.;, are function-
als of the potential u, (r). This may be expressed by writ-

ing 6([u, ];r„r2)and 6 '([u, ];r,, r2). The equation

fdr36([u, ];r&,r3)6 '([v, ];r3,r2)=5(r& —r2) (Al)

is valid independently of the choice of the potential u, (r).
Next, the Taylor series of the functions
6([u, +bv, ];r&,r2) and G '([u, +Du, ];r, r2) with

respect to hv, (r) is given:

6([u, +b, u, ];r„r~)=6([v, ];r], rp)

56([v, ];r„r,)
5u, (r3)

X bv, (r3)+ 0(2),

G '([u, +bv, ];r,, r2)=6 '([u, j;r, , r2)

56 '([u, ];r„r~)f+ dr3
5u, r3)

Xhu, (r3)+O(2) .

In Eqs. (A2) and (A3) O(2) stands for second- and
higher-order terms. Substitution of Eqs. {A2) and {A3) in

Eq. (Al) leads to

56 '( [u, ];r5,r2) 56( [u, ];r4, r5)
dr3dr56([u, ];r4, r~)

'
bu, (r3)+ f dr3dr~

'
hv, (r3)6 '([u, ];r~,r2)+O(2)=0 .

5u, r3 5u, r3
(A4)
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5G([v, ];r4, r3)
dr,

' 6 '([u]rr2) .
us r3

(A5}

Acting with the operator Jdr4G '(r„r4)on both sides

of Eq. (A5) and using Eq. (16) leads to the desired result

56 '([v, ];r„r2)= —fdr4dr5G '([v, ];r„r4)
Vs r3

Equation (A4) has to be valid for arbitrary hu, (r) and

therefore each contribution to the left side of Eq. (A4) of
an order different from zero has to be zero independently
of the specific b,u, (r}. For the first order this results in

56 '([u, ];r3,r2)
dr36([u, ];r4, r3)

5v, r3

This is a contradiction and therefore, as in the case of the
space 5v, the only functions needed to supplement the
space 5n to the space of all functions are constant func-
tions. The foregoing is the reason that Eqs. (24) and (26)
of the main text have the same structure.

Now, a mapping 6 ' with the operator 6 ' and with
the corresponding function G ' {ri,r2) is defined as fol-
lows. The image of the basis functions of 5n is given by
the original mapping 6, the image of the constant
functions is determined by the image of one constant
function, e.g., off(r) =1. This image is chosen arbitrari-
ly within the space 5v, . Note that the space 5v, remains
unchanged, i.e., G ' is a mapping of the full space of
functions on the space 5u, . This leads to potentials u~(ri)
[see Eqs. (2) and (17)] defined by

56([u, ];r4,r, }
X

5v, (r3}
vj(r()= fdr2

5
G{r2 rl}

5v, r2
(B3)

XG '([u, ];r„r2). (A6) instead of potentials vj(r, ) defined according to Eqs. (2)
and (17) by

APPENDIX 8: IN1RODUCllON OF AN ADDITIVE
CONSTANT TO THE EXCHANGE-CORRELATION

POTENTIAL

E)
u, (r, )=fdr2

' 6 '(r2, r&) .
Vs r2

(84)

At the outset it has to be mentioned that the emphasis
of this appendix lies not on mathematical rigor but rather
on giving some physical and mathematical insight.
Therefore aspects of mostly mathematical nature are not
discussed in detail.

The operator 6 ' mediates a mapping between the
space of changes 5n(r} of the electron density, hereafter
denoted as space 5n, and the space of changes 5V, (r) of
the efFective potential, hereafter denoted as space 5v, .
The space 5u, does not include constant functions
whereas the space 5n is characterized by

r nr=0. (B1)

fdr f(r)g(r)= fdr f(r)5(r r, ) fdr f(r—)5(r —r2)—
=f(r, )—f(r2)%0 . (B2)

The space 5n is a vector subspace of the vector space of
all functions because a linear combination of functions
out of 5n is again a function out of 5n Therefore. there
exists an orthonormal basis for the space 5n and the map-
ping 6 ' is defined by the images of the basis functions
of 5n in the space 5v, . Next, it will be shown that the
space 5n, like the space 5u, is obtained from the full space
of functions by excluding constant functions, i.e., the
spaces 5n and 5v are identical. For this a function f(r) is
assumed which is orthogonal to the space 5n and which
is not a constant function. Then there exist at least two
points r& and r2 with f(ri}Af(r2). However, the func-
tion g(r) =5(r—ri }—5(r —r2} out of the space 5n, in con-
trast to the assumption, is not orthogonal to f(r).

The difference between the potentials vj(r, ) and vj(r, ) is
a constant which depends on the arbitrary choice made
for the image of the constant functions in the definition of
the mapping 6 ' . The exchange potential u „',(r i ) ob-
tained by substituting the potentials u„(ri)and uj(r, ) by
the corresponding potentials v„'(ri) and vj'(r, ) then, like
the potentials v„'(r,) and v'(r, ) itself, is defined only to
within an arbitrary constant. That means, the generaliza-
tion of the mapping 6 ' to the mapping 6 ' introduces
an arbitrary constant in the exchange-correlation poten-
tial.

For a given change 5n(r) out of the space 5n the
change 5E does not depend on whether the functional
derivative 5E /5n(r) is set equal to v (r) or v'(r} because
5n(r }contains no contributions of constant functions and
therefore the integrals

rv'r nr= rv r nr (B5)

give the same value. This means each functional deriva-
tive 5EJ I5n(r) can be identified with VJ(r) as well as
vj(r} and therefore as usual is defined only to within a
constant for changes 5n(r) out of the space 5n

Note that in this appendix as throughout in this work
the number of electrons is fixed. This is a necessary con-
dition for Eq. (B5) to be valid. If the number of electrons
is allowed to vary the functional derivative of the total
energy, of the exchange-correlation energy, and of their
parts with respect to the density are no longer undefined
with respect to the addition of a constant. See in this
context the discussion of the treatment of the chemical
potential and the ionization potential in density-
functional theory (e.g., Refs. [17—19]).
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