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Saturation of harmonic generation in one- and three-dimensional atoms
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A commonly used numerical technique for calculating the harmonic spectrum emitted by an
atom exposed to an intense laser pulse is the direct integration of the Schrodinger equation. We
compare the spectra calculated using two different models. The first is in one dimension with an
approximate hydrogenic soft-core potential and the second is in three dimensions with a Coulomb
potential. We use realistic laser pulse conditions (100 fs, 800 nm) and intensities at which there
is significant ionization, leading to a saturation of the harmonic-generation process. Although the
ionization rates in the two models differ, the harmonic spectra and the positions of the cutoff are
remarkably similar. Only a relatively small number of angular momentum states is needed in the
three-dimensional calculation to give a reliable estimate of the cutoff, even for intensities at which
there is strong ionization.

PACS number(s): 42.50.Hz, 32.80.Rm, 42.65.Ky

An atom exposed to a high-intensity laser pulse radi-
ates a series of odd harmonics of the fundamental fre-
quency. This phenomenon of harmonic generation has
been observed over wide ranges of laser intensity and
wavelength and for many difFerent atomic species. Much
of the recent interest in harmonics has centered on the
production of the shortest possible wavelengths, with sev-
eral groups reporting the generation of radiation near or
below 10 nm [1—4].

Theoretically, it is a major challenge to describe atomic
dynamics in an intense short-pulse laser field. A number
of distinct approaches to this problem have been devel-

oped, one of the most useful being direct integration of
the time-dependent Schrodinger equation (TDSE). How-

ever, the atomic response is only a part of the problem,
and propagation effects are equally important in deter-
mining the actual spectrum recorded in an experiment.
Due to the extreme computational demands, solutions
of the combined atomic response and propagation equa-
tions have so far only been obtained in a slowly-varying-
envelope (SVE) approximation [5]. However, for recent
experiments performed with laser pulse durations much
less than 1 ps, the SVE approximation is no longer ap-
propriate and the propagation equations would have to
be solved in their full time-dependent form. In order to
make numerical solution of such equations feasible, it is,
therefore, most important to find the simplest atomic
models that are capable of describing the atomic be-
haviour of interest. This paper compares the results from
a number of such simple models.

The regime where the maximum number of harmon-
ics have been found in experiments corresponds to the
onset of strong ionization. The observation of plasma-
induced blueshifting of harmonics in this regime [1]
clearly demonstrates that ionization and high-order har-
monic generation are closely linked. In this paper we

compare two diferent methods for calculating atomic
response in the strongly ionizing regime, based on the
numerical integration of the TDSE in one or three di-
mensions. We show that relatively simple models can be
quite successful in predicting key features, for example,

the ionization rate and the cutoff in the high-harmonic
spectrum.

Several problems conspire to make numerical solutions
of the TDSE at high intensities difBcult to obtain. The
first of these is simply the time scale on which the wave
function evolves. For a short pulse, ionization may occur
rapidly over a relatively small number of laser cycles and
the numerical integration consequently requires hundreds
or maybe thousands of steps per cycle [6,7]. The second
major problem arises because of the finite size of the nu-

merical grid used in the calculation. Parts of the wave
function which move far from the core tend to be reHected
from the edge of the numerical grid and reinteract with
the core, generating spurious harmonics. This unwanted
reHection can be eliminated mathematically by using an
absorber or mask function which smoothly reduces the
wave function to zero at the edge of the grid. In a one-
dimensional (1D) calculation, a frame of reference can be
chosen, the Kramers-Henneberger (KH) frame, in which
the wave function reaching the edge of the grid is freely
diffusing. This slowly moving part of the wave function
can then be efficiently absorbed [7]. Outside a 1D ap-
proximation, however, this is not generally possible. In
this case the wave function which reaches the edge of the
grid is still oscillating in the laser field and can be moving
with a high velocity, making a good absorber difBcult to
implement.

A more fundamental problem is connected with very
short duration pulses. Previous calculations have often
used a half-trapezoidal pulse shape, with a linear or sine-

squared turn on over typically 5 cycles, followed by a
constant intensity for 10—20 cycles [6]. Using this method
an ionization rate and set of harmonic eKciencies can be
defined at a particular (steady state) intensity, and these
can subsequently be used, for example, in a SVE prop-
agation code. For the latest generation of short-pulse
Ti:sapphire lasers, with pulse lengths approaching 100
fs, such an approach is no longer appropriate. The time
history of the pulse is important, and it is not valid to de-
fine a response at a particular intensity, only a response
to a particular total pulse. This is specifically the regime
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we are considering here, and any harmonic spectrum we
discuss will always be the spectrum &om an entire pulse,
as would be measured in a hypothetical single-atom ex-
periment.

We will now brie8y outline the two models, before
presenting some comparative results and discussing the
computational and other problems. A 1D model atom
has been extensively investigated in recent years, first by
Eberly, Su and Javanainen [8] and subsequently by Reed
and Burnett [9), Sanpera and Roso-Franco [10), and oth-
ers. The TDSE for this case can be written, using atomic
units, as

This is expressed in the KH kame, in which the oscilla-
tory motion of a &ee electron in the field is transferred
to the potential. The parameter a(t) represents the in-
stantaneous displacement of the kame. The soft-core
potential is of the form

which the evolution in r and the interchannel coupling in
l is performed alternately each half time step. The num-
ber of channels is adjustable and thus the model is more
properly described as two dimensional in r and l. Such
a simple coupling scheme is only obtained if the interac-
tion with the field in Eq. (4) is in length gauge. Although
moving to the KH frame would be advantageous for the
absorbers, this would be far outweighed by the increased
complexity of the interchannel coupling. Length gauge
has the advantage that the interaction with the field goes
to zero at r = 0 (where the potential has a singularity),
but suRers &om problems at large r because the inter-
channel coupling terms grow without bound.

In both models, the ground state can be found by solv-
ing the time-independent Schrodinger equation. This ini-
tial state is then evolved numerically under the inBuence
of the laser field and the harmonic spectrum is obtained
from a Fourier transform of the dipole acceleration [12],
which is calculated using Ehrenfest's theorem as

a(t) = g(t) + E(t) sin ut g(t)
—BV

V(x) =
/2+ x2 (2)

This potential supports a ground state with a binding

energy of 0.5 a.u. , so it can be used as an approxima-
tion to atomic hydrogen. Various scaled potentials can
be developed to represent other species [8], but for this

paper we have opted to use a simple case. The aim is
not to generate spectra which can be quantitatively com-

pared with experiment (hydrogen has not been used in

harmonic generation experiments thus far), but rather to
compare the predictions of various atomic models under
identical conditions.

The 3D model starts with the full TDSE, including the
coupling to the field in length gauge,

i Q(i=, t) =
~

——V' ———+ r E(t) sin~t
~

Q(i, t) . (3). 8 ( 1 2 1

)Bt ( 2

Here E(t) is the electric field envelope and the potential
is Coulombic, appropriate to atomic hydrogen. For light
linearly polarized along the z axis, the wave function can
be expanded in spherical harmonics

Because of the absorbing boundaries, the norm of the
wave function on the grid decreases with time and we
use this as an approximate measure of ionization.

In order to compare the harmonic spectra predicted
by the two models, we have performed a series of calcu-
lations using a common set of parameters. We assumed
a frequency of 0.05655 a.u. (corresponding to 800 nm,
appropriate to Ti:sapphire), a total pulse length of 96
cycles, and a sine-squared pulse envelope (full width at
half maximum 100 fs). The total number of time steps
was 65536 and the space grid consisted of 1200 (3D) or
2400 (1D) points, with a grid spacing of 0.25 a.u. The
grid was larger in the 1D case because we need to con-
sider both positive and negative z values; symmetry in
3D halves the number of points required. After each time
step, the wave function was multiplied by a cos ~ mask
function, which extended over 200 points at the edge of
the grid. The harmonic spectrum was obtained &om the
dipole acceleration recorded over the entire pulse.

Figure 1 compares the potentials used in the calcu-

L=O

(4) 0.0

leading to a set of coupled equations for the radial func-
tions

0 1 82 1 l(l+1)
i yi(r, t) =- y~(r, t)

Bt 2 Or2 r 2r2

+rE(t) sinut fc&+yi+i(r, t) + c& yi i(r, t)] (5)

where the c&+ are coupling constants related to Clebsch-
Gordan coeKcients [11].

Each angular momentum channel l is coupled by the
field to channels l +1 (except 1 = 0, which is only coupled
to l = 1). This set of coupled equations can be solved
numerically using an efBcient split-operator technique, in
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FIG. 1. A comparison of the 1D and 3D potentials, show-
ing the positions of the bound states in each case. Arrows
indicate photon energies. Note that the actual grid used for
calculations is considerably larger than that shown here.
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lations. The binding energy is the same in both cases,
although the positions of the excited states differ. At
least nine photons are required for ionization. For the
chosen grid, there are 29 bound states in the 1D case
and 15 bound n states in the 3D case (the total number
of states depends on the number of channels included).

Some examples of harmonic spectra are shown in Fig.
2, where we compare the 1D results with those from a
12-channel 3D calculation, at a peak intensity of 10
W/cm2. These full-pulse spectra typically have much
more structure than those obtained with a ramped,
constant-intensity pulse and the harmonic peaks have a
noticeable width because they are only generated over
a limited number of cycles. There are many differences
between the 1D and 3D spectra, but qualitatively, espe-
cially regarding the position of the high harmonic cutoff,
there is close agreement. There is considerably more nu-
merical noise in the 3D case, which is due to less efBcient
absorbers, as mentioned above. The use of the dipole
acceleration (rather than the dipole moment) to obtain
the spectrum helps to reduce the effect of refIections be-
cause, as Eq. (6) shows, the dipole acceleration is deter-
mined only by the component of the wave function near
the core (where BV/Br is large) rather than across the
entire grid. The final degree of ionization is markedly
difFerent for the two cases shown in the figure: 94%%uo in
the 1D model, but only 22% in the 3D model.

In order to have a clear feature with which to compare
various spectra, we will use the cutofF harmonic, which
we define, somewhat arbitrarily, as the highest order har-
monic q which has an intensity greater than 10 in 1D
and 10 in 3D of the fundamental. Thus, in Fig. 2,

(a) '

the cutoff in both the 1D and 3D cases is at q = 31. By
plotting the cutoff harmonic as a function of intensity
for various cases, we can determine where the 1D model
gives acceptable results and see the effect of changing the
number of channels in the 3D model. Figure 3 summa-
rizes the results for the 1D model and the 3D model with
4, 12, and 24 channels. In the same figure we also plot
the final degree of ionization as a function of intensity.

Examining the ionization results first, it is clear that
simply making the ionization potential the same in the
two cases is insufhcient to obtain identical ionization
rates; this is due partly to the changing position of the
excited energy levels, but also to fundamentally different
behavior in 3D compared to 1D. It is worth stressing,
however, that despite the large difference in final ion-
ization, the harmonic spectra appear very similar. The
position of the cutoff depends primarily on the intensity
and not on the rate of ionization. Increasing the number
of channels in the 3D calculation increases the satura-
tion intensity slightly, but does not have a large effect.
The difference between 12 and 24 channels is too small
to show up on the figure.

The 1D atom generally shows a slightly higher cutoff,
except at very high intensities, where the decrease is due
to depletion of the neutral. Above about 3 x 1014 W/cm2,
where ionization occurs rapidly in the leading edge of the
pulse, the 1D results are poorly converged for this choice
of time step and grid spacing, and points beyond this
intensity have been omitted. The number of channels
required in the 3D case depends on the intensity. Below
10i4 W/cm2, 4 channels are suKcient to converge the
cutofF harmonic, and only above 3 x 10 4 W/cm2 are
24 channels necessary. Until intensities are reached when
ionization occurs completely before the peak of the pulse,
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FIG. 2. Example harmonic spectra for (a) a model 1D and
(h) a 12-channel 3D hydrogen atom, with a nominal 100 fs,
800 nm laser pulse at a peak intensity of 10 W/cm .

'l 0
'1 0

I

'l 0

I

3x1 0 3X10
2

Peak intensity (W/cnn )

'l 0

FIG. 3. Dependence of the harmonic cutoff q and the final
degree of ionization as functions of peak pulse intensity for
the 1D model and the 3D model with 4, 12, and 24 channels.
The dotted line indicates the relationship q = F,. + 3E'~.
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the harmonic cutoff in all the various models agrees quite
closely with the prediction of simple classical models [13]
that q E, + 3E'~, where E;'is the ionization potential
and E'q is the quiver or ponderomotive energy.

We should point out that although the position of the
cutoff, as we have de6ned it here, is fairly insensitive to
the number of channels, the same is not necessarily true
of the intensity of individual harmonic peaks. Consid-
erably more than 24 channels would be needed to com-
pletely converge all of the harmonic intensities. Our point
here is that a crucial feature, the cutoff, can be accurately
predicted using a minimum of channels. Indeed, if ioniza-
tion rate and cutoff position are the primary quantities of

interest, a four-channel 3D calculation gives reliable es-
timates without needing excessive amounts of computer
time. It is superior to the 1D model in the prediction
of ionization rates, but is only twice as demanding corn-
putationally (four channels instead of one, but a radial
grid only half the size). Such a model would be well
suited for use in a larger non-SVE propagation calcu-
lation [14], which would then include the effect of the
ionizing medium on the overall harmonic generation eK-
ciency.

This work is part of a program supported by the Sci-
ence and Engineering Research Council.
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