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Connection of a type of q-deformed binomial state with q-spin coherent states
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Using the q analog of the Holstein-Primakoff boson realization of the su(2) generators, we show that a
type of q-deformed binomial state that corresponds to the Heine distribution can be identified as an

su(2)~ coherent state. This fact is a q extension of the fact that the ordinary binomial state is a particular
su(2) coherent state when the Holstein-Primakoff transformation is employed.
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M
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where 0(g(1. As shown by Stoler, Saleh, and Teich,
the binomial state

l ri, M & is antibunched, sub-Poissonian,
and squeezed for a certain parameter range. Moreover,
le, M & possesses the properties [1]

(2)

On the other hand, the spin coherent state (similar to
what are sometimes referred to in the literature as the
atomic coherent state or the Bloch coherent state), which
has been applied in many branches of physics, is defined
as [2—4]

le, q&=e + '
ls&, g=(8-/2)e (3)

where the non-self-adjoint spin operators satisfy the su(2)
algebra [S+,S ]=2S3, and the state lS & is the highest-
weight state satisfying S+lS&=0, S3lS&=SlS&. Using
the disentangling [3—5]

—T S —1n(1+Irl ~S3 &~+ —ie + =e e 'e +, ~=e ' tan —,
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As is known, the study of photon statistics distribution
is an important topic in quantum optics. In Ref. [1] the
concept of binomial states was proposed and investigated
experimentally. Theoretically, the binomial state is inter-
plated between the number state and the coherent state
and is a linear combination of the M+1 number states
with coefficients chosen such that the counting probabili-
ty distribution is binomial, i.e.,

1/2

As one can see from Refs. [2—5], using the group con-
traction method the spin coherent state can be contracted
to the coherent state of harmonic oscillator. Using

ls3 & =[S(S+1)—S3(S3—1)]' lS3 —1&, we
easily know that the expression lr&=(1+lrl )

Xg —o( ) ( 1 ) lS —
p &, so l(s —ply&l

=( )(lrl )t'(1+lrl ) gives the probability that a sys-
tem described by lr& is in the projected state lS —p &,
which is a binomial distribution [5].

We point out that, using the Holstein-Primakoff boson
realization of spin operators, the binomial state is actual-
ly a particular spin coherent state. Then we extend the
discussion to the q-deformed case, e.g., we try to reveal
some connection between a type of q-deformed binomial
state, which corresponds to the Heine distribution, and
the q-deformed su(2) coherent state. For this purpose we
introduce a q analog of the Holstein-Primakoff boson
realization of q-spin operators. Our conclusion is that
this kind of q-deformed binomial state can be identified as
a particular set of the q-deformed su(2) coherent state.
Note that the q-binomial state introduced here is different
from the other type of q-binomial state defined earlier in
Ref. [10] in that the former corresponds to the Heine dis-
tribution whereas the latter corresponds to the Euler dis-
tribution. They are different limitations of the q-Poisson
distribution. Later, we discuss some properties of our
new q-binomial state.

Let us recall the Holstein-Primakoff transformation
(HPT),

S+ =+2S —ataa, S =a +2S —ata

S3=S—a a,

the expression (3) becomes

le, q &=(1+Ill') 'e

'Mailing address.

(4)

(5)

where a (a) are boson creation (annihilation) operators
satisfying [a,a ]= 1. a a =S —$3 is called the spin devi-
ation occupation number operator possessing the eigen-
states ln &, n ~ 2S. Using HPT we are able to reexpress
the equation

s, ls, & =[s(s+1)—s, (s, +1)]'"ls,+1&

as
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S+ I
n ) =&2S —(n —1 )V n

I
n —1) . (8)

S
I
n ) =&2S n—&n + 1

I
n + 1 ) . (9)

By noticing that the highest-weight state IS ) is now ex-
pressed as IO), using at n ) =&n + 1 In +1) we can cal-
culate

Is & =(a t&2S —a ta )

2S tm

m!Im &, Im &= I0& .
mr

lt then follows from (5) and (10) that

(10)

Equations (7) and (8) tell us that S+ operating on IS, )
gives rise to a state having S3+ 1; this means that the oc-
cupation number n decreases by one unit, becoming
n —1. Similarly, we have

Ps(n;M, tan a, 1)= (cos a) (tan a)"

M
(sin a)"(1—sin a) (19)

The state
I
n )~ is the q-deformed number state, the eigen-

states of N,

I
n &, =(a,"/+[n], !)I0), , (17)

where the q operators a (a ) and N satisfy the q-
Heisenberg algebra [6,7]

a a —qa a =1, [N, a ]=a, [N,aq]= —a . (18)

P2r(n;M, ri, q) in Eq. (14) may be called the probability
mass function (PMF) of the q-deformed binomial distri-
bution because when q =1 and ri=tan a, Ps(n, M, g, q)
reduces to the ordinary binomial distribution, i.e.,

M

Sm
Ir)=(1+lr') ' gomI

2S
=(1+lrl2) ' g

m=0

' 1/2

(
—r") Im) .

ln terms of the q-binomial theorem [8—10]

M
( + )

M g q
n ( n —r )/ 2 M —

ny n

nn=o-
(20)

2S

lq, 2S&= g
m=0

2S
m( 1 )2S —m

m Im&

Qn the other hand, let the number M in Eq. (1) be 2S; we
can express I2!,M) as

1/2

we see the normalization of Ps ( n; M, g, q )

M
1

M

g P (n M, g, q)=
M g q"'"

p (1+g) n =p .

(21)
2S

=(1—ri)s g (r2 +2S —ata ) IO)
om!

X[g/{1—~)] "
Sm

,
Is&[q/(1 —~)] "

m=o m.

which leads us to know the mean

, (q, MIq, M), =i, (22)

MM

, (q, MIa,'a, Iq, M ),= g q"'"-""q"[n],
q (1+ )M P

=rl[M] /1+2! . (23)
(12)

7-* = —(g/1 —g)

which turns out to be a particular spin coherent state
when one compares Eqs. (12) and (11).

As a q extension we de6ne the q-binomial state as

171,M), = g (p2r(n;M, 2!,q))' 'ln &, (13)

When M~ ~, Ps(n;M, 21,q) approaches the Heine dis-
tribution PH [11],which is one of the q analogs of the or-
dinary Poisson distribution, i.e.,

P(rrgq)qq(e1//I lf )r( /1 —)"

[ ] r ~
r

n=o

where 0&q & 1 and q) 0,
[ lim {1+ri) =e "/I ~],

M —+ oo q
—1 (24)

M
n (n —1)/2 n

n
1

pg(n ~M, xj~q) =
)M

Here the q combinatorial and

M [M]!
l1 [g] t[M —rr]

q factorial are defined as

[n] .=[n] [n —1] . [1],, [rr]
1 —q"
1 —

q
whereas the q-binomial expansion is given by

(1+2)) =(1+rl)(1+qg). . .(1+q 'g)

(14)

(15)

where

n X
[&] -r=

r
=q' "[n], e

It must be pointed out that the q-binomial state Iq, M )q
is quite different from the one introduced in our earlier
paper [10],where the q deformation of the binomial dis-
tribution is given by

M

= ( 1+7!)( 1+q 2) )

g"(1—g) (26)
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I(ri/1 —q)"/[n] !](e"' q) (27)

The reason we introduced the new q analog of binomial
state (13) lies in the fact that it is a good candidate for
comparison with the q-spin coherent state [su(2)q
coherent state]. The su(2) algebra, as studied in Ref.
[12], is defined as

—J3

[J2,Jg]=+Jg, [J~,J ]= (28)

For the sake of later convenience we introduce the trans-
formation

whose limiting form as M~ oo is the so-called Euler dis-
tribution [11],i.e.,

S'+in )q=q ' Q[2S N—q]»a»in )q

—m (m —1)/4 [m], !im &, . (35)m

=q " "" "Q[n] [2S n—+1] in —1)

=Q[S—S3] i[S+S3+l]qiS, S2+1), (33)

S' in)q=q " Q[n+1] [2S n—] in+1)
=Q[S+S ] [S—S +1],iS,S —1) . (34)

Noticing that the highest-weight state iS,S) is now ex-

pressed as in =0), we have

S™iS,S)q =(a»Q[2S N]qq —' ) i0)

2S

(1/2)X3 —( 1/4) ~ w) w ( 1/2)P3 —( 1/4) ~)

to change Eq. (28) to

[S'„S~]=+is,

(29)

On the other hand, following Ref. [3] and using (35) we
can construct an su(2) coherent state

n

iz )'= [(1+izi'}"]-'/ e

= I(1+ iZi2}2s] -)/2

(30)
[0'+,S' ] 1

——S'~S" —
q

'S' S'+ =(1—
q ')/1 —

q .+S —
q

—1 +

A,ccording to Ln] =(1—q")/(1 —q) we can write
[g' S' ],= [2S3] . Then we introduce the q analog of+& —

q
—

&

the Holstein-Primakoff realization for su(2) generators

X g {(—Z*} /[m] 'j&™10&q
(m —1)/2 (36)

m=0
This state is normalized because

2s 2S'&ZIZ)'= m(m ))/2izi2m
(1+iZi')".=, m,

'V'[2S —
Nq ],aq

q
—(1/2)N

M)
S+=q

=at+[2S Nq]qq

g2 =S Nq, —
(31}

2S2S
i»I, 2$) = g m (m —1)/2 m

=p (1+qI) m
q

im&,

(37)
By comparing Eq. (13) with (36) we can identify the q-
deformed binomial state

I 2} M =2S ) as the su(2)q qcoherent state, i.e.,
1/2

where at, a, and N are given by Eq. (18). For any
non-negative integer or half-integers the su(2) algebra
has the irreducible representation iS,S3)q with

S3 = —S, —S + 1, . . . , S —1,S. Because N =S —S3, the
eigenstates of S3 can be expressed as the q-number state

i
n =S —S2 )q—:

i
n )q; thus using

a in) =Q[n] in —1), a in)q=Q[n+1]»in+1)q,

(32)

we can derive

M

aqiqI, M)»= g QP2)(n;M, ri, q}[n] in —1)
n=1

=iz&s (38)

Hence Eq. (38) is a q extension of Eq. (12).
We emphasize that although there are two ways to

define the q-binomial state [see Eqs. (13) and [10]],only
the q-binomial state iq},M ), whose limit distribution as
M~ 00 goes to the Heine distribution (not the Euler dis-
tribution), can be identified as a iZ )q.

Now we examine whether the new q-binomial state
ig, M )q is antibunched. Using (16) we have

2}[M]

1+g

1/2
M

' 1/2

1/2

M —1]!
n(n —1)/2 n —1

i 1 )
(1+qq) ' [n —1] ![M—n] !q g n—

2}[M]

1+g
M —1

„=() (1+q2})M
—1

q

qn(n —1 (qq) in ) q

q[M] M —1

QP (n;M —1,qq},q)in )
n=0

g[M]
iqri, M —1)1+g (39)
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and

lq "rl,M n—&, .

n=0

'9 q
n n(n —1)/2f z~q

~

1/2

(1+r))"[M —n] !

Using the identity (r)+q)(1+ri) =q(1+q 'r)) +' and [0] =0 we show

M

aq 7),M& = g +Ps(n;M, rl, q)[n+1] in+1&

(40)

YJ+ q

ri[M + 1]

-1/2 M

g+q
ran[M+1]

It then follows that

1/2 M+1
')(/ Ps(n;M + l, q 'rj, q)[N~]~ n &~

=
1/2

[N, ], lq-'q, M+1&, .

(41)

a& "lr),M &&
= [(rl+q)q[M] !/ri"[M+n] !]' a "a "lq "rI M+n &

As a result of Eqs. (13) and (39) we derive the mean

M M —
1

&ri, M [Nq] lr), M& = g Pz(n;M, rl, q)[n] =[rI[M] /(1+71)} g Pz(n;M —i, qg, q)= l[rM] /1+ri,
n=1 n=0

M M —1

q&rI, Ml[Nq]z ri, M&&= g Ps[n;M, ri, q)[n] = jr)[M] /(1+rI)j g Pz(n;M —1,qrl, q)[n+1]

(42)

(43)

n=1 n=0

ri[M]q q rI [M]q[M 1]q sr 2 rj[M] q rI [M] [M 1]

Thus the variance is

, &ri Ml [N, ]', lrl M &, , & rl Ml [N—,]qlrj M &', =ri[M], (1+q rI)/(1+ri)'(1+qri) .

The ratio of the variance to the mean is then given by

,&g, MI([N, ],—,& g, MI[N, ], lq, M &, )'lg, M &, /, & q, MI[N, ], lq, M &, =(1+q g)/(1+g)(1+qg) &0,

indicating the sub-Poisson nature of the q-binomial state r), M& . Moreover, the bunching parameter for the q-

binomial state is

rI [M]~(1+q —
q +qq)

, &q, MI([N, ],—,&g, MI[N, ], lg, M&, )'lg, M&, —,&g, Ml[N ] lq, M& = — (0.
(1+g) (1+qrl)

By calculating

z&ri, Mlaq a&lr), M &&=&&el,Ml[Nq]z[N —1]qlrI, M &&= g Pz(n;M, ri, q)[n] [n —1]

(47)

M [M —2] !

=qrl [M] [M —1] /(1+rj)(1+qr)),
we obtain the second-order correlation function

G"'—:, &g, Mla, 'a,'lq, M &, /, &q, Mla, a, 17),M &', =q(1+ran)[M —1] /(1+q71)[M], &1,
which shows that the q-binomial state lrl, M & is antibunched.

(48)

(49)
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