
PHYSICAL REVIEW A VOLUME 50, NUMBER 2 AUGUST 1994

Enhanced transient squeezing in a kicked Jaynes-Cummings model
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It is found that in an externally kicked Jaynes-Cummings model the transient squeezing of the 6eld
can be sustained for longer times as compared with the usual dynamics.
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From its original formulation the Jaynes-Cummings
model [l] remains as a central one in quantum optics, be-
cause of its simplicity and powerful predictive nature.
The quantum-mechanical description of the electromag-
netic field gives rise to one of the most important effects
predicted by the model, namely, the collapses and re-
vivals on the difFerence of atomic level populations [2].
The model is the basis of the micromaster theory [3],
where sub-Poissonian electromagnetic fields could be
realized. More recently, the possibility of generating
pure atomic states has been discussed within this model
[4,5]. Also, squeezing of the electromagnetic field is pre-
dicted in the transient regime of the atom-field evolution
[6]. Collapses and revivals, and the sub-Poissonian pho-
ton statistics [7,8] have been experimentally tested in
high-Q microwave cavities operating at very low temper-
atures.

In this work, we study the transient regime of the
atom-field interaction in the Jaynes-Cummings model,
putting emphasis on the transient squeezing which exhib-
its the field mode. We consider a theoretical model,
which includes a mechanism that sustains the squeezing
of the electromagnetic field, in the transient evolution, for
longer times than those found in the usual dynamics. The
physical is achieved by kicking periodically the atom-field
system with an intense electromagnetic field pulse, which
modifies the global atom-field state after the kick, to an
appropriate condition for the generation of a nonclassical
state. Additionally, this model could provide a mecha-
nism to convert a coherent state into an amplitude non-
classical field state.

Let us consider a two-level atom interacting with a
quantized electromagnetic field. For simplicity, we as-
sume that the frequency of the field is tuned to the atomic
transition. In addition, we consider the system being
kicked by an external classical electric field during an in-
terval of time, which is very small when compared with
the time between the kicks. The Hamiltonian is given by
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denote the usual field operators. The amplitude g„corre-
sponds to the Rabi frequency of the classical electrical
field, which is coupled to the atom via an electric dipole
interaction. The function 8(t t„}8(t—„+—t) represents
the kick of duration ht„=t„—t„, which is applied
around the time t„. The period between kicks is
v„=t„—t„&. We assume that the classical field is per-
pendicularly polarized with respect to the quantum field
in such a way that they are not mutually affected. This
theoretical mode1 assumes the existence of a train of in-
tense laser pulses, for which the pulse duration ht„ is
very small as compared with the period ~„of the nth
kick. Within this assumption, it is reasonable to consider
8(t t„)8—(t„+ t)=Et„fi(t—t„). A sim—ilar picture has
been previously considered to study the dynamics of a
two-level atom kicked by a classical field [9]. We basical-
ly consider the same idea, but we are interested in analyz-
ing the evolution between kicks when a two-level atom is
coupled to a quantum field. The Hamiltonian between
kicks is given by the superposition of a usual Jaynes-
Cummings model, HJC, plus the kick interaction Vx(t).
After the kick, the evolution is only generated by HJ&.
We begin our analysis by considering the unitary evolu-
tion of the whole system in the global atom-field Hilbert
space. The evolution in the interaction picture from a
time t„(sm laler than t„) to a time t„+, is given by

'.+i
U(t„+),t„)=Pexp —— [VJc(t')+ Vx(t')]dt'

(2)

The operator P denotes the Dyson time-ordering opera-
tor. The unitary property of the evolution operator al-
lows us to write

U(r„+, ,r„)=U(r„+, , r+)U(r+, r„),
where t„+ is a time greater than the time t„. For t & t„+,
the atom only interacts with the quantum field. For
t„&t&t„+ both interactions are present. The relation
above can be written as
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n+1U(t„+„t„)=P exp —— VJc(t')dt'
t+

s+
XP exp —— V,c t' + VI t' dt'

n

(4)

We know that the relative importance of VJC and Vz is
determined by the strength of their respective coupling
constants and the value of the time in which they are
considered. Let us consider the situation in which
At„=t„—t„ is very small, in such a way that the contri-
bution of the Jaynes-Cummings part during this time is
negligible compared with that of the kick. Under this ap-
proximation, from the Hamiltonian in Eq. (1), the evolu-
tion operator in Eq. (2), between kicks can be written as

population is dynamically set to —,'. After that, the
squeezing begins to disappear when the upper level popu-
lation is greater than —,'. For later times, the same picture
repeats itself, even when no squeezing is achieved, but the
trend to noise reduction appears again when the upper
level population is below —,'. We ask ourselves the follow-

ing question: What would happen if we reset the atom-
field state every time the atom gets inverted to the lower
level? And, how can we do it? In order to see this, let us
consider the effects of the kick on the global atom-field
state. After the kick the total density matrix is given by

where the operator Ux given in Eq. (6) explicitly reads

cos(gb t„) i s—in(gb, t„)
i s—in(gb, t„) cos((ht„)

where we have replaced t„+, ——t„++~„. The evolution
between kicks, Utc(t„++r„,t„+), corresponds to the well
known Jaynes-Cummings evolution operator for a two-
level atom [10]. The operator Ux(t„) is given by

Ux ( t„)=exp [ i g„b,t„—( ~
a ) ( b

~
+H. c. ) ] . (6)

This last operator is the classical version of the Jaynes-
Cummings evolution operator. Thus, the temporal evolu-
tion between kicks is known. It is convenient to consider
the description in terms of the density matrix operator,
namely, at time t„+&

the state of the coupled system is de-
scribed by

Ptot(t +1) UJC(t +'r t )UK(tn )P 0 (t

X Utt(t„)UJc(t„++~„,t„+) .

In this way we have obtained a quantum map in a
discrete time scale, which describes the dynamics of the
atom-field interaction in the global Hilbert space of the
atom and the field. Because the atom and the field
evolves to an entangled state, we explore numerically this
recursive map by considering the general density matrix
in the global space

Paa Pab

Ptot
Pba Pbb

In order to illustrate the physics involved in this pro-
cess, we consider the kicks with a constant Rabi frequen-
cy g applied with a constant period r„=T. The main
question is: What is the role of the kick in the dynamical
behavior of the quantum field? To answer this question,
we analyze the unkicked dynamics of a field which is ini-
tially in a coherent state of average photon number
~a~ =10 and the atom initially in its upper level. Figure
1 shows the quadrature fiuctuation (ha& ) and the upper
level population. We observe that the quadrature noise
tends to decrease when the atomic upper level population
is below —,'. Squeezing appears when the upper level pop-
ulation begins to increase from its lower value around
gt =0.43 to higher values. The noise is reduced up to a
maximum level around a time for which the upper level

After the kick, the expression for the diagonal p„opera-
tor in the expression (8) is given by

p„(t„+)=p„(t„)cos(gb, t„)+p»(t„)sin (gbt„)

+ip,b(t„)sin(ght„)cos(ght„)+H c (1. 1.)
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FIG. 1. Usual Jaynes-Cummings dynamics (unkicked case).
Evolution of the upper level population (a) and quadrature fluc-

tuations (b) as a function of gt, for an initial coherent state with

~

a' = 10 and the atom initially in the upper level.

It is apparent from this equation that choosing a particu-
lar value of the adimensional time associated with the
kick, it is possible to change the global atom-field state

p„,(t„)to a new one p„,(t„+), with modified atomic pop-
ulations. By taking the trace respect to the field vari-
ables, Eq. (11) allows us to observe how the atomic upper
level population evolves. However, we have to point out
that the dynamics is governed at all times by the Hamil-
tonian in Eq. (1) and we study only the internal dynamics
of the coupled system. From Fig. 1, we observe how the
upper level population reaches it first minimum value and
the lower one reaches its maximum value, for gt =0.43.
We can see that when choosing gb t„=(2n + 1)n/2 in Eq. .
(11), for some integer n, we can transform the global
atom-field state p„,(t„) to a new state p„,(t„+) with in-

verted atomic populations, as is clear from Eq. (11). We
sank see that atomic coherence p,b(t„) does not contrib-
ute because in this case the initial coherence is zero. In
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this way, the global atom field given by Eq. (8) is modified
in such a way that the global system evolves from a
different set of conditions, which changes its later evolu-
tion. Figure 2 shows the quadrature noise of (b,a, ) and
the upper level population as a function of gt for
gb, t=(2n+1)~/2 and the kick period is chosen such
that gT=0. 5. The modification of the transient quadra-
ture noise is evident from Fig. 2. We observe that the
population inversion provided by the kick prevents the
field noise from increasing. This is because the upper lev-
el population never collapses to p„=—,', as in Fig. 1,
where the quadrature noise tends to increase far from the
standard limit. In Fig. 3, we consider a variable kick
period and Rabi frequency, for the same parameter as in
Fig. 1, resetting the global field state every time when the
upper level population reaches the value p„=0.4, with
positive slope. The quadrature noise behaves like the reg-
ular period case of Fig 2, but we observe a smoother
curve. We reset p„at this point because, as shown in
Fig. 1, the quadrature noise is near the minimum and the
upper level population does not reach p„=—,'. If we

would choose to reset the atom-field state when the upper
level population is near to this value, the kick would have
no effects on the transient squeezing, because both the
upper and lower level population would be near to —,', al-

lowing the noise to increase.
Now we consider the general case of atoms injected in

a coherent superposition. In order to compare our re-
sults, we study the situations discussed in Ref. [11]. In
this case, because the field acquires, in general, a phase
dependence, it is convenient to express the field quadra-
tures in a rotated frame

a&= —'(ae ' +a e' ) (12)

az= —(ae —a e ),—i8 f i8
2l

(13)

where the phase 8 corresponds to the phase of the aver-
aged electric field (a ) = Ae ' . Let us consider atoms
initially injected with p„=—„and the field in an initial
coherent state JaJ =1. This set of parameters corre-
sponds to that considered in Ref. [11]. In this case, it is
assumed that the atom is initially in a pure state, that is
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FIG. 3. The upper level population and quadrature noise for
variables kick period and Rabi frequency. The frequency ini-
tially is in a coherent state with JaJ~=10, and the atom in the
upper level p„=1.

p, b
=Qp, ~bb e ' and the phase is chosen as 8=n /2

Figure 4 illustrates the upper level population and the
quadrature noise fluctuation (ha, ) for the unkicked sys-
tem. Similar considerations to that of the incoherent case
apply now. We observe that the quadrature noise tends
to decrease when the upper level population is below —,',
and reaches its minimum value when p„ increase with a
positive slope. In order to see the effects of the kick, we
have to include the contribution of the off-diagonal

p,b(t„+ ) in Eq. (11), due to the initial phase of the atomic
state. In Fig. 5, the upper level population and the quad-
rature noise (ha, ), are shown for the average upper level

population reset around the initial value pgg 3
when

p„=0.2 with a positive slope. This point was chosen be-
cause around this value of p„ the maximum reduction of
(b,a, )2 occurs, as observed in Fig. 4. The squeezing is
sustained for longer times as compared with the case with
no initial coherence.

Additionally to the enhanced transient squeezing, an
amplification of the quantum field is expected because of
the energy transference from the classical electric field,
which occurs when the atomic populations get inverted
due to the kick. This effect is observed in Fig. 6, where
the average photon number intensity for the previous
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FIG. 2. Kicked Jaynes-Cummings dynamics for the same pa-
rameters of Fig. 1. The period and the Rabi frequency are, re-
spectively, gT=O 5, and gT=(2n +.1)m/2, with n an integer.

FIG. 4. Usual Jaynes-Cummings dynamics (unkicked case).
Evolution of the upper level population (a) and quadrature Auc-

tuations (b) as a function of gt, for an initial coherent state with

l
a l

= 1 and the atom initially in a pure state with p„= 3.
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FIG. 5.. The upper level population and quadrature noise for
variables kick period and Rabi frequency. The frequency ini-

tially is in a coherent state with
I
a I'= 1, and the atom in a pure

state with pgQ' 3.

FI+ fj 'Fh6, 6. The average photon number vs gt corresponding to
Fig. 3 (a), Fig. 2 (b); and Fig. 5 (c).

cases is shown. We observe that in the case of a regular
period of the kick, an oscillator of the average photon
number is observed, in agreement with the behavior of
the upper level population in Fig. 2. For a variable kick
period, there is an amplification of the photon number
average because the field always receives energy from the
classical field when a population inversion occurs. The
amplification could be an important effect when a weak
quantum field with classical properties, for example a
coherent state, is converted to a nonclassical state with
an amplified intensity. This theoretical model result is in-

teresting and opens new questions about the possibility of
discussing a more realistic model, and eventually of ob-
serving these predictions in a real experiment. These
questions are related to recent research in the generation
of bright amplitude squeezing [12,13].

In this work, we discussed a theoretical model of an
atom coupled to one mode of the electromagnetic field
when the system is being externally kicked by a classical
electric field. We have found that the transient squeez-
ing, which naturally appears in the usual system, can be
sustained for longer times by means of both an appropri-
ate Rabi frequency of the external electric field and
period of the kick. This effect is fundamentally due to
the reset that the external kick produces on the atom-
field state. Finally, the energy transference from the
external field could allow the amplification of the quan-
tum field.
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