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We discuss the evaluation of matrix elements of spin-dependent operators expressed in terms of prod-
ucts of up to four U(n) generators. Such operators arise in connection with spin-orbit, spin-other-orbit,
and spin-spin interaction operators in the Pauli-Breit Hamiltonian discussed recently by Gould and Bat-
tle [J. Chem. Phys. 98, 8843 (1993); 99, 5983 (1993)]. Those authors point out the need for closed-form
expressions suitable for numeric calculations. In this work we enumerate the many factors which arise
in molecular con6guration interaction and complex-atom electronic-structure calculations. We also

present numerical examples to illustrate the use of the methods.

PACS number(s): 31.15.+q, 03.65.Fd, 02.20.—a

I. INTRODUCTION

In the past two decades the unitary group -approach
(UGA) has emerged as a powerful tool for analysis and
computation of properties of many-electron systems in
atomic and molecular physics and quantum chemistry
[1—10]. Large-scale electronic structure calculations
have been for the most part limited to the treatment of
spin-independent Hamiltonians, however [11,12].

With regard to spin-dependent Hamiltonians, the
essential issues regarding at least spin-orbit and scalar
spin-spin interactions have been worked out by Drake
and Schlesinger and co-workers [4,8] in 1977 using spin-
graphical methods [13]adapted from the vector-coupling
paradigm. Gould and Chandler [14] achieved partial,
similar results for U(2n). A more complete analysis of
spin-dependent interactions was carried out by Kent and
Schlesinger [15] in the context of the Stv and SU(2) UGA
formalism. Further results on spin-orbit and tensor
spin-spin interactions were obtained by Kent, Schles-
inger, and Shavitt [16] for application to U(2n)-based
VGA in the context of molecular configuration-
interaction (CI) type calculations treated using the
COLUMBUS suite of programs [11]. It should be pointed
out that such calculations are of relevance for fine and
hyperfine spectroscopy.

Techniques for treating spin-dependent interactions in
the UGA involve adapting the relevant operators to the
spin-orbital basis using the generators of the spin-orbital
group U(2n). Operators are represented in terms of prod-
ucts of two, three, or four generators. An immediate ad-
vantage, in the UGA basis, is that operator matrix ele-
ments are expressed as products of U(i):U(i —1) segment
factors. In turn, these are expressed in terms of funda-
mental, easily evaluated Racah-Wigner coeScients.

In recent papers, Gould and Paldus and co-workers
[17,18] and Gould and Battle [19,20) have treated spin-
dependent interactions, including spin-orbit and spin-spin
terms, within the context of the U(2n) spin-orbital basis

applied to the Pauli-Breit Hamiltonian. They have re-
ferred to their approach as the spin depend-ent unitary
group approach.

An outstanding issue in the Gould and Battle approach
involves the evaluation of matrix elements of U(n) gen-
erator products. Products of three generators arise in
connection with spin-other-orbit interaction operators
while spin-spin-type operators are characterized by prod-
ucts of four generators. Gould and Battle state the need
to obtain appropriate matrix element formulas suitable
for eScient computer implementation.

In this paper, we apply the techniques of Refs. [15]and
[16] to obtain a complete delineation of operator matrix
element expressions suitable for use in the U(2n) spin-
dependent unitary-group approach. In Sec. II we present
a brief review of relevant aspects of the unitary-group ap-
proach. In Sec. III we state closed-form factorized ex-
pressions for the matrix elements of spin-other-orbit
operators involving products of three U(n) generators.
In Sec. IV we state the analogous expressions for spin-
spin operators expressed in terms of products of four gen-
erators. In Sec. V we show how the methods apply in
several illustrative numerical examples.

II. REVIEW OF BASIC PRINCIPLES

A. Representation of U{n) bases

We assume at the outset 2n orthonormal atomic or
molecular spin orbitals labeled

~ip) =P;„(r,g)=P,.(r)y„(g) (1 i ~n;@=1,2),
where (r, g) denote the spatial and spin coordinates and it
is assumed that the spin orbitals factor into orbital and
spin parts. Within the second quantized formalism [1,2]
we introduce fermion creation (annihilation) operators a;„
(a;„) satisfying anticommutation relations

ja,„,ai„]=5;i5„„with the remaining anticommutators
all vanishing.
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In the usual manner ¹lectron wave functions are
formed from the outer direct product of orbit and spin
Young-symmetrized Nth-order products of fermion
creation operators acting on the vacuum state,

and their associated products,

Eik EiEk fikEijl j l j l &

EM =ERE~ 5~—EP

(2.5a)

(2.5b}
N

l(p}.;SM &=I'(",
) I's(y)

k=1

= l(p)„;s & l(p);SM, & . (2.1)

Labels S and Ms denote the total spin and magnetic
quantum numbers while the Young symmetrizers F"and
F act on orbital and spin labels, respectively. The nota-
tion (p) is adapted from conventional Gel'fand [2] ta-
bleau nomenclature and refers to a list, say, of Yamanou-
chi $)q-partition labels [p;] (i =1, . . . , n) which denote
an N;-electron irreducible representation (irrep) of Sb(.

t

Alternatively, for molecular-CI applications, the Paldus
[abc]-tabeau representation [3] is particularly useful. In
this notation [p„]= [2'l 0']„=[a„b„c„], where
a„+b„+c„=n,b„=2S„, and 2a„+b„=N„. The U(2)
conjugate irrep [|I2]is denoted by the Yamanouchi labels
[(a+b} a ] =[aP]~,b), where a+P=2. Finally, we
define the orbital occupancy t0;; for orbital i the value of
a), is 0 for no electrons, 1 for single-electron states, and 2
for paired states with the same orbital quantum number
forming a singlet. The spin values associated with these
orbital occupancies are 0, —,', and 0, respectively.

Alternatively and equivalently, Drake and Schlesinger
[4] constructed symmetric group $)q defined states adapt-
ed to total spin using vector coupling; applied recursive-
ly,

The evaluation of matrix elements of the generators
and their products (2.5) has been discussed by a number
of authors. Results have been presented for all cases of
single generators and products of two generators [4,7,9].
We [15,16,21] have also presented several special cases of
3 and 4 generator products [for SU(tn) in general] and
shown that these are all expressible in terms of funda-
mental Racah (and higher order; 6-j,9-j) coefficients.
These methods demonstrate that the matrix elements of
an arbitrary product of generators can be written as a
product of segment factors (matrices) each of which is
computed based only on the irrep labels of linked
U(i):U(i —1) subgroups. Our aim in this work is to iden-
tify the appropriate factors and phases which arise.

1

s(i,j)= y ( —1)qs, (i,j)e, ,
q= —1

2

Sq(i,j)= g Q—,'( —1)
p, , v=1

(2.6a)

1

2

E!P
m„q —m

(2.6b}

B. Spin operators

The spin-vector operator is defined, using vector cou-
pling,

[Pb(,.1

(p4,. —.,
;$)q MN

where [eo=e„ez,=e,+te» ] is a triad of basis vectors inI and m1= m2=-.
For q = 1, —1, and 0 Eq. (2.6) is equivalent to

(S~ „y Mb( „tn„, ISN.M&. &

I

x l(p)b(, sN „MN „&(8)la);;y„ i»f„& .

S(i,j)= ,'t»„"EJ'I'; —1&@,v&2

from which it follows, with Sz =
—,'(S„+is»},

S+(i,j)=~2) EJ'z, S (i,j)=~2) EJ'),

S,(i,j)=T)(EJ", Ejz ) . —

(2.7)

(2.8}

(2.2)

The recursion is carried out in order for orbitals i from 1

to n. Once the spins are coupled an antisymmetrizing
operation is carried out on the orbital labels. This pro-
cedure is equivalent to the application of Young opera-
tors. The ordering of vector coupling by orbital labels
ensures that a standard Young tableau is constructed.
The SN-based approach is made equivalent to the U(n)
approach by including in (2.2) hole states for which a), is
0 (and orbital spin is 0).

The U(2n) infinitesimal generators are written

(2.3)

(1 & i,j& n; 1 &p, v & 2 ) from which one defines orbital
and spin group generators, respectively, xlsM &&$MI. (2.9}

We note that the definition of S+ (chosen for symmetry
of normahzation) difFers by a factor of 1/~2 from that of
Gould and Battle [19],hence the difFerence between (2.8)
and their expression (20).

The spin operator defined by (2.6) or (2.8) is expressed
in terms of single spin orbitals, lip, &, through the genera-
tors as in (2.3}. In order to express S(i,j) in the many-
electron irrep basis l(p)„;SM & defined in (2.1) we utilize
the Wigner-Eckart theorem and obtain

s (l,j)= g (s lls (t,j)lls &

S,M, S',M'

S 1 S'
X ( —1 }s—M+q

M q M'

2E'= $ E'l4 ~

p, =1

n
EP= g E!P (2.4) We note that the operator couples states of the same spin

as we11 as states for which bra and ket spins differ by one.
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Drake and Schlesinger [4] treated the reduced matrix ele-
ment in (2.9) introducing two reference orbitals

[ ~n'p &, & n'v~ ] which are coupled to bra and ket spins
such that the resultant spin s are identical,
S„' =S„,= —,'(S„'+S„). By recoupling the n', i, and j or-
bital creation and annihilation operators they obtained
the result that the S(i,j) operator is expressible purely in
terms of the orbital generators of the symmetric group
S~+, (see expressions (42) —(44) and Fig. 4 of Ref. [4]).
The orbital label n' is arbitrary except to the extent that
the Pauli principle must hold (therefore, choose
n

' =n + 1 }. In this context the reduced matrix element in
(2.9) is expressed in terms of the U(n+1) orbital genera-
tors,

& S„' (~S, (i j) I IS. &
=

& S.+

BRIE.

'+ )~,"+'+-,'E."++i'~,'IS. + ) &

' —1

S +S—(1/2) S' S 1
g( 1) n+1

S„+1

(2.10)

The process of embedding Sz in SN+, or U(n) in U(n+1)
is particularly convenient due to the fact that in those
higher rank groups reduced matrix elements (2.10) can be
evaluated in terms of orbital generator products whose

matrix elements are diagonal in the spin S„+1.
The construction of the rank-2 tensor spin operators

adapted to UGA proceeds in a manner analogous to the
rank-1 vector operators,

Sg '(s „s~ )= g Sg '(i,j,k, l),
i,j,k, l =1

(2.11a)

Sg '(i,j,k, l)= —&5

q&+q2= —Q

XS (i j)S (k 1) .

(2.11b)

Operators (2.11) transform two-electron states ~jl & to
~ik&. Clearly, such operators connect many-electron
states of the same total spin as well as states whose total
spins differ by 1 or 2.

As shown previously [14] the rank-2 operators can be
composed in terms of linear combinations of products of
four generators. The result obtained in Ref. [14] was spe-
cialized, however, to cases where i =j and k = l, that is,
when two spin states are flipped within the same orbitals.
The general expression is

Sg '(i,j,k, l )„+2
=

S,M, S,M

I

n+1' n+1' n+2

( 1) n n+2 n

45

n+1

S„' 2 S„
—M' Q M

'S„'+, Sn+1
S„' 2 S„

X g [(2S,'+1(2S,+1] '"
t=n

1

2 S„+1 1
1 11 t
2 2

S„'+1 1 S„+1

+1Ek E + E 'E +1Ek E +2
n+1 j n+2 I 2 j n+1 n+2 I

(2.12)

C. Spin-dependent operators

Gould and Battle [19] treat the spin-dependent Pauli-
Breit Hamiltonian for an ¹lectron, M-ion system,

H =Ho+Hs+Hso+Hss . (2.13}

In order to establish the relationship between operators
as in (2.11) and the generators, it is necessary to consider
the group U(n+2) used to describe an (N+2)-electron
system. The addition of two extra reference orbitals at
levels n+1 and n+2 is required to establish the result
(2.12). In order to evaluate operator matrix elements,
however, we do not require the generators [4,14] as will
be seen in Secs. III and IV.

In (2.13) Ho is a spin-independent operator containing
the kinematic terms, Coulomb interactions (between elec-
trons and nuclei as well as between electrons), relativistic
mass corrections, and first and second order Darwin
corrections. Remaining terms in (2.13) refer to spin-
own-orbit (Hs ), spin-other-orbit (Hso ), and spin-spin

(Hss ) operators.
Ignoring higher-order multipole interactions the Hz

operator can be split into one- and two-electron interac-
tion operators, H, and H2, expressible as bilinear forms
involving only the orbital U(n) generators, EJ, and prod-
ucts, EJI, respectively. Matrix elements of these genera-
tors have been worked out previously [4,7,9]. Additional-
ly, the matrix elements of the Hs operator were obtained
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by Drake and Schlesinger [4] and the present authors [8].
An important feature is that the matrix element expres-
sions are factorizable into products of terms which de-
pend only on U(i):U(i —1) segment labels.

The spin-other-orbit interaction is expressed

(S;+S )
Irso=go g 3

~ [(r, —r, ) X(V —V, )], (2.14)

with go=e i'/m, c, while the spin-spin interaction is
written

The second term in (2.18) is the Fermi contact term. This
scalar spin-spin interaction component was treated by
Drake and Schlesinger [4].

The above presentation can be considered a general
outline of the VGA methods relating to spin-dependent
operators.

III. SPIN ORBIT: THREE GENERATOR PRODUCTS

N

&ss =@0g

XS;.
3(r —r )(r —r )J & J

Matrix element formulas for spin —own-orbit interac-
tion were first presented in the Sz basis by Drake and
Schlesinger [4,8]. For completeness we include their
main result herein. Their reduced matrix element of the
rank-1 spin-vector operator S(i,j) can be expressed in

U(n),

3
5(r; —r, )S; S, ' . (2.15)

It is important to note that the operators in (2.14) and
(2.15) are stated using single-particle vector spin opera-
tors and are not suitable, therefore, for direct implemen-
tation within the spin-dependent UGA.

Kent and Schlesinger [15] and Gould and Battle [19]
determined alternative forms for the spin-orbit-type in-
teractions expressing them directly in terms of spin
operators defined below, themselves written in terms of
U(2n) generators. Equation (2.14) is restated,

Hso= —' g &iklhsoljl &

i,j,k, l =1

X [S(l,j )Ei"+EJ'S(k, l) 25J S(i, l)—] (2.16)

where the two-electron orbit operator hso is defined

0
hso i (r, —ri)X(V2 —V, )

r, —r2
(2.17)

The spin-spin operator (2.15) is restated in the form

n

~ss = —irido
~ ~

4J»

k, I =1

15
( —1)~

Q= —2 ri'k,jl

XSg'z'(i,j,k, I)T' ~g(i,j,k, I)

+ g 5(r,„~i )( —1)'Sm

q= —1

XSq(ij )S q(k, l) ', (2.18)

—Q 2 &2 C(2 j( e (2.19)

where the factor T' '(i,j,k, I) is a second-rank orbital ten-
sor which expresses the radial vector dyadic in (2.15); this
tensor is expressible also using spherical harmonic ten-
sors,

S„'
S—S„+2S„+1/2)=(—1)

l2

j—1 n

t =i+1 t=j+1

—1S; 1

S„1

(3.1)

where S =(S +S')i2. The scalar fact~~~ A, , ?
and 8„'+1are all defined in Appendix A.

We note that the factor 8„'+', in (3.1) [see (A7)) is pre-
cisely cancelled by the Racah (6-j) coefficient and phase.
The inclusion of these cancelling factors, though formally
necessary for calculating the matrix element, still is useful
for two reasons. The first is to express the spin operator
in terms of the orbital generators directly. The second is
that the inclusion of the coefficient allows for immediate
use of the formulas in established procedures in CI calcu-
lations [11]. These methods rely on. the expression of
operators in terms of the generators to achieve computa-
tional efficiency. Also, for the same reason, those calcula-
tions require that matrix elements be represented by
closed-loop subgraphs in the Shavitt distinct row-table
graphical unitary group approach (DRT-GUGA)
scheme. In the absence of the factor 8'„+', at segment
level U(n + I):U(n) the spin-dependent operator matrix
element subgraphs are not closed between irreps of
differing spin.

Matrix elements of the spin-other-orbit operator (2.16)
involve products of three U(n+1) generators upon ex-
pansion of the spin S(i,j) operator, following (2.10). Ma-
trix elements of these products can be calculated directly
as linear combinations of products of factors for each lev-
el U(m):U(m —1). To illustrate the formulas obtained
we list below expressions assuming generator indices with
relative values i &j & k (I only. To facilitate the presen-
tation of results we have placed definitions in Appendix
A for the various factors which arise below.

The evaluation of S(i,j)E&" and E'S(k, l) products in
(2.9) proceeds in similar ways. Applying the Wigner-
Eckart theorem we obtain the formulas for the reduced
matrix elements,
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S-S +(1/2)+2S{(p')))S(i,j%& ))(p) }=(—1)
. 2

—1S
S 1

' g 5(S„S,')
n

t =i+1

Reversing the order of operators, we obtain

t=j+1

I —1 n
T(2) A( ) ~ y( )g( ) ~ T( )g(2)

t k gg t I ™gg t n+1
t =%+1 t =1+1

(3.2)

g 5(s„s,'}

t =i+1

Continuing with remaining cases, we obtain

t=j+1

I —1 n

A g T, AI' g T,' '8'„', .
t =k+1 t =1+1

(3.3)

S„' —,
' S

{(p') )(S(j,l)Ek )((p) }=(—1) g 5(S„S,'}

and

t =i+1 t=j+1

I —1 n
T(2)g(2) ~ T A(2) ~ T(2)g(2)

t k jg t I gg t n+1
t =k+1 t =1+1

(3.4)

S„
{(p')((S(i,k)E/()(p)) =(—1)

. 2

t =i+1 t=j+1

I —1 n
T(2)C(3) ~ T(3)B(3) ~ T (2)B(2)

t k gg. t t gg t n+1 .
t=k+1 t =1+1

(3.5)

Equations (3.2)-(3.5) serve merely to illustrate the na-
ture of expressions which arise in the context of spin-
other-orbit interaction operator matrix elements. Since
such operators involve products of three generators the
number of special cases enumerated by correlating the
generator indices is large. In all cases, however, the ma-
trix element expressions are factorizable into scalar and
matrix terms depending only on the spins, or equivalently
the Paldus labels [abc], at segment levels U(i):U(i —1).
By utilizing the techniques of vector and tensor coupling
and the Wigner-Eckart theorem an alternative means of
obtaining these results is also realized.

IV. SPIN-SPIN: MATRIX ELEMENTS
OF FOUR GENERATORS

In this section we present formulas for matrix element
cases involving products of four U(n) generators arising
in the context of rank-2 tensor spin-spin interaction
operators as in (2.11}. We state the basic formula for
each segment factor in Appendix B.

Matrix elements of the spin tensor are written

i —1

{(p )))S ( j,k, &)[((p)}= ff 5(S„S,')6J,((P'), (p)},
t=1

(4.1)

where the factor 6,jk(((p'), (p}}can be decomposed into a
product of (matrix) factors each of which depends only
on the intermediate partition indices, [p', ] and [p, ] and

certain other intermediate-coupling spin values. This
decomposition can be expressed schematically in the
form

6;,.k(((p'), (p) )

t =min(i, j,k, l)

(4.2)

Here, the W, ' factors are scalars or matrices which de-(p, )

pend explicitly on the U(t) and U(t —1}irrep indices, p,
is the number of generators whose ranges overlap at level

t, and [I(., ] represent intermediate-coupling spin values

which arise at the head or tail of intersecting generator
ranges. Alternatively, [X,] labels the irreps of

SU(2)e SU(2)(8) . .
(N SU(2) 0 e SU(,~(2) .

[p]es

The use of matrices requires that factors be strictly or-
dered by increasing t. The advantage of this decomposi-
tion form (4.2} is that all the matrix factor components
can be calculated simultaneously from the same sets of ir-
rep indices.

The indices i, j, k, and I provide a convenient means
for categorizing the subcases and factors. We enumerate
these cases below according to the relative index values.

i &j & k & I: For this case both ket orbital indices j
and I are increased. %'e refer to these as raising-raising
(RR) cases
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j—1 k —1

G;„,=A; g T, A,' ' g T,' '

t =i+1 t =j+1
I —1 n

XA '
~~ T''A'' ~~~ T''

t=k+1 t =1+1
(4.3)

i =k &j=I: Spin flips occur for [i,k] and [j,l] orbital
pairs

(4.11)

j—1 k —1 n

G;„„=A; g T, A' ' g T,' 'C„' ' g T,' '. (4.4)
t=i+1 t=j+1 t=k+1

i =j & k & l: Spin-flip now occurs on orbital i,
k —1 1 —1 n

G —A(&) rI T(&) A(3) II T(3) A(4) II T(4)
iikl i gg t k J.g t t gg t

t =i+1 t=k+1 t =I+1
(4.5)

i &k &j &l: In this case the spin operator index
subranges [i,j] and [k, l] overlap leading to the expres-
sion

k —1 j—1

G,,„,=a,. g T, A(') g T(')
t =i+1 t =k+1

I —1 n

XAJ ' g T', 'DI ' g T,' ', (4.6)
t =j+1 t =I+1

where we note the doublet and quartet coupling in the

[j,l] overlap subrange resulting from the overlap of three

generators.
i &j=k & l: This case once again involves a spin flip

of the singly occupied orbital k. We obtain
k —1 1 —1 n

G,,„,=~, g T,F'„" g T", )A'„" g T,"'.
t=i+1 t=k+1 t=l+1

(4.7)

i &k &l &j.

The superscript (3}indicates three-generator intermediate
spin couplings of K =

—,
' (doublet) or —,

' (quartet) terms

starting in orbital k proceeding to 1 —1. The superscript
(4) denotes four-generator intermediate spin couplings of
%=2 only for the rank-2 tensor spin operator.

i &j & l & k: This case is closely related to the previ-
ous one and, since orbital index k is now being decreased
to l, is referred to as raising lowe-ring (RL).

i &j & k = l: For this case we have single occupancy in
the k orbital. The spin operator causes a spin flip on that
orbital. It follows

The cases treated in this section, while they do not cov-
er every unique situation, are comprehensive in that oth-
er cases which do arise can be related to those above by
interchanging labels andior performing conjugation.

V. NUMERICAL EXAMPLES

In this section we consider a numerical example involv-
ing five electrons in seven orbitals. This could describe,
for instance, either f electrons or a mixture of atomic or
molecular orbitals in singlet, triplet, or quintet spin ir-
reps. Our purpose is to apply the formulas from Secs. III
and IV to calculate particular spin components of the
spin-other-orbit interaction matrix elements.

The Ss adapted U(7) irreps to be considered are, in
Paldus abc notation, [052] and [133] (total spin —', and —'„
respectively). We consider the states, expressed in terms
of both Weyl-Young and Gel'fand-Paldus tableaus,

052 133
051 132
050 131

I= 040 ib)= 4
I= 121 . (51)

4 030 1115
020 020
010 010

For the states a and b defined in (5.1) we obtain, using
(3.2) and Appendix A, the matrix elements of
spin —other-orbit operator terms, S(i,j )Ek,

(

v'-'. 0 v-,'
~lls&3, s&z,'li~) =& —v' —",

5

(5.2)

and
k —1 1 —1

G,,„,=q,. g T, A(2) g T(')
t =i+1 t =k+1

j—1 n

XH' '
~~~ T' 'A' '

~~~ T' '.
t =I+1 t=j+1

(4.8}

&allS(3»E5ilb&=(-V —,
' 0)

1+5

Qs 0

0 0 0

(5.3)

k —1 lf

O' A' g T C J g Tiikk i gg t k J g t
t=i +1 t =k+1

i &k&j&l:
k —1 j—1

G,J„,=A; g T, A' ' g T', '

t=i+1 t =k+1
l —1 n

XA'-" ~ r"'A"' ~ Z'"
t=j+1 t =1+1

(4.9)

(4.10}

i =j &k =1: Spin flips now occur for both orbitals i
and k,

The diS'erent matrix terms as well as the diagonal nature
of the 2X2 matrix derives immediately from the triplet-
singlet coupling of the spin-vector operator to the U(n}
generator. For ofF-diagonal matrix elements it is often
the case (but not necessary} that the singlet factors accu-
mulate to zero; the selection criteria provided by the state
labels handle this situation rapidly.

In Ref. [14] we presented numerical examples of spin-
spin matrix elements in irreps obtained from four atomic
d electrons. All examples shown in that reference in-
volved matrix elements of the type treated by Eq. (4.9}.
The same case also serves to illustrate the more general
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case of four electrons in five molecular orbitals.
The previous examples serve to illustrate the applica-

tion of the formulas stated in Secs. III and IV. Those for-
mulas are equally applicable to both $z and U(n)-based
UGA, particularly the latter approach. With the out-
standing issues of matrix element evaluation resolved it
would be of interest to see the effect on large-scale Pauli-
Breit calculations suggested by Gould and Battle [19] or
the density matrix formalism of Gould and Paldus and
co-workers [17,18].

A computational issue worth mentioning concerns the
evaluation of segment factor matrix components, and
consequent accumulation of factor products. The speed
of this process could be greatly increased through intro-
duction of hardware which, upon accessing the segment
labels, simultaneously derives the case logic, evaluates
matrix components, and accumulates products. The last
process also requires simplification if integer arithmetic is
used (complete precision can be assured in this case).
Since matrix and pipelined hardware is used widely in
computers specific adaptation to cases of present interest
is appealing.

VI. CONCLUSIONS

We have expanded and clarified the treatment of spin-
dependent operators first presented by Drake and Schles-
inger [4] and ourselves [8,15,16] in the context of the $~
and SU(2)-based unitary-group approach. The results ob-
tained by Gould and Battle [19,20], for matrix elements
of spin-orbit-type operators were shown to be equivalent
to those obtained previously in Refs. [4] and [8]. The
treatment of spin-spin interaction operators and their
matrix elements by Gould and Battle [19] is equivalent to
results obtained in Refs. [15]and [16].

We have presented results which solve an outstanding
issue concerning the Gould and Battle [19,20] approach,
namely, determining the matrix elements of products of
three and four U(n) (orbital) generators which arise in
their formalism.

Our results complete the evaluation of spin-dependent
operators up to rank-2 tensor spin-spin operators. The
determination of matrix element expressions is greatly fa-
cilitated in the spin-orbital basis of the unitary-group ap-
proach. In all cases the expressions factor into
U(n):U(n —1) segment products each of which is a scalar
or at most a 2X2 diagonal matrix. The importance of
segment product factorization was first realized in molec-
ular CI calculations by Shavitt [11] using his DRT for-
malism.

Significant advances have been made recently in the
size of CI expansions [22] (up to 10 configurations have
been treated using massively parallel computers). Vector-
and parallel-based computing strategies by themselves are
incomplete, however, so far as dealing with both the
storage and time of calculation issues which arise in
large-scale electronic systems. The time taken to perform
the product calculations appearing in matrix element ex-
pressions should be greatly reduced through the use of
pipelining, a hardware-based technique where an entire
matrix at each subgroup level is calculated in paralle1 and

accumulated at each segment level. Since the evaluation
of each factor depends on determining the appropriate
formula subcase to use, which requires tests of the occu-
pancy of each level and other parameters, an unnecessary
redundancy can be removed. Other aspects of the multi-
plication are also accelerated using the pipeline tech-
nique.

ACKNOWLEDGMENT

We gratefully acknowledge the support of the Natural
Sciences and Engineering Research Council (NSERC) of
Canada.

APPENDIX A

S, p, S,
x '

pE I
1

2

(A 1)

The A' ' factor represents the tail for a two-generator
segment,

S,-'

A,' '=3+(2$, +1)(2$ +1} $;
1

2

p,
' S,-'

p, $, . (A2)

1

Actually, this factor represents only one of two possible
terms which arise due to different couplings. For a sirn-

ple product of two orbital generators the overlap range
can be decomposed into singlet- and trip/et-coupled
terms. The factor in (A2) represents the triplet term.
The singlet term is determined by replacing the 1 in the
lower right position of the 9-j symbol by 0. This case

We present in this Appendix the definitions of
U(m):U(m —1} factors which were introduced in Sec.
III. All our phases adhere to the Baird-Biedenharn-
Condon-Shortley convention. The individual factors
were arrived at by representing the reduced matrix ele-
ments of spin-orbit and spin —other-orbit interactions us-
ing U(n) spin graphs [4,6,7]. These matrix elements are
represented by coupled angular-momentum lines. The
resulting graphs are then decomposed to obtain the indi-
vidual factors appearing below.

We state three types of factors. The A-type or tail fac-
tors represent the lower terminal points at levels
U(i}:U(i —1), where one or more generators decouple
from a product of p,. generators leaving a product of p;
generators [16]. Stated differently, shifts to the partition
labels [p, ] are affected by the action of p; generators
whereas shifts to labels [p; &] are affected by the action
of p, , generators. Similarly, 8-type or head factors
represent terminal points at levels U(i+ 1):U(i) where one
or more generators decouple from a product of p; genera-
tors leaving a product of p;+ &

generators [16]. For inter
mediate levels where p; generators are acting the T-type
factors are operative.

There are three types of tail factors which arise. The
A factor corresponds to the tail of a single generator,

I

, =Q(2$, +1)(2$,'+1)(—1)""'-"""'""
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reduces to the B factor defined below. We define the
1X2rowmatrix A', ',

B „'=))/(2S;+1)(2S +1)

X( 1) i i —1 i i i —1 iS. +S. 1+p.+S.+S i+p. + 3/2 —K„

A(.2)= —) $(S. S.')B..
1

(A3)

A, '=Q(2S;+1)(2S +1)

X( 1) i l' —1 i i —1 i i rS +S -1+S +S -1+2p +2pl+Kr

S

X+2K, +1 p,'

S; K,

pi 2K, =2r —1,
S i S;

Finally, the A' ' factor comes about due to the action
of three generators and is represented as a row (1 X 2) ma-
trix. There are two allowed spin couplings, namely, dou-
blet and quartet. A third type corresponding to the com-
pletely antisymmetric coupling of three spin- —, particles
in S, is not allowed due to the Pauli principle [that is, no
more than two rows can exist in a U(2) tableau]. The ma-
trix formulation of this factor expedites simultaneous
evaluation of the two coupling terms at a given
U(i):U(i —1) segment level. The factors are defined

X )//2E„+ 1 p,
'. 1

2 p 2K„=2r —1,

I

Si+Si 1+pi+(1/2)i i —1 i
S,

Sf-i S~'-i Pt

(A9)
while for two overlapping generators, we use the diagonal
2X2 matrix form,

T' ' =5(S„S,'); T' ' = T' ' =0 (A10a}

T,'22 =Q(2S, + 1)(2S,'+ 1)

S; 1

r =1,2 . (A8)
Intermediate terms representing segment factors in the

regions where generators overlap have the following
three forms. For single generators,

T, =Q(2$, +1)(2S,'+1)

r =1~2 (A4) I S,'S +S +p, +1 S,

I

2S, 1+2S, 1+p,.+p,. +(1/2)B = —1i p

I
pi S;

2

(A5}

There are also three types of head factors. The B fac-
tor is defined

~l
f -1 ~~-1 Pf

T, )) —T, ; T, )2
—T, 2)

—0,( ) (3)
(A 1 la)

T,'22 =Q(2S, +1)(2S,'+1)(—1) '

(A10b)
Cases of three overlapping generators are also treated

using a diagonal 2 X 2 matrix whose elements are
(3)— 3

The B ' factor represents the head for a two-generator
segment corresponding to triplet spin coupling. Combin-
ing singlet and triplet components in a 2X1 column rna-
trix B' '

SE S, 2

X '

S, ) S,' ) p,
(Al lb)

B,(2) =5(S,,S,') A,

B '=B' )=Q(2S;+1)(2S +1)

X( 1) i —1 i —1 i i Pi Pi

(A6a)

S; i p; S
X S; ) p; S; ~ .

1

2

(A6b)

SnS —S +S„+(1/2)
n 1+

. 2

1

S„1 (A7)

The singlet-coupled term corresponds to the A; factor
(A6a). For the special case at level U(n+1):U(n) where
the total spins of the bra and ket irreps either agree or
differ by one (S„'=S„+1},B' ' takes the special form

As seen from (Alla) the (1,1) element is just a T factor.
That this is so derived from the isomorphism between the
U(2) irreps I(a+b)'a'] and [b'I [removal of all paired
boxes from the Weyl-Young spin-SU(2) tableau). Howev-
er, there are qualitative differences, especially in the
treatment of orbital labels, thus it is useful to retain the
distinction.

The final factor is C,'' in Eq. (3.5}. Such factors are
present when the generator index range partly overlaps
the range of the spin operator indices extended to n [e.g. ,
i &j &k &l &n for products like EjS(i,k)] The factor.
is represented in diagonal 2 X2 matrix form with the (1,2)
element equal to zero. The remaining elements are

(2S;+1}(2S+1)
C 11=—,'5(S, 1,S 1)

2(2S; 1
—1)

X( 1) i i i —1 Pi Pi
Pi l 1

Finally, analogous to the A' ' factor, the B' ' factor is
expressed as a column (2X1) matrix with doublet and
quartet terms defined and

(A12a)



194 R. D. KENT AND M. SCHLESINGER 50

2K +S.—S.+S. +p. +p.
S-

2 +o ( /2)C(3) +2K +1( 1) z i i ~i —1 i i g ( 1) 2 I

. 2

l
i 1 2 1

01
02 ~1 Pi

IX S, S, , P;
i —1 i

02

S

p, , 2g, 2y 1, r 12.
1 S;

(A12b)

APPENDIX B

We present in this Appendix the definitions of U(m):U(m —1) factors which appear in connection with spin-spin
operators in Sec. IV. These operators are expressed in terms of products of four generators.

From (4.3}we define the 2 X 1 matrix A', ' with components

A,'»+(i~2) =Q—,'(2K+1)(2S,'+1)
S=S

I +(1/2)
(2S+1)( 1) i i i —

1

X '
S,' 1 —,

' S

S, & 1S,'
S S

2 —,
' S,'

Sr —1

ANr =0,2, (Bl)

where the intermediate spin K =
—,
' (doublet) or —,'(quartet). We also define the scalar,

r —1 0
T,' '=g(2S,'+1}(2S,+1)(—1} '

t —1

(B2)

Note in (Bl) that the bra state is singly occupied and the ket either unoccupied or doubly occupied with bN, =0,2.
From (4.4) we define the scalar factor,

C,' '=Q(2S, +1)(2S,'+1)(—1} '

S,

S,'

1 S, ,
1

2

2 S,

(B3)

The 9-j symbol in (B3) is of a type discussed in Refs. [15]and [13] (see pp. 144 and 145).
From (4.5) we define the 1 X 2 matrix factor D',3', for K =

—,
' and —'„

D,'x ~ii~2) =g —,'(2K+1)(2S,'+1)
I I

&2S+1(—1) '

S =S 1%(1/2)

S,'

X '

2

S

S, 1

S

S,'
S,'

1

2
S 1

S,' E S,
ENt =0,2 . (84)

Here we have considered the case where the bra orbital is unoccupied or doubly occupied and the ket orbital is singly
occupied. The reverse situation is handled by replacing primes by no primes, and vice versa, on the spins. This factor
is similar to A', ' defined in Eq. (A4).

From (4.6) we define, for K =
—,
' and —,',

St'
1 1 St St 1 Sr -1

F, x+(,q2)= —,'Q(2K+1)(2S, +1)(2S,'+1}(—1) '

2 t 1 2 2 t
(B5)

From (4.7) we define the 2 X2 matrix HIi', for K =
—,
' and —,

' and I.=0 and 1,



50 SPIN-DEPENDENT OPERATORS IN THE UNITARY-GROUP APPROACH 195

Ht{.LI+ ) K+(t~2)
=Q —,'(2L + 1)(2K + 1)(2$,'+ 1)

X g v'2$+1
s=s, +(in)

I

Si+S, +St i+S~ i+K+Lt —l t —1

2 S,

S S
L

1

2

S,'
S,' i S,' E

1

. 2

S,
1 N~=o, 2 ~

(B6)
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