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Quantization of electromagnetic fields in cavities and spontaneous emission
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The normal modes of electromagnetic fields satisfying three different boundary conditions are
constructed systematically. For each of these cases, cavity quantization of the electromagnetic fields
is carried out explicitly. It is possible, using normal modes, to perform a unitary transformation of
the minimal-coupling Hamiltonian of an atom inside the cavity to a multipolar form. It is shown
that the boundary condition plays an important role in the transition rates for the spontaneous
emission by the atom. Some explicit calculations are carried out for several different boundary
conditions. These results become consistent with those for free space in the large-box limit.

PACS number(s): 42.50.—p, 03.70.+k, 32.70.Fw, 12.20.Ds

I. INTRODUCTION

Properties of atoms interacting with electromagnetic
fields in cavities have long been the subject of intense
investigation [1]. Since the fields in cavities differ from
that found in &ee space, the rate of spontaneous emission

by an atom depends on the cavity boundary conditions.
The emission rate is increased if the atom is surrounded
by a cavity tuned to the transition frequency and is in-

hibited if the cavity dimensions do not allow the radia-
tion wavelength. Several experiments have verified the
enhancement and inhibition of the emission by an atom
in a cavity at various &equencies [2—8]. In addition to
spontaneous emission, there have been many observable
effects of boundary conditions, thanks to recent advances
of constructing small cavities. These effects include vac-
uum Rabi splitting, micromaser and microlaser, quantum
collapse and revival, Casimir effect, and atomic-energy
shift [1].

In this paper, we shall be primarily concerned with the
"infinite-wall" boundary conditions for a single cavity.
However, there are also lattices of wells with finite walls"
which produce observable effects, namely, photonic ma-
terials (crystals) [9] and quantum dots [10]. They have
also attracted considerable attention. Photon waves .'n a
three-dimensionally periodic dielectric structure should
be described by band theory, which is analogous to elec-
tron waves in a crystal. Many applications of photonic
bands are now being pursued in metallic, dielectric, and
acoustic structures [9]. The lattice of quantum dots is, in
effect, a crystalline layer made of artificial atoms (dots)
whose energy levels can be controlled precisely [10]. They
will also show band gaps because there are arrays of
dots in the lattice. The lattice problem is also concerned
with the eÃect of boundary conditions on electromagnetic
fields.

*Permanent address: Department of Physics, University of
the Ryukyus, Okinawa 903-01, Japan.

Many authors have studied, classically, quantum me-

chanically, or field theoretically, spontaneous emission

by atoms surrounded by electromagnetic environment

[11—22], especially the effect of a flat mirror or two paral-
lel Hat mirrors [11—21]. In 1965, Marshall [ll] studied the
radiation rate of a classical dipole placed in the random
zero-point field between two conducting plates and got
some reasonable results. Kuhn [12] also considered a sim-

ilar problem of a molecule using a model based on clas-
sical linear harmonic oscillators. Such a classical model
has been shown to provide a good quantitative explana-
tion of experimental data. The effect of mirrors has also
been obtained by the image method, in which the mirror
cavity is replaced by an infinite string of virtual images

[13]. Several ideas has been presented to study various
surface effects on atoms in different situations [14].

It is quite natural to use normal modes to study cav-

ity quantum electrodynamics, while we usually use plane
waves in electrodynamics in &ee space. In this normal-
mode approach, the electromagnetic field is expanded in

appropriate mode functions satisfying the boundary con-
ditions imposed by the mirrors [15—21,23—25], and the
quantization procedure has been outlined by Milonni [15],
by Power and Thirunamachandran [16], and by Glauber
and Lewenstein [24]. The quantization of evanescent field

in a half-space filled with a homogenous dielectric has
been carried out by Carniglia and Mandel, and by others

[25].
To analyze electrodynamic level shifts and the natural

width of an excited atomic state between parallel mir-

rors, Barton [17]has presented one solution to the normal
modes satisfying the boundary conditions at conducting
surfaces. He used the plane waves in two other directions.
Using these modes, Philpott [18] has obtained the emis-

sion rate for a molecule with different orientations be-
tween two mirrors, which reduces to the result of Barton
after the average is taken. The effect of the half-infinite
dielectric was studied by Arnoldus and George [19] us-

ing the plane wave including the Fresnel reHection coeffi-
cient. Recently, Loudon and his co-workers [20] discussed
spontaneous emission in the vicinity of a dielectric sur-

face and in a dielectric slab in terms of complete spatial
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modes [25]. Moreover, Cetto and Pena [21] have shown

that stochastic electrodynamics can also give a satisfac-
tory account of these effects. By introducing the random
zero-point Geld and by using mode functions similar to
those used by Barton, they arrived at a similar result.

However, unfortunately, the @ED quantization proce-
dure for free space is not applicable to electromagnetic
fields in cavities which are affected by boundary condi-
tions. In the case of cavity electrodynamics, we have to
obtain Grst independent mode functions consistent with
Maxwell's equations and boundary conditions. As in the
case of free electromagnetic waves, there are two indepen-
dent mode functions corresponding to each wave number.
We then apply the quantization procedure on these mode
functions. This procedure heavily depends on the ge-
ometry of the cavity. Thus the quantization procedures
might appear quite different depending on the shape of
the cavity. However, they are based on the same physical
principle.

In this paper, we carry out the quantization and the
calculation of the emission rate for three different forms
of cavities. First, we construct, using an orthogonal ma-
trix, the normal modes satisfying various boundary con-
ditions. The 6rst cavity we consider in this paper corre-
sponds to the cavity considered earlier by Barton. The
other two cavities have not yet been studied. Second, we
derive the multipolar interaction between an atom and
the fields in cavities by a unitary transformation. From
this, it is possible to derive the dipole interaction. It is
possible to extract the transverse part of a physical quan-
tity by making use of the normal modes, which plays an
important role in the multipolar expansion. Third, the
Geld-theoretic methods developed as above are applied
to spontaneous emission by an atom. By using the 6rst
cavity, we will reproduce some of the results which have
been obtained earlier by several authors [16,18—21].

In addition, we consider in this paper the effect of ad-
ditional mirrors on the emission. In the Grst case, the
cavity is closed only along one direction. We can de6-
nitely consider the case where the cavity is closed along
two different directions as well as all three directions.
In order to accommodate all three cases, we develop a
quantization procedure with three-dimensional boundary
conditions. This quantization procedure allows us to cal-
culate the emission rates with respective boundary con-
ditions. Indeed, these calculated rates can be compared
with experimentally observed values.

In Sec. II we obtain the normal modes in a systematic
way and carry out quantization of fields for three differ-
ent cavities. The multipolar expansion of the interaction
between an atom and the 6elds is derived in Sec. III. The
spontaneous emission by an atom is treated in Sec. IV.
Section V is devoted to concluding remarks.

II. QUANTIZATION OF FIELDS IN CAVITIES

Let us first consider Maxwell's equations for the elec-
tric field E and the magnetic field B in free space, which
are given by

divB = 0, curlE+ —B = 0,

divE = 0, curlB —E'ppp —E = 0,t (2.1)

where ep and pp are, respectively, the electric permit-
tivity and magnetic permeability for free space (eopo ——

1/c2). It follows from Eq. (2.1) that

8' l
i
E —sppp

i
E = 0,

( 8')E —sopp iB=O,
Bt2 )

(2.2)

where 4 is the Laplacian operator. We also have, &om
Eq. (2.1),

8 8
8 8 8 8

8 8
T E~

8 8
DTB = —sppp E, — B„

ByBt BXBz

8 8
DT By happ, o E, — B„ (2.3)

where ET ——E —82/Bz2 (see, for example, Chap. 12 of
[26]). Assuming that

82
E; ocE;,

Bt~

82
E;ocE;,

Bz
(2.4)

and the similar equations for B, (i = z, y, z), we then get

t' 8' 8' l
EYE; =

i
popo —

i
E; oc E;,8")

KTB; =
i ~opp — iBocB;

Bt2 Bz2 j (2.5)

(i = x, y). Therefore, by Eq. (2.3), the x and y com-
ponents of the fields are described in terms of their z
components; it is sufficient to determine E, and B, us-

ing Eq. (2.1) with boundary conditions.

A. Case 1

The cavity we treat 6rst is enclosed by rectangular
walls having sides Lz, L2, and L3 in the x, y, and z di-
rections, respectively, i.e., 0 ( x & Lq, 0 ( y ( L2, and
0 ( z ( L3. The walls in the z direction are assumed
to be perfectly conducting and the tangential component
of the electric field E~t~„and the normal component of
the magnetic field B~„, must accordingly vanish at the
cavity boundaries in this direction. To remove the ef-
fect of the walls in the x and y directions, we assume
Lq, L2 )) L3 and take the periodic boundary condi-
tions in these directions; finally we must take the limit
Lg, L2 m oo.

Set E, X(2:)Y(y)Z(z) and B, X(z)Y(y)Z(z) as
their spacial components. Equation (2.3) and the bound-
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ary condition in the z direction give E = Ey ——B, = G

at z = 0, ls, which leads to dZ/dz~, p I,, ——Z~, p I,, = 0.
The periodic boundary conditions in the x and y direc-
tions determine the other functions X, Y, X, and Y. We
thus have

at =) O, bt;, t x - (e)gtO (2.15)

with kg = ~kg~(sinO22 costi, sinOg sin/2, cosOg). Using the
new functions (operators) defined by

Z(z) = coskg z, Z(z) = sinks z

X(x),X(x) = e*"'-*, Y'(y), Y'(y) = e'"'~",

where

k =(k. , k„,k, )=
~

where

(2.8)

(e)
ue~ = g e;0, &e,'

(2 6) the electric field becomes

LieE = z, ae~ue~ —ae~ue
2E'p

e~

(2.16)

(2.17)

with Eg, Z2 —— 0, +1,+2, . . . and E3 ——0, 1, 2, . . .. By
Eq. (2.3), we can obtain the components of the fields:

E,Ey, B, e' ' e'"'~y sin ke z,

&~) &y, Ez e'k' *e' '~" cos ke z. (2.9)

&e,* = &e,y = e'k'* e'k' "i sinke z,

Let us define the normal modes to expand the electric
Geld: d2

LQe~ + keue~ = 0, ae~ + (de ae~ = 0.
dt2

(2.18)

Note that uE = u& , where E. = ( Ei, —E—2, Es) if E =
(Ei, Ez, Es); this follows from the fact that the orthogo-

nal matrix O~t~ is derived from O~ l by changing Pt to
Pg + ir. It should also be noted that the sum over cr in

Eq. (2.16) denotes 0 = 1, 2 because the transversality
condition (2.13) gives ass ——0. Substituting Eq. (2.16)
into the wave equation (2.2), we then have, for each Eo, .

ik x ik
%Le ~ = —e * e y cos lee, z, (2.10)

Since O(e) is an orthogonal matrix, it follows &om
Eqs. (2.10) and (2.11) that the new modes (2.17) have

the orthonormal property
where V is the volume of the cavity (V = I,iL,21,s) and
E = (E„E„E.). When Es = 0, the mode ut, is changed
to f dv ue ue ——bee b

C

&e,~ e, =o = ikE z ikEy (2.11) dv ue~ ' ue&~& = l$ee16~~
C

(2.19)

Then the above normal modes (2.10) and (2.11) are or-
thonormal. The electric Geld can be expanded as follows:

where J' dv = I ., dxdydz They also. satisfy

dlv lie~ = 0) (2.20)

E(r, t) = i ) e, [b t;(t) ug, (r) —b&,.(t) &u;(r)],
e,i

2E'p because g, kt, O,. = ~kt]b~s (o = 1, 2), and satisfy

(2.12) ueo~tan = 02 Curl u22o
~
norm —0 (2.21)

where ~2 = c]kr) and e, is the unit vector in the ith
direction (i = x, y, or z). The coefficient gku2/2E'p is

introduced for normalization purposes.
The transversality condition for the coefBcient func-

tions (operators in quantum mechanics) bg, and b&~,

ke (be, e + be,„e„+bt, ,e, )

= k2 . (b& e +b& e„+b& e, ) = 0 (2.13)

on the walls in the z direction. It should be noted that
we can use only the normal modes ue to obtain creation
and annihilation operators as expansion coefBcients. The
old modes ue i are merely means to obtain the real ones

ue~.
Taking into account Eqs. (2.1), (2.2), and (2.16), we

can derive the magnetic fields expanded in terms of the
new modes:

&(e) f cos O2r cos gg
—S1il Pg

E sinOg cosPg

cos Og sin Pg —sin Og )
cos Pg 0, (2.14)

sinO2 sining cosOg

is derived &om divE = 0 and the relations
Bue, /Bx, Bur, „/By, BuI, /Bz oc ug . It is convenient to
define a unit vector in the direction ke as ee3 and unit
vectors eg (cr = 1, 2) being perpendicular to cps, for ex-

ample, we take eg = g,. O, e, (cr = 1, 2, 3;i = x, y, z),(e)

where 0( ) is an orthogonal matrix

n = ) cr ccrlur +cr ccrlrrr' ) . (2.22)
28ph)e

In Eq. (2.22) we have used the relation da2 /dt
ia2garo [see Eq. (2.18)], wh—ich makes ago an annihilation

operator. If we use another possibility day /dt = ipiraz

then ae becomes a creation operator. We can also obtain
the expression (2.22) for the magnetic field directly from

Eq. (2.9) using dbms, /dt = imgbg;. It is easy to see tha—t
the fields (2.16) and (2.22) indeed satisfy the boundary
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conditions. By Eq. (2.22), we get the vector potential

A = ) (agoug + aJ u&
~

—grad f, (2.23)

where f is a function. It follows from Eqs. (2.16) and
(2.23) that E = —BA/Bt —grad (Bf/Bt), so that we
have grad P = grad (B f /Bt), where P is a scalar potential.
Throughout this paper, we shall use the Coulomb gauge
by ignoring the second term of Eq. (2.23).

Using the equality

vr n = e'"'* i sin kg y sin kr z,
V V

vg „= e*"' coskg y sinks, z,
7 V

vg, = e'"' sinks y coskg, z.
V y

In the case of E2 or Z3 is zero, we have to change vg „and
vg, to

d8 curl Ilgwu
~ cllrl llr~~l = kg d'Vllgo llg~o ~, (2.24)~ ~

~

C C

~&,slrr=p =

vr,.Je.=p =

e sin kg z)

e'&-* sin k~„y, (2.30)
and Eqs. (2.16) and (2.22), the electromagnetic Hamilto-
nian is derived as follows:

1(t tII~ = ) Rue
~
ar~as + ar aro

2

respectively.
As in Eq. (2.12), the electric field can be expanded in

terms of the normal modes, and they can be written as

ft I)= ).~r
( og neer +

2)
(2.25) E =i) e; ( be,;vr; —bq,.vq,. ~. (2.31)

where we have introduced the canonical quantization for
ag and a& '.t .

[Gr~) Ggt g] —6gr&8o~& ~
t (2.26)

From Eqs. (2.25) and (2.26), we get ag (t)
ar (0) exp( —i(ugt).

B. Case 2

E e' '* sj.nkvd„y sinks. z,

Next, we consider the second cavity, which is also en-
closed by rectangular walls having sides Ll, L2, and Ls
in the z, y, and z directions, respectively: 0 & x & L~,
0 & y & L2, and 0 & z & L3. We assume that the walls
in the y and z directions are perfectly conducting, while
the periodic boundary condition will be taken in the z
direction.

As in the first case, the boundary condition in the
y direction gives Y~„pr„= dY/dy~—„—pI„= 0, while
the condition in the z direction gives dZ/dz~, —p L„
Z~ —p L, = 0. Thus, by Eq. (2.3), the electric fields sat-
isfying the boundaries can be derived as follows:

Equations divE = 0 and Bvr, ,/Bz, Bvg,„/By, Bvg, /Bz oc

vg lead to the transversality condition given by
Eq. (2.13). Using the orthogonal matrix (2.14) and new
functions (operators) (2.15), the electric field (2.31) be-
comes

L)g (E = l ) ~
ag Vg —a& V~

2ep
Ecr

(2.32)

where

(e)
vg~ ——~ e,o,- ng, . (2.33)

f dV Vr~ Vr~o~ = brriboo~,
C

~
~dv vga vgr&s = EobIpg&&t.

C

(2.34)

Note here that vE ——e v&, where E = (—Ll, 12,8s) and
1 because Oi~l is obtained from O&r& by

changing Hr to vr —eg. The new modes vr and ag satisfy
the same equations as (2.18). Since agq ——0 as in the case
1, the sum over 0' in Eq. (2.32) is 0 = 1,2.

The new modes vr satisfy the orthonormality condi-
tion

E& e' ' *coskg y sinks z, Since g; kr,.fO; = ~kg~h s ——0, we have the condition(e)

dlv vg~ = 0. (2.35)

where

E e' ' sinks y coskg. z,
Purthermore, it is easy to check that the modes vg~ sat-
isfy the boundary conditions on the walls in the y and z
directions:

(2.28)
V& ~tan curl v Err

~
norm (2.36)

with Eg ——0, +1,+2, . . . and Z2, S3 ——0, 1,2, . . .. Let us
introduce the normal modes

In a way similar to case 1, the magnetic field and the
vector potential can be obtained as follows:
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a=) ay~curl vg~ + a~ curl v~
02E' 40

fa
we get the trasversality condition corresponding to
Eq. (2.13). Thus using O(el and ae, which are given
by Eqs. (2.14) and (2.15), respectively, we arrive at

A= ae ve + a~ v~
2G'04)g

(2.37)
E = e) (eee

—
eee ) eee

Ecr
2E'0

(2.45)

Using Eq. (2.34) and the equality such as Eq. (2.24) for

vg, we 6nd the Hamiltonian where

HII = ) hcue
( ae ae

2)
(2.38)

(&)4g ——g e;0,. mg „
which satis6es the orthonormality condition

(2.46)

C. Case 3

Finally, we consider a rectangular cavity with perfectly
conducting walls on all three sides. Using Eq. (2.3)
and the boundary conditions, we get X] —p L,
dX/d*l =o,L, = o &iy=o, L d&/dy]y=O, L, ——0, and
dZ/dz] —p L = Z] —p L = 0. The electric field satis-
fying the boundary conditions can therefore be written
as

dv we~ we ~ = bee h~~'~
~

C

We also get

dlv %vs~ = 0

and at all boundaries

(2.47)

(2.48)

weir]tan curl we~]norm —0. (2.49)
E coskg z sinks y sinks z,

Ey sinks z coskg y sinks z,

E, sinks z sinks y coskg z, (2.39)

The magnetic field, the vector potential, and the Hamil-
tonian are determined as in the erst and second cases.

where

(2.40)

III. MULTIPOLAR INTERACTIONS BETWEEN
AN ATOM AND FIELDS

with /, = 0, 1, 2, . . . (i = x, y, z). We set the normal
modes as

coskp x sinks y sinks z,

sinks. z cos kp y sin kp, z,

We now proceed to consider the interaction of the elec-
tromagnetic 6elds with a neutral atom in the cavities con-
sidered in the preceding section. The atom has a massive
nucleus essentially stationary at a position R and Z, elec-
trons at r (a = 1, 2, . . . , Z, ). The charge and the mass
of each electron are —e and m, respectively.

The total Hamiltonian H in the Coulomb gauge is

given by

and

toe, *]e,=o =

toe, ti]e, =o =

~e,~ z, =p =

2
sin ke y sin ke z,

V be

2
slI1 ke X S111ke Z,

V
2

sin ke x sin ke y.
V

sinks z sinks y coskg z (2.41)

(2.42)

H = ) [p + eA(r )] + — dv p(r)P(r)
1 2

a=1
(+- dv

~

eoE'+ —&' ~,
)

(3 1)

where p is the momentum of the ath electron, p(r) the
charge density of the atom, and P(r) the scalar potential.
The Hamiltonian (3.1) is converted to a more convenient
form by a unitary transformation [16,27,28]. Define a
unitary operator

The electric Geld is expanded in terms of mg,. as

R = i ) ee; (be; —bee, ) eeee, ;.
e,. 28'0

Taking into account

(2.43)

U = exp — dv P(r) . A(r)
h

(3.2)

where P is the polarization associated with the atomic
charges:

t9ZUg ~ OBJET y OtUg ~
cx sin kg x sin kg y sin kg z,

1

P(r) = —e ) (r —R) dA b(r —R —A(r —R)).
0

(2.44) (3.3)
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Note that

divP(r) = e) b(r —r ) —eZ b(r —R) = —p(r). (3.4)

case 2, we get

f dv E(r) P(r) = dv E(r) .P(r).
C C

(s.i2)

The transformation of the Grst term of the Hamiltonian
(3.1) is derived in a usual way (see, for example, [27]).
Equations (3.2) and (3.3) lead to

This equality plays an important role in obtaining a
multipolar-interaction Hamiltonian. With the help of
Eqs. (3.10) and (3.12), we can transform the third term
with respect to the electric Geld in the Hamiltonian to

1

x dA (r —R) A(R+ A(r —R)), (3.5)
p

where V is the gradient operator in coordinates r . The
vector potential can be expressed as the integral

1

A(r ) = dA [1+(r —R) V ] A(R+ A(r —R)),
0

(3.6)

which is verified by the Taylor expansion of A(R+ A(r
R)). Using Eqs. (3.5) and (3.6) we arrive at

Ut[p + eA(r )]U
1

= p —e dA(r —R) x AB(R+ A(r —R)),
p

(3.7)

where we have used V x A(R+ A(r —R)) = AB(R+
A(r —R)).

Since the second term of Eq. (3.1) is unaffected by the
transformation, let us turn to the third term. First note
that

f dv UtE (r)U = dv E (r) — dv E(r) P(r)
C C C

dv P'(r).
4

(s.is)

) .p + — dv~(r)(!t(r),
2m 2.
1 ( 1

H~ = — dv
~

s()E (r)+ —B (r) ~,» )
Ha = — dv E(r) P(r),

C

1) dA (p [(r —R)
a

x AB(R+ A(r —R))] + H.c.),
2 1

H~ = ) dA(r —R)
2m p

KM =—

The complete transformed Hamiltonian obtained kom
Eq. (3.1) with the help of Eqs. (3.7) and (3.13) is

U HU = Hg + HIi + H@ + HM + HN + Hg, (3.14)

where

E(r), dv'A(r') P(r') = —P(r),
C E, p

where P is the transverse part of P defined by

(3 8)
x AB(R+ A(r —R))

- 2

p(r) = —) ur (r) f dv'uc (r') p(r') + c.c. (3.9)
eu

for case 1 in Sec. II. The modes ug are changed to vg
in case 2, while in case 3 they are changed to wg ——w& .
Note that divP = 0. By Eq. (3.8),

UtE(r)U = E(r) ——P(r).
6'p

Using the following equalities:

(3.10)

dv E(r) . ug~(r)
C

dv E(r) . vg~(r) =
C

dv E(r) wg~(r)
C

= i a& —a&

i e a& —a&

= z ay~ —ag

for case 1,

for case 2,

for case 3,

(3.11)

where = (—li, E2, Es) in case 1 and —I = (—Ei, E2, ls) in

HF = dv P (r).
28'p

(s.i5)

x(r —R) . E(r)~, R, (s.16)

where V is the gradient operator applicable to r. Sim-
ilarly, the Hamiltonians HM and H~ are, respectively,
expanded as follows:

The Hamiltonian H~ is for the isolated atom; H~ is the
electromagnetic (radiation-field) Hamiltonian discussed
for the three cases in Sec. II. The interaction of the atom
with the Gelds is given by H@ + HM + HN, H@ and
HM correspond to the electric and magnetic multipolar
interactions, respectively, while HN is nonlinear. The
last term H~ of the transformed Hamiltonian is only a
function of the atomic variables.

From the definition (3.3) of P, the Hamiltonian HE
is expressed in terms of the multipole moments of the
atomic charge distribution:

+o

Hg = e ) ),[(r —R) . V]"
; (n+ I)!
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x[(r —R) x p ] B(r) + H.c.}l, R,
OO

=0
- 2

x[(..—R) V]"B(r)]l (3.i7)

The first term of Eq. (3.16), which is the largest inter-
action, is called the electric dipole interaction and takes
the form

U'(t)("IH ls)U (t) =')
err

—ae e' ' ue (R) e(solDls).

ae e ''ue (R)
2co

(4.5)

From

cause the state lsp) is an excited one (E„)E,). It is
sufficient to consider pR(0) = l(0})((0}las the denssity
matrix for fields in the case of spontaneous emission.

Let us first consider the cavity for the first case (see
Sec. II A). Using the Hamiltonian HR of Eq. (2.25), we

find

H@g) = eD E(R), (3.is) Tr pR(0)ae ae, , ——bee b~~,t (4.6)

where —eD = —e P (r —R) is the total electric dipole
moment of the atom.

In the following section, we will obtain the spontaneous
emission rate per second using the electric dipole inter-
action H@D.

IV. SPONTANEOUS EMISSION

UtHU =H. +H. +H„ (4.i)

where H~ is the Hamiltonian for the bee atom, HR for
the fields in the absence of the atom, and the interaction
HI ——H@D is in the electric dipole approximation, which
are given by Eqs. (3.15) and (3.18), respectively. We
ignore the other terms in Eq. (3.15).

The free atom and the fields have the energy eigen-
states ls) and lne~, ne ~, . . .)—:l(ne~}), respectively, i.e.,

H&ls) = E~ls) HR l(ne~}) = ).irene~ l(ne~}) ~

In this section, we consider transition rates of the atom
in the cavities (cases 1—3) discussed in Sec. II, using, for
simplicity, the dipole approximation. The Hamiltonian
for the atom and the fields is

the transition rate m becomes

8 7C ) lue (R) (solDls)l pieg(&ie —~o t) (4.7)
cob

where P ' denotes that there is a possibility that we mul-

tiply it by 1/2 when I.; = 0, which comes from Eq. (2.11),
and

sin zt
(4.8)

e l(splDls) l' 2m

eV k2

x(ue cos'(ke, Z) b((ue —urp), (4.9)

where Z is the z component of the position R of the
atom: R = (X,Y, Z). In the above expression, we have

used the equality

To show various results explicitly, we take t m oo and
thus g(x, t) m b(z).

Let us assume that the dipole moment is along the z
direction. Then the transition rate m = m1, becomes

(4.2)

2 k2) o.,o., =i-o„o„=i—„,*.(e) (e) (e)

can=1

(4.10)

where the states ls) (](ne }))are assumed to be coinplete
orthonormal for describing the atom (fields).

At t = 0, the atom is assumed to be in a state lsp) and
the density matrix of the fields to be pee(0). According to
perturbation theory, the probabilty per second of finding
the atom in a state ls) at time t is given by [see Chap. 1,
Eq. (1.21.27a), of Ref. [23]]

We shall now see whether the in8uence of the cav-

ity walls diappears in the the x and y directions when
the lengths Li and L2 become infinity. We are inter-
ested in whether the problem reduces to the case of peri-
odic boundary condition (with infinite cavity size) in this
limit.

Taking into account

l
m = —— dtidt2e* ' ' ' Tr pee(0)U (t2)

d& o o
R

x (so [He ls) U~(t2) Uee(ti) (slHe Iso) U~(ti), (4 3)

where

lim ) = dk dk„
4~2

1
dMe (de,

27t C
(4.11)

we arrive ati 3 1
Uee(t) = exp

l
Hect l, (up ———(—E., —E.) (4.4)— .

) (4.i2)
Note that ~0 is positive in spontaneous emissions, be- QJp
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where mo is the transition. rate in &ee space

3~~oc3 (4.13)

and (s —— (uoLs/wc .Note that we must multiply
Eq. (4.12) by 1/2 when Es ——0 [see Eq. (2.11)].

If fs & 1, then the sum over / in Eq. (4.12) is the only
83 = 0 term; thus we get

1 1—) ~ — dk. =— d4)g
Lq 2' ~ xc,~g2 +g2 )&/2

Cy

~e
X

~2 —c2(k2 + k2 )

(4.20)

we 6nd

Qlp
(4.i4)

12'gc i (1 —c kg /lad's )
tcckrIe /wr cr(ke d ke )

where 1/2 came from Eq. (2.11). The result (4.14) shows
that the transition rate mq approaches infnity as (s m 0,
i.e., enhanced spontaneous emission.

Here we take L3 —+ oo. The sum over 83 changes to
the integral with respect to k, :

x sin (kg„Y) cos (kg Z), (4.21)

where le aad Ee have ta eatiel'y
ki kr + kr ( tcc/c, i.e.,

] ] ~ /t'c

) 'm — dk, .
0(/3 ((3

(4.i5)
—+ —& l,

(s
(4.22)

Thus Eq. (4.12) leads to the well-known result (see, for
example, Ref. [18])

tUy cos G sin G' =1 —3
mo ( a2 as (4.16)

where a, = 2(ueZ/c. This result shows the influence of
the wall (mirror). As is expected, mq, /use approaches 1
as the distance between the atom and the wall becomes
larger. On the other hand, if the atom approaches the
wall, then to& /ufo ~ 2.

Next consider the case where the dipole moment is
along the x direction. Similarly, the tarnsition rate m~
is given by

with (; = uroL;/vrc (i = 1,2). Note that we multiply
Eq. (4.21) by 1/2 when Es ——0.

Here let us assume that (s & 1; then only the Es ——0
term is allowed in the sum over Es in Eq. (4.21). Thus
Eq. (4.21) becomes

~2z
8)p

6m c2 sin (kg Y)
&OL2Ls ~2 c2k2Q)0 —c

(4.23)

de sin
~

—a„sin 8
~

Q&p 7r(s 0 (2 j

To obtain the result corresponding to Eq. (4.14), take
L2 -+ oo. Then Eq. (4.23) changes into

&0

3 . & P) . , «S.Zl/1+ —
2 /sin (4.i7) (4.24)

If Q & 1, then Es ——0 and thus we have urq ——0; the
spontaneous emission is forbidden. Taking L3 m oo, we
recover, after the integration, the following (see, for ex-
ample, [18]):

Q)0

3 (sina, cosa,=1—— +
2 ( a, a,

sin a, &

a3 )
(4.18)

This shows that uI] /u)p -+ 1 (a, m oo) and Sf'&/u)p
a,'/5 (a, m 0).

Let us turn to the cavity of case 2 and assume that the
dipole moment has only the z component. By Eqs. (2.29)
and (2.30), the transition rate (4.9) changes to

4~ -(
x ug sin (kg„Y) cos (kr Z) b(tug —kdo). (4.19)

When Lq ~ oo, taking into account the change &om sum
to integral

~2z
QJp

(a„'l
(4.25)

as a„approaches zero, where we have used Jo(a„) = 1—
a /4+ a4/64 —.. ..

u JJ

The dipole moment is now assumed in the x direction.
Then, by Eq. (4.3), the transition rate m2 is given by

2
e2](se]D]s)] 47r ., ~ kg ~

hc V k2&)
xugg sin (kg Y) sin (kg Z) b(tug —kkio). (4.26)

When L~ ~ oo, then the above transition rate becomes

where Jo is the zeroth Bessel function and a„= 2uo Y/c.
Equation (4.24) indicates a side-mirror efFect explicitly,
because it depends on the distance Y between the atom
and the side mirror lying at the y = 0 plane. As a„
becomes very large, Eq. (4.24) approaches 3/2(s, which
is the same as Eq. (4.14). On the other hand, it becomes



1838 K. KAKAZU AND Y. S. KIM

QJp

127rc )cdpL2L3 ~2e,e. ~p

c2(k~2 + k2 )

(vp2 —c2(k~2 + k~2 )

x sin (kr„Y) sin (kr Z), (4.27)

~3z
QJp

24vrc )&pL2L3 e,e,

~ 2 1
x sin

c

(1 —ck /e)
(v2 —c2(k2 + k2 )

l2 —c2(k2 + k2 )X ~

x sin (kr Y) cos (kg Z), (4.29)

where the condition for /2 and Es is given by Eq. (4.22).
We set here (s & 1 in order to get a side-mirror effect

explicitly. Since E3 ——0, taking into account an additional
factor 1/2, we have

QJ3z 12XC

't8p 4)p L2L3

sin'( (vp' —c'k,' X/c) sin'(kg Y)

1(e2($& (d —C kp e„

(4.30)

If we take L2 -+ oo, then Eq. (4.30) becomes

~3z
Q)p

d8 sin
~

—a„sin 0
~

sin
~&. p &2" )

3
1 —Jo(o, ) —Jp(a&) + Jp (3

/

—a coso
i)

".+.*„),
(4.31)

where a = 2(vpX/c. This result depends on the co-
ordinates X and Y of the atom, which are distances
between the atom and the side mirrors. If a ~ oo
(X ~ oo), then Eq. (4.31) becomes that of case 2 given
by Eq. (4.24). As is also expected, Eq. (4.31) approaches
Eq. (4.14) if a, a„m oo; the side-mirror effect disap-
pears in this case. On the other hand, if a « 1 and
a„« 1, then we find

t'a'. a„' l
wp 2(s 32

(4.32)

where E2 and Es are restricted by the condition (4.22).
The transition is thus prohibited if (2 & 1 or (s & 1 is
satisfied.

Finally let us proceed with the case-3 cavity, which
is more general than cases 1 and 2. Assume that the
dipole moment is pointing along the z direction. Then,
by Eq. (4.3), the transition rate u)s, is given by

e'](spiD]s)i' Sx

x sin (kr X) sin (kr Y) cos (kg, Z) 8((vg —(vp).

(4.28)

After taking Li —+ oo and integrating with respect to
k„we obtain

V. CONCLUDING REMARKS

ay = 3.832, 7.016; (5.2)

the transition rate iv2, /u)p has its maximum at a„
3.832 and its (relative) minimum at a„= 7.016. That is,
the side-mirror effect becomes dominant at these points.
The rate u)2, /zvp oscillates and approaches u)i, /u)p as a„
becomes very large.

Setting wp ——10 Hz, we have Y 5.7 x 10 m as the
distance between the atom and the side mirror. It follows

Prom the theoretical point of view, we have developed a
quantization procedure with three-dimensional boundary
conditions. In this paper, we have applied this procedure
to three difFerent boundary conditions in the rectangular
coordinate system. We hope to discuss the same problem
in the cylindrical coordinate system in the future using
the same quantization procedure.

We have considered three kinds of cavities in Sec. II.
The first one is enclosed by perfect conducting walls in
the z direction, while the second is enclosed by the same
kind of walls in the y and z directions. The third cav-
ity we have treated is completely enclosed by perfectly
conducting walls. In the first case, our result is consis-
tent with those existing in the literature [16—21]. We are
presenting new results in the second and third cases.

In each case, we have introduced explicitly the normal
modes u~~, vr~, and w~~ defined by Eqs. (2.17), (2.33),
and (2.46), respectively. Using them, we have carried out
canonical quantization of the fields in the cavities. The
normal modes have played important roles Throughout
the process of quantization.

The multipolar expansion of the interaction between
an atom and the fields in the cavities has been obtained
in Sec. III. The normal modes play also an important role
in this case, on the basis of which the transverse part of
the polarization P was introduced. With the help of the
transverse polarization, it is possible to carry out the
multipolar expansion in a succinct manner.

The spontaneous emission by an atom in the cavities
has been studied using the field-theoretic methods devel-
oped in Sec. II. In particular, we have obtained the tran-
sition rates per second in three types of cavities when

(3 ——wpLs/vrc & 1 (Li, L2 ~ oo). The resuts are given
by Eqs. (4.14), (4.24), and (4.31); they show a very in-
teresting side-mirror effect. That is, the result (4.24) or
(4.31) depends on the coordinate X or Y of the atom,
which are the distances between the atom and the side
mirrors (walls). Equation (4.31) approaches Eqs. (4.24)
and (4.14) as X or Y becomes very large. On the con-
trary, if X or Y is very small, the X or Y dependence of
the transition rate becomes dominant as has been shown
in Eq. (4.32).

I,et us finally consider Eq. (4.24) more explicitly. The
first few roots of Jp(a&) = 0 are found to be [29]

ay ——2.405, 5.520, 8.654;

the transition rate w2, /wp becomes tvi, /tvp ——3/2(s
((3 & 1), i.e. , the side-mirror effect disappears at these
points. On the other hand, the first two roots of
d Jp/da& = 0 are given by [29]
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from (3 ( 1 that Lq & m c/uo 9.4 x 10 m. Thus we

may observe experimentally the oscillation phenomenon
of the transition rate.
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