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Photon amplification in a two-photon lossless micromaser
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We investigate the interaction of atoms through two-photon resonant transitions, with quantized cavi-

ty radiation, in the framework of a lossless micromaser theory. Taking advantage of the fact that the
atomic inversion is quasiregular in time in this model, with quite precise revivals, we find a very strong
amplification of the average photon number. At the two-photon revival time, the atom leaves the cavity
in an almost pure state. This leads to an essentially noise-free process that results in a shift of two pho-
tons of the initial photon distribution each time an atom passes through the cavity, while the width of
the photon distribution remains constant. This leads to strongly sub-Poissonian field statistics.

PACS number(s): 42.50.Dv, 42.52.+x

I. INTRODUCTION

There has been a great deal of interest in the past few
years in the generation of sub-Poissonian light fields and
especially in producing the limiting case of a pure num-

ber state. There are several schemes that have been pro-
posed to produce nuinber states [1—5], by using micro-
masers in which a quantized field in a high-Q cavity is
successively pumped by a stream of Rydberg atoms ar-
ranged such that only one atom at most is present at any
instant in the cavity. Experiments on one-photon micro-
masers have demonstrated the importance of describing
the cavity field in a fully-quantum-mechanical way: an
observation of the revival (see Rempe, Walther, and
Klein [1]) of Rabi oscillations relates to the discreteness
of the cavity field and an observation of sub-Poissonian
statistics [1] demonstrates how atom-field dynamics can
reduce the quantum noise of the field below the
coherent-field values.

The theory of the two-photon micromaser has been
developed in some detail [6] and experiments have been
carried out [3]. In this micromaser context, Garraway
et al. [4] have proposed a simple scheme that allows the
generation and detection of nonclassical states of light, by
conditional measurements. Their method is based on the
condition that the atom is measured in the excited state
after interaction with the cavity field. This results in an
overlap of peaks in the phase space of the state of the
field conditioned by the atomic measurement, whose in-

terference results in the production of Fock states. In the
present paper we study the interaction of atoms and radi-
ation through two-photon resonant transitions in a loss-
less cavity. We consider a special case of Bight time, (i.e.,
of atom-field interaction time) and show that number
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states can be generated (in fact, an almost noiseless
amplification of the photon statistics may be achieved).
This special time we consider is the two-photon revival
time [7], ts =m. li, , for which atoms exit the cavity so that
the field and atoins are left almost in a pure state (see Fig.
1).

The paper is organized as follows: In Sec. II we investi-

gate the dynamics of the two-photon Jaynes-Cummings
model which underpins idealizations of micromasers,
paying particular attention to the atomic inversion (for
which, and for some fields, we find very accurate approxi-
mate expressions) and the photon distribution (PD). In
Sec. III we generalize the results of Sec. II, allowing
atoms to leave and enter the cavity (one at a time),
finding the expression for the field density matrix after k
atoms have passed through it. This enables us to corn-

pute several variables of interest. We then investigate
photon distributions for various initial field statistics,
which allow us to compute the sub-Poissonian factor for
the fields, as well as the average photon number in the
cavity. Finally, Sec. IV is devoted to conclusions.

II. TWO-PHOTON DYNAMICS

In this section we study the atomic behavior when light
interacts with matter in a two-photon resonant transition.
We consider the two-photon Hamiltonian (we consider
units such that 6= 1)

H=(co 0y+d a)cr3+co8 &+A,[o+2 +(a ) cr ],
where k is the coupling constant; & and & are the annihi-
lation and creation operators for the field mode, respec-
tively; and cr+ = ~e ) (g ~

and o =
~g ) ( e ~, where

~
e ) ( ~g ) ) means excited (ground) atomic state, are the

Pauli spin-Hip operators for the two-photon transitions.
We consider the intermediate state to be so far from reso-
nance that it can be adiabatically eliminated to give an
effective two-photon coupling of the above form as well

as a Stark shift, leading to an intensity-dependent transi-
tion frequency [8]. The Stark-shift coefficient is denoted
as p, the unperturbed atomic frequency by ~o, and the
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where

[ la & + I
—a & ]ev (2.9)

1.0

0.5

0.0—

X=2+2exp( —2~a~ )

is the normalization constant, the corresponding approxi-
mation of Eq. (2.5) is

W, , =—exp( —
~
a

~ ) [ cos3A, t cos[
~
a

~
sin2A, t ]

Xcosh[ a cos2A, t]

—sin3A. r sin [ ~a ~'sin2gr ]

X sinh[ ~a~ cos2A t ] ] . (2.10)

In Figs. 1(a) and 1(b) we plot the atomic inversion, as a
function of the scaled time (A,t), for the coherent and
even coherent states as initial fields, respectively. Vfe use
both an exact expression (2.5) (solid lines) and approxi-
mate expressions (2.8) and (2.10) (dashed lines). Even for
modest photon numbers (here ~a~ =4), we see very close
agreement between the exact and approximate expres-
sions for the inversion. For the atomic inversion driven
by the even coherent states as an initial field, a new re-
vival at to=re /2=~/2A, appears, as occurs in the usual
Jaynes-Cummings model for one-photon transitions [12].
In Figs. 1(c) and 1(d) we also plot atomic inversions for
two other different fields (with different mean photon
numbers): a thermal state and a squeezed vacuum [13].
We note that for all these four fields the atomic inversion
closely approaches the ground-state value of —1 at tx.
This means that the atom and the field almost decorrelate
at this time [7], with the atom returning to the ground
(pure) state and giving all the energy it carried to the
field. At tz, the Rabi oscillations have revived although
the initial condition is reobtained only at 2t~. This is

simply understood in phase space: the initial coherent-
state quasiprobability bifurcates [14] and recombines at
tz but only at 2' do the components recombine at the
initial value. In a two-photon transition this results in a
sign change which is visible in Fig. 1. The revival
behavior is very sensitive to Stark shifts for one-photon
transition [9], but in our case (two-photon transition) the
approach of W to —1 at t = tR is still prono—unced (see
Fig. 2). In Fig. 2(a) we show the atomic inversion on res-
onance, for a field intensity ~a~ =4, but with a Stark-shift
parameter of —,

' (in units of A, ), which produces a mean de-

tuning of 2. We note an upwards shift of the atomic in-
version from the minima produced when there is no Stark
detuning. However, the atom is still close to the ground
state around t =—t~. We can compensate for this shift by
introducing a detuning that balances the mean detuning
produced by the Stark shift. This is seen in Fig. 2(b),
which shows a partial restoration of the deep minima in
the inversion.

In Sec. III we will investigate how the purity of the
field evolves when atoms are allowed to leave and enter
the cavity in a micromaser. We next calculate the
photon-number distribution at a given time. In order to

0.0 -l
(

-0.5—

—1.0

FIG. 2. Two-photon inversion as a function of time; the atom
is initially in the excited state, and the field in a coherent state
~a~ =4. We have set X= 1. (a} The Stark-shift parameter is
y= —,

' (in units of A. ) and 6=0. (b) The Stark-shift parameter is

and we choose a value of detuning that balances the

effective detuning produced by the Stark-shift parameter, i.e.,

b, =2.

p~(t) =C'„pF(0)C„+S„p~(0)S„.

We then write the photon distribution as

P„(t)=
~
A„'P„(0)+B„P„&(0),

where

(2. 1 1)

(2.12)

(2.13)

and

A, n(n —1)B„= sin[5„ t ] .
Q2

(2.14)

In Sec. III we will generalize Eq. (2.12), to the case when
we have atoms entering and leaving the cavity, succes-
sively with no more than one atom at any time present in
the cavity.

III. MICROMASER GENERALIZATION

In this section we find an expression for the photon dis-
tribution after k atoms have passed through the cavity
and, from this, we compute the average number of pho-
tons in the cavity and the sub-Poissonian factor a (equal
to QM+1, where Q~ is the Mandel Q parameter [15])as
a function of the number of atoms k that have passed
through the cavity. We show that strong sub-Poissonian
fields can be generated, as well as fields with increased
photon number. We then calculate the field density ma-
trix (after k atoms have passed through the cavity) in or-
der to analyze the dynamics in phase space, i.e., by using

do that, we compute the field density matrix
pF(t) = tr z [p(t) ], where tr z means trace over the atomic
basis
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the Q function [14]. In addition, we use the field density
matrix to compute the purity parameter [16]

for a time tl [see Eq. (2.12)]:

p(k)(r ) g 2p(k —i)(t )+g2p(k —i)(r ) (3.1)

(where trF means trace over the field basis). We also in-

vestigate the case of different interaction times.

We can now compute the average number of photons in
the cavity, after k atoms have interacted, as

A. Photon distributions

n'"'(t )= g nP„' '(t ) .
n=0

(3.2)

Equation (2.12) describing the time-dependent photon
distribution holds for any initial photon statistics. We
evaluate it for an interaction time ti, at which the atom
leaves the cavity having modified the field. We employ
this new field as the initial condition for the next atomic
interaction. In other words, we have now an initial field,
with initial statistics given by

P„' '(0}=P„"'(tl}=P„(tl),
to interact with the next atom. Because we are in the in-
teraction picture, the field statistics does not change
while there is no atom in the cavity (remember we are not
considering losses). By repeating the process k times, we
obtain the photon distribution after k atoms (all initially
excited) have passed through the cavity, each interacting
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FIG. 3. (a) Photon distribution P(n) as a function of n after
50 atoms have passed through the cavity; (b) average photon
number versus the number of atoms that have passed through
the cavity; k; and (c) the sub-Poissonian factor, sc vs k. The field
is initially in a coherent state

~ a~ =4; the atoms enter the cavity
in their excited state. Each atom interacts for a time t = t& with
the cavity field. We set y =b =0.

By using Eqs. (3.1) and (3.2), we find the sub-Poissonian
factor sc as

(3.3)

In Fig. 3(a), we plot the PD for an initial coherent
state, ~a~ =4, b, =0, and y=O, after 50 atoms have in-
teracted with the field, with tl =tit =miA, . We note that
the PD has basically the same shape, but has been shifted
by 100 photons, twice the number of two-photon
emitters. Instead of the photon-nutnber distribution be-
ing centered on the initial value of 4, it is centered on
104, but the distribution width remains approximately
the initial one. In Fig. 3(b), we show the average number
of photons, as a function of the number of atoms that
have passed through the cavity. Each atom, because of
the choice of the interaction time (see Fig. 1), leaves two
photons in the cavity (all its energy). We note that for a
large number of photons, this follows analytically from
Eq. (2.12). If we apply the approximation (2.7), which
can also be written [n (n —1)]'~ —=n —

—,', it follows that
for interaction times equal to the revival time
tl = tz =m /A, , Eqs. (2.13) and (2.14) become
(h=y=O) A„-=0 and 8„=—( —1)"+', respectively.
Thus, Eq. (2.12) for the photon distribution becomes

P» ( tit )=P„2(0) .

We note linear amplification of the photon number. This
has previously been noted by Cao Chang-qi and Ding
Xiao-hong [17]. When we take into account both the
constant width and photon amplification, we expect to
see an increasingly sub-Poissonian factor a as the number
of atoms passing through the cavity increases. This is
shown in Fig. 2(c). We can see that strongly sub-
Poissonian fields can be generated and, as we increase k,
a goes slowly to zero as the fractional width approaches
the limiting case of ~=0, the limiting case of a number
state.

In Figs. 4 and 5, we have evaluated the same variables
as in Fig. 3, but for an initial thermal state (n =4) and for
a squeezed vacuum with a squeezing parameter r =

—,', re-
spectively. We note basically the same behavior in the
three figures. However, we can see that the atomic
pumping does not result in a pure shift in the PD, be-
cause we note the existence of small satellites on the left
of the PD's. In latter sections we present analytic results
using an asymptotic expansion which neglects these
effects.

In Figs. 6 and 7 we look at how the effects shown in
Figs. 3-5 are changed when we consider a nonzero Stark
parameter. Figure 6 shows the same variables as in Fig. 3
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FIG. 4. Same as Fig. 3, but the initial field is described by a
thermal distribution, with n =4.

FIG. 6. Same as Fig. 3, but g =
—,
' (in units of k j.
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FIG. 5. Same as Fig. 3, but the initial field is described by a
squeezed vacuum, with r = —'.
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FIG. 7. Same as Fig. 6, but we choose a detuning that bal-
ances the effective detuning produced by the Stark-shift parame-
ter, i.e., 6=2 (in units of k).
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(at r =tz ), but now y= —,
' (in units of A, ) and b, =0. It

shows the same behavior as Fig. 3, but the amplification
is less strong [see Fig. 6(b)] and the shape of the photon
distribution is distorted [see Fig. 6(a)]. In Fig. 7 we ob-
tain the same effects, but now we are balancing the
effective detuning given by the Stark parameter with a
detuning b, =2 (in units of A. ).

So far we have imagined each atom to interact with the
field for an identical and special time tz. This time
choice is crucial and we show that some effects are not
present if each atom interacts for the same time, but
which differs from tIt. In Fig. 8(a), we have chosen
tr=m. /2', , half the revival time b, =y=0, and plot the
PD for an initial coherent state

l
a

l
=4. We still note os-

cillations in the PD, but, even though there is linear
amplification, [see Fig. 8(b)] the width of the distribution
now increases, so that the sub-Poissonian factor [Fig.
8(c)] a is around 1 (the case for a coherent state), almost
as if a linear displacement operator represented the atom-
ic pumping.

B. Total field density matrix

We derive in this subsection the total field density ma-

trix, in order to use it to study the dynamics in phase
space and the purity of the field. From Eq. (2.11), we ob-
tain for the modified field reduced density matrix after
one atom has interacted with the field,

0.10

~0.05-
0

(3.4)

where the A's and 8's are given in Eq. (2.13) and the d's
define the initial field statistics. The corresponding field
reduced density matrix after k atoms have interacted
with the cavity field in succession is given by

Pnm n m n m n m n —2 m —2

(3.5)

From Eq. (3.5) we compute the Husimi quasiprobability

Q function as

(3.6)

In Fig. 9 we plot Q'"'(P) in phase space, with the axes
given by the real and imaginary parts of the complex am-
plitude P=X+iY, for an initial coherent state (lal =4)
after 50 atoms have passed through the cavity. The Q
function consists of a main peak which is centered
around X =—10, Y -=0 and which agrees with the
amplification shown in Fig. 3. It has a shape that resem-
bles a "banana state, " because, as the field is being
amplified and distorted from its initial state to a much
more sub-Poissonian state, the phase-space distribution
evolves from an initial Gaussian by a deformation into an
annular structure more characteristic of a number state.
Of course, it only approaches a number state asymptoti-
cally, as it retains its original number uncertainty.

We use Eq. (3.5) to compute the parity parameter
(=1—Tr~(p~). The field starts in a pure state, so g is
zero, but become entangled with the atomic states so that
the purity parameter is expected in general to increase.
This parameter is plotted in Fig. 10 for A=y=0, where
we note that basically the atom and the field disentangle
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FIG. 8. Same as Fig. 3, but each atom interacts for a time
t = t& /2 with the cavity field.

FIG. 9. Field quasiprobability Q function after 50 atoms
have passed through the cavity, initially in a coherent state with

l
a l

=4. Atoms enter the cavity in their excited states, and the
interaction time t = t~ ~
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make use of the fact that atoms leave the cavity almost in
their pure state in Sec. III C, where we derive an analyti-
cal solution for the problem.

C. Di8'erent interaction times
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after each interaction. Although the purity slowly de-
creases (i.e., g slowly increases) with increasing atomic
number, it remains very small. This process is, for in-

stance, a much purer one than that obtained from the
one-photon Jaynes-Cummings model I16,18] in the mid-

dle of the collapse region where it is known that an
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FIG. 10. Purity parameter g after 50 atoms have passed

through the cavity, initially in a coherent state with
~
a

~

~ =4.
Atoms enter the cavity in their excited states, and the interac-
tion time t = t&.

+B„(tk)P„'"2"(tk, ) . (3.7)

In Fig 11(a).we plot the PD when atoms interact with
the cavity field with a distribution of times picked at ran-
dom from a Gaussian probability, which one might ex-
pect from a velocity-selected atomic beam. The initial
field state is a coherent state ( ~a~ =4 and y=b =0). The
width of the Gaussian distribution of interaction times is

ta /100 and is centered on t„. We note that although the
amplification is not as strong as in the case of constant in-
teraction times, the shape is still preserved. The
amplification is reduced because, as the number of pho-
tons in the cavity increases, there are more Rabi oscilla-
tions in the atomic inversion and, then, for a small devia-
tion of the interaction time, the probability of the atom
exiting the cavity in the ground state decreases, giving
less energy to the field. In Fig. 11(b), we plot the average
number of photons where we have a good amplification,
and in Fig. 11(c),we plot the sub-Poissonian parameter a,
which shows sub-Poissonian photon statistics.

We now study the behavior of the cavity field, when
the time of fiight is different for each atom correspond-
ing, for example, to the case of a beam of atoms with a
distribution of velocities exciting the cavity. From Eq.
(2.11) we get the PD after k atoms have passed through
the cavity, atom "1," interacting for a time t&, atom "2"
for a time t2, etc.

P„'"'(ti) t2i. . . , tk) —A„(tk)P„(tk 1)

IV. CONCLUSIONS
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We have shown in this paper that by interacting atoms
with cavity fields via two-photon resonant transitions and
for especially chosen interaction times (the revival time),
amplified and strongly sub-Poissonian (Fock state) fields

can be generated. Because of the behavior of the atomic
inversion, which oscillates around zero, so that each
atom on average deposits a single photon to the field, we

have linear arnplification of the average photon number
for most of the interaction times we choose (t„, t„l2,
etc.). We have derived approximate expressions for the
two-photon atomic inversion for coherent and even
coherent fields.

0.0—
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FIG. 11. Same as Fig. 3, but we arrange for the atoms to in-

teract the cavity field with a set of interaction times chosen at
random from a Gaussian distribution modeling beam flight

times. The width of the Gaussian distribution is t„ /100, and it

is centered at t„.
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