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Conservation law for multiple four-wave-mixing processes in a nonlinear optical medium
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%'hen two optical waves at frequencies co& and co2 interact in a medium with cubic nonlinearity, multi-

ple four-wave-mixing processes can generate pairs of sidebands. A conservation law that connects the

amplitudes of the pump waves and sidebands is shown to arise from the Manley-Rowe relations and
from the infinite set of conservation relations of the nonlinear Schrodinger equation. The conservation
relation is examined theoretically and verified experimentally for a variety of input pump power levels

and asymmetries. It can be used as a diagnostic measure to determine if nonlinearities of higher order
than cubic are present.

PACS number(s): 42.50.Ne, 42.50.Rh

INTRODUCTION

Intense light waves propagating in nonlinear optical
media may generate excitations at new frequencies (side-
bands) not contained in the input, and the four-wave-
mixing (FWM) interactions that occur between the input
waves and those originating in the medium may exhibit
complex spatial and temporal characteristics. The ex-
change of energy among these waves is of great interest
for optical communications. The magnitude of these in-
teractions determines the limits of power and frequency
spacing of laser sources. From a difFerent perspective,
the generation of light at multiple wavelengths with a
specified frequency spacing may provide a novel hght
source with characteristics that are very difficult to ob-
tain otherwise.

Earlier investigations of FWM in a single mode optical
fiber [1,2] revealed that both periodic and aperiodic ex-
change of energy could occur between two input pump
waves and the sidebands generated through FWM. For
input waves at angular frequencies co& and co2, first-order
sidebands are generated by four wave mixing at
co3 = (2co, —coz) and to4= (2ai2 —co, ) for a medium with a
third-order nonlinear susceptibility. Second-order side-
bands are then generated by FWM at
co5 = (2co3 —

toi )= (3co, —2co2) and to6=(2to4 —toz)
=(3to2 —2co, ). Higher-order sidebands may evolve subse-

quently. It was found that a conservation law could be
derived for the asymmetries of the power in the pump
waves and sidebands from the coupled, nonlinear propa-
gation equations for the complex wave amplitudes. In
this paper we will review the derivation of the conserva-
tion relation, and show its connection to the Manley-
Rowe relations when several FWM processes occur
simultaneously. While the above derivations are based on
the coupled equations for the amplitudes of a finite set of
discrete frequencies, it will be shown that this conserva-
tion relation may also be obtained from the nonlinear
Schrodinger equation (NLSE) in which a single amplitude
is used to describe the entire four-wave-mixing spectrum.
We will also comment on how the conservation of asym-
metry relates to the hierarchy of conservation relations
that exist for the NLSE. Finally, we wi11 present the re-

suits of experiments performed to test the validity of the
conservation relation for bichromatic pump input to a
single mode optical fiber.

THEORETICAL CONSIDERATIONS

For long pulses or continuous wave input and assum-
ing monochromatic waves, the coupled amplitude equa-
tions for the pumps and sidebands derived from the wave
equation [1] with a cubic nonlinearity g' ' are written
below,

dU
=iyP)

dz
/Ui/'+2 y fU„[' U,.

kPj

COPE 2y=
cd,I.

(2)

where A,& is the efFective core area of the fiber deter-
mined by the size of the fundamental mode, n2 is the
Kerr coefficient for the intensity-dependent refractive in-
dex and is directly proportional to g' ', c is the speed of
light in vacuum, and co is the average angular frequency
of the waves [3]. The linear mismatches b,pk „canbe
simplified using the approximation that the material part
of the index difference dominates the mismatch and the
waveguiding contribution can be neglected. This approx-

+g'dk „UkU U„'exp(ibPk „z), (1)
kmn

where j,k, m, n = 1,2, 3,4, 5,6 and k, m An, and U are the
complex field amplitudes normalized to the absolute
value of the amplitude of the pump frequency component
at to, (which has power P, at the input end of the fiber).
A larger number of sidebands could be included for
higher input intensities. Here gk „denotes the permu-
tations of the indices k, m, and n such that
cok+co co„=coj,—and the quantity EPi, „=Pk+P—P„—P is the axial wave-vector mismatch. The quanti-
ty dk

„

is a degeneracy factor that is unity when k=m
and 2 when kAm. The nonlinearity coefficient y is given
by the relationship
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imation is justified for the frequency separations in these
experiments, since the v number characterizing the single
transverse mode changes by less than 1% over the entire
range of frequencies considered. By using the frequency
relationships between the peaks and expanding the prop-
agation constants P~ about one of the pump frequencies,
e.g., m1, all the rnismatches are found to be integer multi-
ples of the quantity bs=QiP ' where Q,&= ~co,

—
co&~ is

the detuning between the two pump waves and P' ' is the
second-order dispersion coefficient [3]. These amplitude
equations can be solved numerically, and the energy of
each frequency component obtained as a function of dis-
tance along the fiber.

If we let the scaled powers of the waves be p =
~

U
then as was shown in Ref. [2] Eqs. (1}display power con-
servation, as is expected. It was also shown that another
conserved quantity

C=[p, (z) —
p (z)]+3[p (z) —

p (z)]+5[p (z)—p (z)]
(3)

is obtained for the multiple four-wave-mixing processes
that occur within the fiber. This relation holds at any
distance z of propagation in the nonlinear medium, and
connects the asymmetries of the pump waves and side-
bands. For a symmetric set of input pump waves, C =0,
and the sidebands evolve symmetrically as well. When
the inputs are asymmetric, there can be complicated
changes in the relative power levels of the pump waves
and sidebands along the length of the fiber, but the con-
stant C=[p, (0)—pz(0)] is a conserved quantity for the
propagation. It was shown in [2] that conservation of
power and Eq. (3}are the only two conservation relations
that involve linear combinations of the powers at the
various frequencies.

We will now examine generalizations and extensions of
this conservation law, its physical interpretation, and its
experimental validity. Our first step is to show that the
conservation relation (3} follows also from the Manley-
Rowe relations [4,5]. To this end, we introduce a nota-
tion that is conventional in the statement of the Manley-
Rowe relations. The input pump frequencies co1 and co2

are then written as co10 and coo» respectively, while the
notation cojk =jco, +kco2 is used for the sideband frequen-
cies. This notation has the advantage of explicitly reveal-
ing the combination of pump photons necessary to pro-
duce a particular sideband. Thus, for j=2, k = —1,
co&,=(2coi —co&) =co&,' for j= —1, k =2, co,z =(2'~
—coi)=co4; for j=3, k = —2, coi ~=(3',—2'~) =F5;
and for j= —2, k =3, co &3=(3coz—2m&) =co6.
The notation for the power at the different frequencies is

P1o P» Po1 P2~ P2 —1 P3~ P—12 P4~ P3—2 Ps~

P 23 P6 These relations are tabulated below:

Higher-order sidebands are found from other combina-
tions of j and k when j—k =(odd integer) and

~j ~

—~k
~

=+1 are both satisfied. Then the Manley-Rowe
relations, for the coupled amplitude equations given
above, are compactly expressed in this notation as [5]

and

j ~Pik

jk ~ik dz

k Pjkd

Njk dz

(4)

(5)

where the summations are over the values of j and k con-
sidered in the table above. For parametric processes such
as the multiwave mixing, the relations arise from the per-
mutation symmetry of the nonlinear susceptibility.
Beyond the conservation of power, the Manley-Rowe re-
lations can be used to gain more insight into the sym-
metries of the multiwave mixing processes. Combining
the relations above, we find that

1 (j —k)
X P,k
jk jk

(6)

The conserved quantity for the asymmetry in the waves is
then immediately found to be

P10 P01 P2 —1

10 01 2 —1

P —&2

CO

P3 —2 P —23

3-2 -23
(7)

For small frequency detunings between the pumps and
sidebands, m10=coo1=co2 1=~ 12=~3 2=~ 23=co, we

find that Eqs. (6) and (7}are expressions of the same con-
servation law given in Eq. (3). By summing Eqs. (4) and
(5), one arrives at an expression for conservation of power
among the pump waves and sidebands. For non-
parametric processes, such as stimulated Raman scatter-
ing, in which some of the energy will be transferred to the
medium, these relations will not be preserved.

The derivation above can be extended to include any
number of sidebands that are generated by the nonlinear
response of the medium, and to show that seven, nine,
etc. times the difference in power of the corresponding
higher-order sidebands would be included in the sum to
form the conserved quantity. Thus we have found a con-
servation law for simultaneous, multiple four-wave-
mixing processes that occur in a nonlinear medium with
an input of discrete, equally spaced frequencies. The fre-
quencies that appear in the medium due to FWM, and
the conservation laws themselves, follow from the overall
permutation symmetry of the third-order nonlinear sus-
ceptibility that was used in the derivation of Eqs. (1)
[2,5].

The previous analysis considered a set of coupled ordi-
nary differential equations for the propagation of mono-
chrornatic pump waves and sidebands in the nonlinear
medium. This system of equations is limited in practice
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to a finite set of discrete frequency inputs and can be
cumbersome when considering many higher-order side-
bands. A more general description of wave propagation
is achieved using a partial difFerential equation (PDE)
model. A systematic derivation starting from the
Maxwell equations for the nonlinear fiber medium (as-
suming a third-order nonlinearity) results in the non-
linear Schrodinger equation [3], provided the range of
frequencies spanned is sufficiently small compared to the
optical frequency.

NONLINEAR SCHRODINGER EQUATION
AND CONSERVATION LAWS

The coupled-mode analysis presented earlier assumed
time periodic waves and parabolic group velocity disper-
sion. The derivation of the NLSE makes similar assump-
tions about the dispersion and this suggests that the con-
servation conditions given previously may be found
among the infinite set of conservation laws which exist
for the NLSE. Here we establish this connection for the
NLSE with periodic boundary conditions.

We first show that the coupled-mode equations (1) may
be derived from the standard NLSE. The electric field in
the fiber is written 8(t,z)=E(t,z)exp[ i(co,—a+too, )t/2]
+(complex conjugate), where the field envelope E(t,z)
satisfies the NLSE

mixing problem may be written q(g, rt)=q(g, rt+&),
where the numerical value of the period T may be con-
veniently set by choice of the time scale to introduced in
Eq. (10):T=4n/(coio ~oi)to.

We now discuss a quantum-mechanical interpretation
of the NLSE which is useful for motivating the conserva-
tion laws. Equation (11) may be regarded as the Heisen-
berg equation for the second quantized field operators
q(g, rt) and q'(g, ri') of a one-dimensional Bose gas with
repulsive interactions [7]. The fields satisfy the canonical
equal-time commutation relations [q ( g, 7) ),q ( g, rt') ]
=5(ri —rt'), where g is regarded as time and q as space.
Note that the interpretations of g and g are reversed for
optical fiber propagation as indicated by Eq. (10). Second
quantized operators for particle number and momentum
are given, respectively, by

N= Jq'(g, ri)q(g, il)de,
(12)

I =
/ q, 'g q, 'g 'g

B1

'9 q2 Brt

2. BE 1, , B E
Bz 2

(8)

and the Heisenberg field equation (11) is generated by the
Hamiltonian

g
2tp tp

1/2

q(g, g)=, ,
E'(t,z),p

(10)

where tp is a time scale which is as yet undefined, so that
Eq. (8) in the normal dispersion regime (P' ') 0) becomes

.8 8i + —2q q=0.
Bg Bq'

The boundary conditions appropriate to the multiwave

where t is time measured in a frame moving at the group
velocity of the wave and E(t,z) is the electric field in
W. '~ Since we are interested in the propagation of a
number of discrete equally spaced frequency coinponents,
we assume the Fourier series expansion

E(t,z)= g' +Pi Ujk(z)
jk

Xexp[i p kz —t'(j—k )(coio—too, )t /2], (9)

where (j—k) is an odd integer, and we label the frequen-
cy components in the way described in the table above.
Substituting (9) into (8) yields an equation identical to (1),
when truncated to six modes.

To address conservation laws of the NLSE it is con-
venient to first scale the equation into the standard
Ablowitz-Kaup-Newell-Segur (AKNS) form [6]. Define
the scaled variables

H= q', g q, g +q*,g q
B

(13)

For a conservative Hamiltonian system all of these quan-
tities will be conserved.

Now returning to the classical context, the NLSE can
be derived from the Hamiltonian (13) using Hamilton's
equations with q(g, rt) and q*(g, ri) regarded as classical
canonical field variables [8]. The inverse scattering
method allows the complete integrability of the NLSE to
be demonstrated: the infinite-dimensional Hamiltonian
system has an infinite number of conserved quantities.
The integrals on the right-hand side of Eqs. (12) and (13),
with (q, q') now interpreted as classical complex fields,
are the first three in this hierarchy. The discussion of the
interacting Bose gas serves to motivate the particular
conserved integrals in a physically appealing way, al-
though the integral forms hold whenever the NLSE ap-
plies, in particular to the present case of propagation in a
nonlinear optical fiber.

One further technical point regarding boundary condi-
tions should be made here. In the multiwave mixing
problem it is appropriate to apply periodic boundary con-
ditions as described above. The more common situation
in physical applications involves field pulses which vanish
(solitons in the anomalous dispersion regime), or become
constant (dark solitons in the normal dispersion regime)
as g~+ao. The distinction in boundary conditions is
very important as the inverse scattering technique has to
be applied differently to the two situations [9). Despite
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this difference, however, the conservation laws are con-
structed by a somewhat similar asymptotic procedure,
the integrals being restricted to one period of g rather
than —(x) &g& ao as in the soliton case.

The conserved integrals may be written in the form
[9,10]

tion laws, corresponding to particle number, momentum,
and energy for the Bose gas are, respectively, proportion-
al to

go+ T
I)=—

q dg,
Y]o

&o+T (jq' 1 &0+T, gq (jq'
q dg= — q' —

q dg,
'Qp BY/ 2 lp BY/ B'g

where go is arbitrary, and

f1 = —lql',

f„„=&'fjfk+q f„—, n=1, 2, . . . .
d 1

/k

(15)

2

i, =j'"' 'q +lql' d&.
'9p BY/

Substituting the Fourier expansion (with T=2')

jk

(16)

The asterisk indicates j+k =n. The first three conserva-
I

into Eqs. (16) gives

I, = —2~ y*lq, k(g) l

jk

I2 = 2mi g—'(j—k) lq/k(p) l~,
jk

= g'[(j —k )lq /k(g I)' +Iq,k(g)l']+
277 'k jk, lm

np, rs

j—k+I —m =n —p+r —s
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FIG. 1. Input and output spectra for symmetric and asymmetric pulses using the NLSE with a frequency detuning of 342 GHz,
Tp=5 ps, P' '=58 ps /km, and y=1.85X10 W 'm '. Bichromatic inputs (a) symmetric P, =25 W and (b) asymmetric

[C(0)=0.6 in Eq. (3) and P, =42 W]. NLSE output after 1.36 m of propagation, (c) symmetric case and (d) asymmetric case. All

spectra are normalized to the input peak power at co&.
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where g* indicates summation over j and k as governed

by the nonlinear processes (see the table above) and

P k(g) is the phase of q k(g). In contrast to the Bose gas
I, here represents the conservation of power in all
Fourier modes, while Iz relates to the conservation of
asymmetry of the Fourier modes established earlier via
the Manley-Rowe relations. The latter account for the
production of pairs of photons by the simultaneous de-
struction of other pairs through energy conserving degen-
erate and nondegener ate four-wave-mixing processes.
These appear to be the only conservation laws which de-
pend on the power in the Fourier modes alone. Direct
optical detection methods enable these to be measured in
a straightforward way. The higher conserved quantities
depend on the relative phases of the Fourier amplitudes.
For example, the Hamiltonian I3 depends on combina-
tions of the phases of four modes, and is therefore more
diScult to check experimentally.

As alluded to earlier, the conservation laws hold for
more general conditions than shown explicitly here, in
particular when the input waves are not monochromatic,
but pulsed. In Fig. 1 we show input and output spectra
from computations based on the NLSE using the split
step Fourier (beam propagation) method [3]. The
second-order dispersion parameter and nonlinear
coefficient were chosen to be P' '= 58 ps /km and
@=1.85X10 m '% ', values corresponding to the
fiber used in the experiments described in the next sec-
tion. Figures 1(a) and 1(b) show the input spectra, for
Gaussian pulses of 5 ps width, for symmetric and asym-
metric pump inputs, respectively. The asymmetric case
corresponds to the weaker pump having 40% of the
power in the stronger one. Figures 1(c) and 1(d) show the
spectra after propagation through 1.36 m of fiber. Fig-
ures 1(a) and 1(c) show that a symmetric input spectrum
remains so after propagation. Figures 1(b) and 1(d) illus-
trate how the initial asymmetry is shared by the side-
bands after propagation through the fiber. The conserva-
tion law should be regarded as a measure of the accuracy
of the numerical integration for discrete frequency waves.
For pulsed inputs the Fourier sum, Eq. (17), should be re-
placed by a Fourier integral to allow for the spectral
broadening of the pump and sidebands during propaga-
tion. However, if the broadening is small compared with
the separation, as in Fig. 1, Eqs. (3) and (18}hold very ac-
curately.

EXPERIMENTAL TESTS
OF THE CONSERVATION RELATION

A laser system consisting of two tunable dye lasers,
pumped by a frequency doubled Nd: YAG (where YAG
denotes yttrium aluminum garnet) laser, was used to gen-
erate pulses that are -5 ns fu11 width at half maximum
(FWHM) in length. The entire experimental setup is
shown in Fig. 2. The outputs from the two dye lasers
(A, -633 nm), detuned by 342 GHz, are amplified and
then passed through the appropriate delays to ensure
overlap of the pulses. The light is then coupled into a
single mode polarization maintaining optical fiber (AT&T
rectangular fiber, single mode at 633 nm, with a core di-

Nd: YAG

~

nxe Laser

Polarizer

U2 Plate

Video Monitor

E. 9 ~ ~ as
CID

) 1 ~I
IBM PC

Spectrometer

Power
Meter

FIG. 2. Experimental apparatus used to study four wave

mixing in a birefringent single mode optical aber. BS denotes a
beam splitter. CID denotes charge injection device video cam-
era.

ameter -4 pm), after passage through a polarizer and
half wave plate. The half wave plate rotates the polariza-
tion of the light to coincide with a principal axis of the
birefringent fiber. The fiber length chosen for these inves-
tigations is 1.36 m, which results in a negligible level of
Raman scattering at the power levels used ( (100 W).
The dominant optical processes are four wave mixing of
the pump waves and sidebands. At the fiber output, a
beam splitter is used to monitor the power of the laser
beams. A variable neutral density filter was used to at-
tenuate the beams before input to a spectrometer, in
which a video camera, charge injection device (CID) ar-

ray, registered the spectrum. The spectrum was digitized
by a frame-grabber board and stored in the memory of a
microcomputer. The laser pulses vary in intensity and
frequency from shot to shot; the spectrum from several
hundred laser pulses may be averaged and stored in the
computer. The individual laser pulses have spectral
widths of -3 GHz, and are thus essentially mono-
chromatic when compared with the typical frequency
spacings (of several hundred GHz) for the tunable lasers.
The resolution of the spectrometer-video-camera system
is -50 GHz.

In Fig. 3 we show output spectra measured for sym-
metric and asymmetric pump inputs, and compare these
results with computations based on the NLSE with cw in-

put. The pulses from the lasers are -5 ns (FWHM} and
for the short lengths of fiber considered here this is con-
sidered to be an excellent approximation to cw input.
Figure 3(a) shows the output spectrum for symmetric
pump waves with 25 W peak power in each pump. The
power in the two pump waves was equalized by first let-
ting each beam propagate separately through the fiber.
Then they were both allowed to simultaneously propa-
gate through the fiber. We find sizable first-order and
very small but noticeable second-order sidebands. The
output spectrum is very symmetric, and agrees well with
the predictions based on the NLSE with cw input, shown
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FIG. 3. Comparison of output spectra after a 1.36 m propagation length between the experiment and the NLSE with a cw input.
Experimental output spectra with (a) symmetric inputs, P, =25 W, and (c) strong asymmetry in the inputs, C(0)=0.6 and P, =42 W.
NLSE output with (b) symmetric input and (d) strong input asymmetry, C(0)=0.6. The parameter values are 342 GHz frequency
detuning, P' '=58 ps'/km and y = l. 85 X 10 ' W ' m '. All spectra are normalized to the input peak power at co, .

in Fig. 3(b). The output spectrum for an input with 40%
asymmetry in the pumps is shown in Fig. 3(c). The
FWM interactions produce sidebands, and the asym-
metry of the pump waves at the output is changed from
that at the input. The first-order sidebands are asym-
metric in this case, and a very small asymmetric pair of
second-order sidebands is seen as well. Figure 3(d) shows
the computational results for cw input, and there is quite
reasonable agreement with the measured spectra.

In order to examine the validity of the conservation re-
lation, we have adopted the following strategy. It is not
possible to observe the evolution of the sidebands within
the fiber. Thus we first allowed only one laser beam at a
time to propagate to the end of the fiber and measured
the average peak power of the pulses. The attenuation of
the light in propagating through the short length of fiber
(L = 1.36 m) used was negligible. The value of
C (0)= {p, o(0) —po, (0)t, the initial asymmetry of the
pump waves, was determined in this way. Both pump
beams are then allowed to simultaneously propagate
through the fiber and multiple FWM interactions result-
ed in the generation of sidebands. The power in each of
the spectral components was determined by summing the
area under each peak from the averaged spectrum. Four
sets of 100 shots each were measured, and the average
and standard deviation obtained from this data. The

value of

C(L)=
t pic(L) —poi(L)+3[p2 i(L) —

p i2(L) j

+5tP3 —2(L) P —23(L) j t

was thus determined from these measurements.
To test the conservation relation, C(L) was plotted

versus C(0), as shown in Fig. 4. The data are symbol
coded to display the number of sidebands that resulted
for a given power in the pump waves. For low power
values ( 40 W peak power), only the first-order side-
bands were generated, while for the highest powers used
( —100 W peak power), even the third-order sidebands
were observed. From Fig. 4 it is seen that the asymmetry
of the pump waves was varied from C = —0.6 and
C =+0.6. We find that very good agreement is obtained
with the conservation relation over the entire range of
power and asymmetry investigated, within the limits of
experimental error. The straight line drawn represents
perfect agreement with the relation. There is a systemat-
ic deviation away from the line at the two extremes of
asymmetry values. This small but discernible disagree-
ment is probably due to the fact that there is a threshold
of noise which has to be exceeded for the peaks to be visi-
ble and accounted for in the computations. While such
unaccounted for contributions would cancel each other
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0.5—

-1.0 -0.5 0.0

C(z=0)

0.5 1.0

FIG. 4. Measured asymmetry relation, C(L=1.36 m) [Eq.
(3), vs C at the fiber input, for a variety of input powers. Sym-

bols correspond to the number of sidebands detected at the out-

put; squares —only first-order sidebands, circles —first- and
second-order sidebands, and triangles —first-, second-, and
third-order sidebands. The solid line represents perfect agree-
ment with the asymmetry relation.

for the symmetric situation, they would aff'ect the mea-
surements most for the highly asymmetric inputs where
the higher-order terms have increasing significance in the
conservation relation.

DISCUSSION

The exchange of power between multiple waves propa-
gating in an optical fiber can in general be complex. In
this paper we have investigated a conservation law which
relates the amplitudes of waves generated through multi-
ple four-wave-mixing processes. This relation can be
used to check integration of the nonlinear propagation
equations; it can also serve as a sensitive diagnostic for
higher-order nonlinear effects that may be significant at

higher powers or in certain nonlinear media. As long as
other nonlinear effects are negligible, this asymmetry re-
lation will still be valid and will provide insight into the
relative evolution of the multiple waves.

In this paper we have shown that this conserved quan-
tity [Eq. (3)] can also be found from a simple analysis of
the Manley-Rowe relations under the approximation of
small frequency detuning. We also obtained this conser-
vation of asymmetry from an analysis of the more general
NLSE, assuming periodic boundary conditions. Spectral
measurement of conserved quantities of the NLSE has
also recently been suggested as a method for extracting
information in a wavelength-multiplexed soliton com-
munication system [11]. Numerical integrations of the
NLSE have been performed by the split step Fourier
method [3] to examine the conservation relation [Eq. (3)]
for pulses and continuous waves. Integrations for pulsed
two-frequency inputs show that as long as the broadened
sidebands do not overlap appreciably, the conservation
relation holds very accurately for the power in the side-
bands and pump waves. We have tested the conservation
relation [Eq. (3)] experimentally, with pump waves that
varied from nearly symmetric to very asymmetric power
input. This relation was also tested for a variety of inputs
powers ( &100 W), in which different numbers of side-
bands were significant, and was found to be valid within
the accuracy of the experiments. For regimes in which
Raman scattering becomes significant the conservtion of
asymmetry will break down and thus could be used as a
sensitive test for the presence of Raman scattering as well
as of higher-order nonlinear processes. In conclusion, we
find that the conservation law derived here for multiple
four-wave-mixing processes is found to be in good agree-
ment with experimental observations for short lengths of
optical fiber.
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