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Driving atoms with light of arbitrary statistics
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The coupled-systems approach of Gardiner [Phys. Rev. Lett. 70, 2269 (1993)] and Carmichael
[Phys. Rev. Lett. TO, 2273 (1993)] is used to study the efFects of driving systems by a variety of
kinds of nonclassical light, namely, squeezed light, two-mode squeezed light, antibunched light from
a two-level atom driven by either coherent light or finite-bandwidth thermal light, and the light from
a single atom in a very-high-Q cavity. The method is shown to be very efFicient and complete. It is
also shown that the photon-counting properties of light from an atom driven by antibunched light
are not determined solely by the antibunching of the driving light.

PACS number(s): 42.50.Dv, 42.50.Lc, 42.50.Ct

I. INTRODUCTION

The development of the input-output formalism by
Gardiner and Collett [1], based on the "quantum net-
work theory" of Yurke and Denker [2] gave rise to the
possibility of a kind of "modular quantum optics, " in
which nonclassical light beams could be generated and
then used as inputs to other quantum systems. Early
work by Kolobov and Sokolov [3] gave an indication of
how this might be done, and more recently Gardiner [4]
and Carmichael [5] gave what amounted to the same for-
malism, though in each case with a very diferent deriva-
tion.

Until recently there has been no need for such a for-
malism, since reliable sources of nonclassical light with
useable intensity have not been generally available. The
situation is, however, now changing, with many groups
around the world producing squeezed, antibunched, and
sub-Poissonian light beams [6—8].

The aim of this paper is to consolidate the work of
Refs. [3—5] and to extend it to include the possibilities of

(i) multiple input and output into each system;
(ii) longer (possibly branched) chains of sytems, each

driving the next;
(iii) arbitrary quantum white noise inputs into the

atoms.
After extending the formalism, we use it in a number

of applications. In Sec. III we consider the situation in
which the first system is describable by harmonic oscilla-
tor operators, which may be driven by various Gaussian
inputs. The two particular systems we consider are an
empty cavity driven by a broadband thermal field, and
a degenerate parametric amplifier. The outputs from
these are, respectively, finite-bandwidth thermal light
and squeezed light, which then drive the second system.
Vfe show how, by using the positive P representation,
we can derive the formalism used by Parkins and Gar-
diner [9] and by Ritsch and Zoller [10] in considering the
inhibition of atomic phase decays by squeezed light.

Section IV concentrates on numerical results for atomic
systems driven by squeezed light. The advantage of the
coupled systems approach here arises from the possibility

of truncating the harmonic oscillator systems to only a
few levels —no more than ten were found necessary —and
thus being able to solve the master equation by direct
numerical integration in spaces of perhaps a few hun-
dred dimensions. This is very much more e%cient than
previous numerical methods, particularly those based on
stochastic simulations. We present results for the inhi-
bition of atomic phase decays in a two-level atom driven

by squeezed light, and for two-photon absorption by a
three-level system driven by correlated photons from a
nondegenerate parametric amplifier. The first of these
should be considered as a demonstration of the method,
while the second is in principle a much more thorough
treatment than those used previously, which have de-
pended on either the approximation of infinite band-
width of the squeezed light or on weak field approxi-
mations. The results —a linear dependence of the two-
photon absorption rate on the intensity of the incoming
field (rather than the quadratic dependence expected for
uncorrelated inputs) —are much the same as previously
computed, but this is largely because we have investi-
gated only the weak-driving-field limit.

In Sec. V we give a treatment of a two-level atom
driven by the antibunched light produced by another
driven two-level atom. This is an extension of earlier
work [4]. In this paper, we show that we can drive
the first atom either with coherent light, or with finite-
bandwidth thermal light, and get (by appropriate choices
of parameters) the same output intensity and inten-
sity correlation function gl ) (t), though different spectral
and other properties. The results of driving the second
atom with these two kinds of light which are identi-
cally antibunched —are significantly diferent from each
other. We obtain the same qualitative results, that is,
the output beams from the two atoms are antibunched
and anticorrelated with each other, but the quantitative
difI'erence is quite significant.

In Sec. VI we consider the driving of a two-level atom
with the light produced by a system composed of a two-
level atom and a very-high-Q cavity. This light has a
number of rather nonclassical features. The results are
interesting and rather intricate. We find a number of
nonclassical efFects, and in particular, we can see how to
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produce light with antibunching extending over a rather
longer time interval than would have been expected.

bl(t) b& (t) bz(t) b2 (I)

II. COUPLING EQUATIONS

ill = ——[al, H,„.]
—[al, cl] —cl + ~gib;(1, t),)

+ —cl + ~pzb(l, t)},.[al, cl],
2 '

a2 — —]a2 HT ]
—[a2, cl] —22 + xx'Yxb; (2t)),

—c2 + p2b,.„2,t a2, c2 . (2)

The basic idea is very simple. We consider a quan-
tum system which can be decomposed into two subsys-
tems. Using the notation of Refs. [1, 11], a driving field

b;„(1,t) drives the first system, and gives rise to an out-
put b „i(1, t) which, after a propagation delay r, becomes
the input field b;„(2,t) to the second system: let ai, a2 be
operators for the two systems, and let B,~s be the sum of
their otherwise independent system Hamiltonians. The
situation is illustrated in Fig. l. The quantum Langevin
equations for these are

FIG. 1. Schematic diagram indicating how system 2 is
driven by the output from system 1.

The output field from the first system is given by

b,„i(lxt)= b;„(1,t)+ ~pici(t).

If it takes a time ~ for light to travel &om system 1 to
system 2, then we can get the effect of feeding the output
of system 1 into the input of system 2 by writing

b;„(2,t) = b~„b(12t —v) = b;„(1,t —v) + ~pici(t —r).
(4)

If now a is an operator &om either of the systems, the
resulting two quantum Langevin equations can be writ-
ten as one equation for a [using the abbreviated notation
b;„(1,t) + b;„(t)]:

a= ——[a, H,T,]
—[a, cl] —cl+~ylb; (t) + —cl+ Ylb;YY(t))[a, cl]~

'y1 t

—[a Cx] (—22 + xtpx'Yxcx (2 T ) + tx' bi (x2
—xT) ) + (

—Ctx+ /222'xc[(t —T) + ~Y'xb, (2 —T) ) [a C2] (5)

These equations are deliberately called quantum
Iangevin equations (rather than quantum stochastic dif-
ferential equations) because the statistics of the input
fields is not specified —they are thus valid for arbitrary
statistics of the input fields.

In developing these equations it has been required that
the output &om the first atom can be connected to the
input of the second atom without there being a corre-
sponding connection &om the second atom back into the
first. Experimentally, this is routinely achieved by ap-
propriate isolation techniques, and it is possible to write
such a one-way coupling in terms of a Hamiltonian, as
has already been shown in Ref. [4]—in fact (5) is derived
from a Hamiltonian directly in Ref. [4].

The major technical difBculty is the fact that operators
at the two times t and t —r both turn up. Because we
are considering only the case in which the driving is one
way, it is clear that ~ may be chosen arbitrarily —its only
effect is to shift the origin of the time axis for the second
atom.

To see this explicitly, note that Eq. (5) takes on dif-
ferent forms depending on whether a is an operator from
the first atom or the second. To put these in the simplest
form we proceed as follows.

(i) Define an advanced operator a(t) = a(t + v).
(ii) Note that we can write H,z, ——Hi + H2, where

the two parts are operators only in the first and second
spaces, respectively.

(iii) If ai, a2 represent arbitrary operators in the first

dG2

dt

A. Conversion to quantum Ito equations
and derivation of the master equation

Although the quantum Langevin equations give an el-
egant description of the physics involved, the equivalent

and second systems, respectively, Eq. (5) gives the two
equations

GfQ1 t 'Y1

dt
= ——[a„H,] —[a„c,]

—c, + ~p,b;(2)),1

+ —c1 + P1b;„t a» c1

~ax= ——[a2, H, ]

—[ixx, cl] (—cx + v'pxpxcx + ~gab; (t))
—c2 + P1P2c1 + P2b;„t a2, c2 . 7

There is now only one time in the resulting equations,
and the solutions for these equations provide all the in-
formation required to describe the system, since they are
valid for arbitrary operators in acting on one space or
the other, in terms of which any other operator can also
be written. The same result is obtained simply by set-
ting ~ = 0 in (5), and omitting the rather cumbersoine
a2 notation, and this is what we shall do Rom now on.
Notice, however, that the procedure works only because
of the explicit one-way nature of the interaction between
the two systems.
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master equation will provide a much more tractable way
of treating the problems numerically. To this end we want
to convert the quantum Langevin equations into quan-
tum Ito stochastic difFerential equations, from which an
appropriate master equation can be derived, using stan-
dard methods [1, 11].

If we consider the general case in which the input field
can be written in terms of a coherent part and a quantum
white noise part

b;„(t)dt = dB(t) + f (t) dt

with

[dB(t)]' = [dBt(t)]' = 0,
dB(t)dB'(t) = (N + 1)dh,

[dB(t)]tdB(t) = N dt,

(9)
(10)

(»)
then the equivalent Ito white noise quantum stochastic
difFerential equation is

du = ——]o, , H,„,]« —]a, et~] —c~ y ~pqf; (t) «y —c] + yp&E„(8))]o., cz]«
2

—I~ ~~I {—'~~+ v'»»~~+ v~~~. (&)) «+ (
—'~~ + W»»~] + i%~.(')) I~ ~~l«

——[[a, ~yici + ~P2C2], ~Tici + ~P2C2]d& ——[~yici + ~P2C2, [~yici + ~P2C2, a]]dt
N

—~pi[a, ci]dB(t) + ~pidB (t) [a, ci] —~p2[a, ct]dB(t) + ~pqdB (t) [a, c2]. (12)

From this it follows that a master equation can be derived for the density operator p(t) by the usual technique [1,
11] of setting (da(t)p):—(dap(t)), and this master equation takes the form

—= —[p, H, v, ] + —{2cipci —)ocici —ci cip) + —(2C2 pc2 —pc2C2 —c2C2 p)
dp i pq t t t » t t t
dc 5 ' "'

2 2

-v'~ ~ ([ g]+[~ "])+—[[v~ ~ +v~" ~] v~ ~ +v~" l

N

+—[[~71ci+ ~Y2C2& )O]& ~Ylcl + ~+2C2] —[Sin(t) (~Tici + ~+2C2) —E(~u(t) (~foci + ~fgc2), p].
2

B. Imperfect coupling

In the previous section we considered the case in which
all of the output of the first system was used as the input

f'"(2,rl

f (2 i)

to the second system. This is usually not realistic, since
(i) there must be some losses in transmission.
(ii) We may not wish to couple perfectly from the first

to the second system.
For example, by (3), any coherent component of b;„(t)

will appear in b „i(t),and hence in b;„(t).We may wish
to do this, but we may also wish to investigate the effect
of illuminating the second system with only the ffuores-
cent light [represented in (3) by ~pici(t)] from the first
system.

This can be done by considering the coupling of the
first system to two channels with the same kind of cou-
pling (though of difFerent strength), as illustrated in Fig.
2. We thus modify the quantum Langevin equation (1)
by setting

b-(t) = V ~ f-(t)+ V'(1 —ei) g-(')

FIG. 2. Arrangements required to account for imperfect
coupling. The systems are considered to have two input-
output channels. The corresponding 6elds are coupled with
strengths ~e, , gl —e, , so that the total coupling is the same
independent of e, . To account for the possibility that the in-
put channel to the second system may not match perfectly
with an output channel from the first system, a unitary mixer
m& is inserted between the physical inputs, and those corre-
sponding to the required outputs. The same is done for the
second system. The beam splitter e is necessary to account
for the fact the light in '.he relevant output channel may not
all be fed into the relevant input channel in the second system.

with 0 & ei ( 1. Here f;„{t)and g;„(t)together make up
all the coupling available to radiated modes, so that the
total damping constant is simply pq. There are then two
output fields given by

f~„i(t)= f;„(t)+ geipi ci(t),

g „t{t)= g;„(t)+ U (1 —ei)pi ci{t).

If we now consider a situation in which we drive the sys-
tem with a coherent field in the f;„channel, it is clear
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that in the g „tchannel we will see no component of the
incoming driving field. Physically, we could consider the
case where f;„represents a laser beam (almost a plane
wave) while g „tis an outgoing electric dipole wave, ob-
served away &om the direction of the laser beam.

In coupling to the next system we must consider that
some proportion of g „twill be lost in transmission. This
can be modeled by inserting a beam splitter in the chan-
nel g „t,so that we have

g;„(2,t) = ~eg g „i(1,t) + Ql —ei h;„(t)
= pe i (1 —e i)pi ci (t)

+~a, g;„(1,t) + gl —e, h;„(t),

(17)

(18)

where h; (t) represents a vacuum field. The total field
then enters the second system, with its complementary
field f; (2, t). Using (17) and (18), we find the quantum
Langevin equation

a = ——[a, H, r, ]
— [a, ci] —ci + gpiei f;„(1,t) + /pi(1 —ei) g;„(1,t) + conjugate

~)

[act[(—ca+ QV2E2 f (2, f) '+ V Y2(1 E2) /7181(1 El)L1(t —T)

+kleig;„(1,t —7 ) + gl —ei h;„(t) + conjugate

In this equation, the term "conjugate" means that one should take the Hermitian conjugate of everything except a.

Master equation

In the case that g;„(1,t), h;„(t),and f;„(2,t) represent the vacuum, and we have a coherent driving field in the f;„
channel of the Grst system, which we represent by

where fo (t) is a vacuum field, we can derive the master equation

—= —[p H y ] + —2cypeg —pcgcy —c~cgp + —2cgpcg pf pcs cgc2p)
~P i '7i t t t » t t

—Qeipi»(1 —ei)(1 —e2)([c2& cip] + [pci, c2]) —v piei[E(t)ci + E'(t)ci& P] ~

(20)

(21)

There is the further possibility that g „&and f „tmay not correspond exactly to the g;„and f;„Forexam. ple, a
fraction of the coherent field in f;„(1,t) [see (20)] may be seen in g „i(1,t) due to some misalignment. This is best
dealt with by putting a unitary mixer between fi„,g;„and the system, so that the fields which correspond to g „i,f „i
are in fact

g„(l,t) = gmig;„(l,t) + gl —mi f;„(l,t),
f (1,t) = hami f; (1,t) —gl —mi g;„(1,t),

(22)

(23)

where 0 ( mi & 1 is a mixing parameter. (For simplicity we have adjusted arbitrary phases so that no complex
coefficients are necessary. )

A similar thing can happen at the input to the second system. From all of these we get the master equation

—= —[p, H~r~] + —(2cipci —pcici —cicip) + —(2C2pc2 —pc2C2 —c2c2pj

geieipi»—(/m2t2 + g(1 —m2) (1 —E2) )([c2,cip] + [pci, c2))
—~pi(gmiei+ Q(1 —mi)(l —~i) j[E(t)c, + E'(t)ci, p]

—g»ei(l —mi)(gm2e2 + g(1 —m2)(1 —E2))[E(t)c2 + E (t)c2, p]. (24)

This equation represents the most general combination
of mismatching and inefBcient coupling for two coupled
systems. For the purposes of solving this master equa-
tion, the mixing parameter m2 is really an unnecessary
complication, but in the case of several cascaded systems,
it is essential.

III. HARMONIC OSCILLATOR SYSTEMS

In a series of papers, Parkins and Gardiner [9] and
Ritsch and Zoller [10) considered the problem of the driv-
ing of a two-level atom with finite-bandwidth squeezed
light, and developed numerical techniques based on either
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stochastic simulations or on eigenfunction expansions for
the Fokker-Planck equation to treat this kind of prob-
lem numerically. In this section we will show how the
coupled-systems approach can provide a very much more
efficient way of treating this and related problems. The
idea is to use for the erst system a model of a degenerate
parametric oscillator, which is arguably the most favored
source of squeezed light at present [8]. The methods of
the previous section then produce a coupled master equa-
tion description, which we can show is exactly equivalent
to the methods used by the above authors. However, it
proves practicable to solve these equations numerically by
truncating the infinite dimensional space of the harmonic
oscillator operators used for the parametric oscillator to
quite a small size, usually no more than ten dimensional
matrices are sufficient for degrees of squeezing up to ap-
proximately 90%%uo.

—grjpq&2([cz, ap] + [pa, c2]} (26)

where, for brevity,

rI = eg(1 —eg)(1 —e2), (27)

X = ~pe.

We now introduce a P representation by

BP 2 y1—= —[p, H.r.] + —(N + 1) (2apat —pat a —at ap)Bt 6

+N 12atpa —paat —aatp)

+—(2c2 pc2 —pc2 c2 —c2c2p}

p = d'nln)(nip(n) (29)

A. Driving by thermal light

t.Ci) C~G) a I harmonic oscillator operators

I et us first consider a situation in which the first sys-
tem is a thermally excited cavity, which yields a ther-
mal light beam. This may be represented by a harmonic
oscillator, with two inputs and outputs. One of the in-
puts is coupled to a finite temperature source of quantum
white noise, and its corresponding output is not coupled
to anything. The other input receives a vacuum, and
its corresponding output drives the second system. The
system may thus be represented by

= —„I:p(n)H."]
+—(2c2p(n) c2 —p(n) c2c2 —c2c2p(n) }

p, /O O „l O'
n+ n"

l
+ pgN p(n)

2 (On On' ) OnOn*

v 01,p2 [c2n + c2n*, p(n)]. (30)

where p(n) is an operator in the space of the c2 opera-
tors. If there is no intracavity medium (that is, the first
system is an empty two-sided cavity) we can set H,„,to
be H,„,(2), an operator in the second subsystem only.

The master equation (26) now becomes

f;„(1,t) -+ quantum white noise, such that

This system is equivalent to the master equation for the
second system

(ft„(1,t)f;„(1,t')) = Noh'(t —t') (25)

= —[p2, H~y~) + —(2c2p2c2 —p2c2c2 —c2c2p2}t

—ggpqp2[c2n(t) + c2n(t)*, p2], (31)

g;„(1,t) -+ vacuum.
in which n(t) is a solution of the stochastic differential
equation

The first system can be thought of as a two-sided cavity,
as in Fig. 3, and the master equation which arises from
(21) becomes

dn = ——n dt + pgN dv(t),
2

where

(32)

f/2, t

g (1,t) =
(2,t) FIG. 3. Light from a two-sided harmonic

oscillator coupled to a second system.

)ig (1t)
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[dv(t)] = [dv'(t)] = 0; dv(t)dv*(t) = dt (33)

B. Driving by squeezed light

Here, we consider the first system to be a one-sided
cavity driven by a vacuum field, as in Fig. 3. The cav-
ity has an appropriate crystal inside which, when pumped
appropriately, gives rise to a degenerate parametric am-
plifier [12,ll]. There is now only one input-output chan-
nel to the first system. The master equation becomes

at
—= —[p, H,r, ] + —(2apat —pata —a ap)

Thus, the quantum driven systems approach is in this
case equivalent to taking a system driven by a classical
thermal field, a(t).

mate model of the light produced by actual squeezed
light sources, such as the degenerate parametric oscil-
lator, which exhibit bandwidths only of the order of typ-
ical atomic transition linewidths. Recognizing this, sev-
eral authors studied the influence of finite-bandwidth ef-
fects on earlier predictions using as a starting point the
stochastic equations derived in Sec. IIIB [9, 10]. Their
methods of solution were based either on stochastic sim-
ulations [9] or eigenfunction methods [10].

The coupled-systems approach described in this pa-
per clearly ofFers an additional (and more direct) means
of studying the response of systems to finite-bandwidth
squeezed driving 6elds. In this section, we present some
representative results to highlight the relative simplic-
ity and potential of this approach for solving problems
in which the finite-bandwidth nature of a squeezed light
field has important implications.

+—2c2pc2 —pc2c2 —c2c2pt t t

\/VY1 Y2 (l~~, ~& 1 + I~~', ~s]), (34)
A. Inhibition of atomic phase decays

and linewidth narrowing

in which

H,„,= (Ea ——E'a ) + H2,

where H2 is an operator only in the second system. Sim-
ilarly to the case of thermal light, we can show that the
equation of motion is equivalent to (31), with the substi-
tution n* —+ o.+, as required by a positive P representa-
tion [13,ll], which is needed to represent squeezing, and
with a(t), a+(t), satisfying the equations of motion

da = (—2pia —Ea+)dt + v EdWi(t),
da+ = (—2pia+ —E'a)dt + v' E'd W(2t)

with

(36)

(37)

[dWi(t)] = [dW2(t)] = dt, dWi(t) dW2(t) = 0.

This is equivalent to the equations used by Parkins and
Gardiner [9] and Ritsch and Zoller [10] in considering the
inhibition of atomic phase decays with finite-bandwidth
squeezed light.

IV. TWO-LEVEL ATOM DRIVEN
BY SQUEEZED LIGHT

The interaction of quadrature squeezed light with
atoms has been a topic of considerable theoretical in-
terest in recent years. This Geld of research was initi-
ated by Gardiner [14],who showed that broad-bandwidth
quadrature squeezed light can in principle inhibit the
phase decay of a two-level atom, giving rise to a sub-
natural linewidth in the atomic Quorescence spectrum.
Further analyses of other classic problems in quantum
optics, such as resonance fluorescence and atomic absorp-
tion [15], yielded predictions of a variety of interesting
phenomena.

However, the broad-bandwidth squeezing (or squeezed
white noise) description employed in the above-
mentioned work can only be regarded as an approxi-

—
/gap ([o+,ap]+ [pat, ~ ])
1+-p (2o po+ —o+o p —po+o ) .
2

(38)

The parametric oscillator cavity is assumed to be single
ended —such a con6guration yields the optimum amount
of squeezing in the output light. The output light is fo-
cused entirely onto the two-level atom, which may how-
ever still "see" a fraction 1 —il (q ( 1) of unsqueezed
vacuum. For the squeezed light to have an appreciable
influence on the atom, rl should be as close to one as
possible. This represents a serious practical problem, al-
though schemes have been proposed to realize eKcient
coupling [16].

As is well known, fluctuations in one quadrature phase
of the squeezed light are reduced below the vacuum limit,
while fluctuations in the other quadrature phase are en-
hanced. Perfect noise reduction in the squeezed quadra-
ture is approached in the limit ~E~ ~ r/2, i.e., as one
approaches the threshold for parametric oscillation. In
this same limit, it is important to note, however, that
fluctuations in the two quadratures occur over vastly dif-
ferent bandwidths. In particular, the squeezed and an-
tisqueezed quadratures are characterized by bandwidths
(full width at half maximum) r + 2(E( and r —2~E(, re-
spectively. Hence, in the limit of perfect squeezing the
bandwidth of the antisqueezed quadrature approaches
zero.

In the present context, this means that as the degree of
squeezing is increased, one ultimately reaches a point at
which the bandwidth r —2]E~ is smaller than the atomic
linewidth p (and hence at which white noise models are

The master equation describing a system driven by the
output light &om a degenerate parametric oscillator has
been given in Sec. IIIB. For the case in which the sys-
tem under consideration is a two-level atom this equation
takes the explicit form (assuming resonant excitation):

E(a ) —E a, p + r, (2apa ——a ap —pa aj
Bp 1- t2, 2

- 1

2 . 2
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totally inadequate). In Refs. [9, 10], it was found that
this ultimately limits the extent of phase decay inhibi-
tion and line narrowing that is possible for a given cavity
bandwidth v. .

In Fig. 4, we illustrate this effect by plotting the
atomic Huorescence spectrum (measured through a chan-
nel upon which the squeezed light is not incident) with
a series of values of the cavity bandwidth v. In each
case, the parametric oscillator is driven at 50% of thresh-
old (corresponding to 89% squeezing at ~ = 0), so that
K —2~E~ = 4, 2, 1 for K = 8, 4, 2, respectively. It is clear
that once K —2~E~ is of the order of p, significant line
narrowing ceases to occur.

The correlation function (o+(t)0 (0)), (the Fourier
transform of which gives the spectrum plotted in Fig. 4 )
was computed for each of the cases by numerically solv-

ing the master equation (39) using the methods outlined
in the Appendix. In practice, we found that truncation of
the cavity-mode Fock state basis to ten states was quite
adequate for the description of a parametric oscillator
driven at 50% of threshold —this corresponds to the mean
photon number in the cavity being only (ata) = 1/6.

In terms of speed of computation the approach de-
scribed here is enormously more rapid than the methods
used in Refs. [9] and [10].

B. Linear dependence of a taro-photon
transition rate using squeered light

Squeezed light, as produced by parametric oscillators,
is characterized by correlated pairs of photons. There-
fore, it is quite natural to expect that the behavior of
two-photon transitions in atoms should be influenced in
a significant way by squeezed light. That this is indeed
the case has been pointed out in studies of the effect
of squeezed light on the two-photon transition rate in a
three-level "ladder" system [17].

With coherent or thermal light as the driving field,
two-photon excitation to the upper excited state occurs
primarily, in the weak field limit, via a two-step process,
with each step proportional to the driving-field inten-
sity. Hence, the two-photon transition rate exhibits a
quadratic dependence on driving-field intensity.

If, however, the driving field consists of correlated pairs
of photons (coincident upon the atom within a certain
correlation time), then two-photon excitation can occur
essentially as a single step process proportional to the
incident intensity. This leads to a linear dependence of

!

1.0

0.8

0.6

0.4

0.0 I I I I I I I I I I I I I I I I I I I

/ -1 0 1

FIG. 4. Fluorescence spectrum emitted by a two-level

atom driven by finite-bandwidth squeezed light from a degen-
erate parametric oscillator. Parameters are p = 1, g = 0.9,
and ~E~/r = 0.25. The curves have been normalized to one
at ~ = 0 and the dashed curve is a Lorentzian of width p.
(Frequency scale in arbitrary units. )

the two-photon transition rate on intensity [17]. How-

ever, previous calculations have either been in the limit
of broadband squeezed light, or have used the two-photon
absorption formalism of Mollow [19], both of which are
to some extent approximate, in contrast to the method
presented here, which is in principle exact (at least to
the extent that the Markovian assumptions used in the
derivations are valid).

To highlight this fundamental difference between con-
ventional and squeezed light excitation, we set up a model
describing the following situation, which is also depicted
in Fig. 5. A three-level "ladder" atom is driven by the
output from a nondegenerate parametric oscillator (this
could be either frequency or polarization nondegenerate:
in the case that it is frequency nondegenerate the two
cavity modes are assumed to be well separated in fre-

quency). For simplicity we assume resonant excitation
(although detunings are easily incorporated), i.e. , the
sum of the frequencies of the two squeezed modes is tuned
to resonance with the two-photon transition ~1) ~ ~3),
with mode a tuned to the transition ~1) ~ ~2) and mode
b tuned to the transition ~2) ~ ~3).

With an appropriate unitary transformation to a rotat-
ing frame, we can write the master equation describing
this configuration as

t t t t t t
Ot 2

'
2

= —[Eatbt —E*ab, pj + r(2apa —a ap ——pa a) + rb (2bpb ——b bp —pb b)
2

—ggK p21 ([cr12, ap] + H.c.) —+1IKI,p32 ([cr23, bp] + H.c.)
+ + — + —'s X — + + — ++ y21 12P 12 12 12P P+12 12) + y32 ( 23P 23 23 23P P 23 23)

2 2
(39)

The two cavity modes are damped at the rate r and v~,
and the atomic transitions ~2) ~ ~1) and ~3) —+ ~2) have

linewidths p2z and p32, respectively. The fraction of in-

put to the atom contributed by the parametric oscillator

I

output is given by the parameter rI (rl ( 1).
The observable we take as a measure of two-photon

absorption is the population of the upper state ~3). This
will be proportional to the two-photon absorption rate
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NDPO

Kb
/Kb 732

to produce results of the nature described earlier, i.e.,
a linear intensity dependence of the upper state popula-
tion.

Ak

Ka

Ka

]2)

QKa ~21

]1)

V. TWO-LEVEL ATOM DRIVEN
BY ANTIBUNCHED LIGHT

FROM ANOTHER ATOM

FIG. 5. Schematic diagram of the coupling between
the output modes of a nondegenerate parametric oscillator
(NDPO) and a three-level atom.

as calculated by Mollow [19] provided the population in
this state is very small, so that no saturation effects oc-
cur. This will probably be always valid in present exper-
iments, but if large populations occur, the assumptions
in Mollow's derivation are no longer valid.

In Fig. 6, we plot the population of state ~3) as a func-
tion of (ata), = (btb), (which is directly proportional
to the intensity). The linear dependence exhibited for
squeezed light excitation is contrasted with the quadratic
dependence obtained when the two cavity modes are
uncoupled and driven independently by weak coherent
fields, in such a way as to give (ata), = (btb), .

Our system is not entirely equivalent to that studied
in previous work [17] on two-photon absorption, in that
the atomic states ~3) and ~2) decay only to the states ~2)
and ~1), respectively. However, as we see, the same kind
of intensity dependent behavior is found to occur.

Again, it should be emphasized that the coupled sys-
tems description given by the master equation above re-
quires no assumptions regarding the relative magnitudes
of the atomic state linewidths and the squeezing band-
width. This flexibility with respect to the choice of pa-
rameters has enabled us to consider a number of difFerent
regimes and it is clear that a comprehensive study of this
system would be needed to fully characterize its behav-
ior. However, for this initial study we confine ourselves
to a particular choice of parameters that we have found

0.015

We consider now the numerical analysis of further
problems for which the coupled-systems formulation
of the previous sections is particularly suited and, in
fact, quite essential. Indeed, the first scenario we
shall consider —an atom driven by antibunched light—
constitutes a problem for which solutions were unknown
until the coupled systems approach was applied to it by
Gardiner [4], although Knight and Pegg [18] gave a per-
turbative treatment of a three-level atom driven by anti-
bunched light, aimed at using the three-level atom as a
two-photon spectral analyzer.

As in that work, we begin by taking our source of an-
tibunched light to be a single two-level atom. Histor-
ically, this was the first system studied in the context
of antibunching and it can be regarded as the proto-
typical antibunched-light source. There are still signif-
icant experimental problems to be solved before the cou-
pling of two atoms in a manner corresponding to the
present formulation can, of course, be achieved in prac-
tice. We note, though, that alternative sources of anti-
bunched light, such as cavity /ED configurations which
produce nonclassical light in directed and controllable
beams [20], would be more amenable to efFective cou-
pling with atomic samples. But it must be emphasized
that this paper will demonstrate that an accurate mod-
eling of the details of the system producing the nonclas-
sical light must be carried out before we can say with
confidence that we know what the effect of such a source
would be on a two-level atom.

Given that our source of antibunched light is a two-
level atom, a pumping mechanism must be provided to
excite this atom and induce fluorescence &om which the
source field is derived. The two distinct possibilities that
we shall consider are (i) coherent pumping provided by
incident light from a laser, and (ii) incoherent pumping
provided by finite-bandwidth thermal light.

g 0.010

0
~ w

0.005

0.000

0.00 0.05 0.10

(aa),

0,15 0.20

A. Coherent excitation of the source atom
1. Master equation

The configuration that we shall consider is shown
schematically in Fig. 7, where we illustrate the var-
ious input, output, and coupling channels for the case
of coherent excitation of the source atom. The master
equation describing this situation takes the form

FIG. 6. Population of the upper atomic state ~3) as a func-
tion of the cavity mode photon number (ata)„which is s
direct measure of the incident intensity. Parameters for this
figure are ~ = eg ——2, g = 0.5, p2q

——5, p3q ——10. The
case of excitation with correlated squeezed light is contrasted
with the case of independent coherent excitation of the two
transitions.

Op 1
(20'i po'i —o'i o'i p —

pluri o'i )

(40)

geipi [Eoi —E*oi—,p].
-V'(1 —ei)(1-")»» ([~' ~i p]+ [«' ~2 ])

1 + + — ++ Y2(2 2p 2 2 2p p 2 2)'2
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following the emission, i.e., atom 1 is unable to provide
a driving Geld for atom 2 until it has recovered some ex-
citation. Eventually, of course, photons do appear, and

g2i (t) approaches a value representing zero correlation.(2)

(iv) In contrast, the correlation function gi& (t) tends

to mirror the behavior of gii (t), simply reQecting the
fact that excitation of atom 1 is provided by a coherent
(Poissonian) light field.

Steady-state values of the atomic inversion and polar-
ization are also given in Fig. 8, and it is interesting to
note that the degree of excitation of atom 2 decreases
with an increase in the strength of the coherent 6eld driv-
ing atom 1. This reflects the changing spectral distribu-
tion of the light emitted from atom 1, as shown in Fig. 9,
where we plot the incoherent fluorescence spectra for the
two cases (the spectra are normalized by the respective
total incoherent intensities). The Rabi sidebands that
appear for E = 2 [Fig. 9(a)] are out of resonance with
the transition &equency of atom 2, and hence the power
contained in these sidebands has a limited influence on
the excitation of atom 2.

-6 -4 0 2 4 6

(m —m~)
B. Incoherent excitation of the source atom

FIG. 9. Incoherent Buorescence spectra emitted from
atoms 1 and 2 for the parameters of the previous figure.
Curves (a) and (b) correspond to +sinai E

= 1 and gsipiE =
2, respectively. The spectra are normalized by the total inco-
herent intensity. (Frequency scale in arbitrary units. )

the rate of excitation of atom 1, as evidenced by the de-
crease in the anticorrelation at t = 0 that occurs with an
increase in the coherent driving field strength [Fig. 8(b)].

(iii) This anticorrelation initially becomes more pro-
nounced as t increases. This is because there will be no
further photons to excite atom 2 in the time immediately

I

X. Master equation

We would like to test to what extent the antibunched
nature of the light emitted &om the Grst atom character-
izes the nature of the photon counting from the second
atom. To do this we shall show that we can produce a
light beam from the first atom which has the same inten-
sity and g(z)(t) as that emitted when the light incident
is coherent, but is otherwise quite difFerent.

Let us consider excitation of atom I by a thermal light
field with finite bandwidth. The configuration we shall
model is illustrated in Fig. 10 and the corresponding
master equation is given by

—= ic(N + I) (2apat —atap —pata) + AN (2at pa —aat p —paat)
t

1—/2+rhpi ([o i+, ap] + [pa, o'i ]) + —pi (2o'i po'i —o'i+o'i p —po i+o'i )

1
'/72'Yl+2 ([+2 i +i p] + [p+1 ) +z ]) + Y2 (2&z po2 o2 o2 p poz +z ) '

2
(43)

thermal 8„

~2)

FIG. 10. Schematic diagram of the cou-
pling between a thermally driven cavity and
two atoms (1,2). The various input, output,
and coupling channels are discussed in the
text.
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The finite-bandwidth thermal field is provided by the
output from a cavity driven (through the input channel
denoted by e„)by a broadband, or "white noise, " thermal
field. The cavity output through channel (1 —e„)is cou-
pled to atom 1 through channel eq. Again, this driving
field is not incident upon atom 2. The coupling parame-
ters are given by gi ——(1 —e„)ei and rl2 ——(1 —ei) (1 —e2).

Our choice of a finite-bandwidth thermal field is moti-
vated by the need to produce a g( ) (t) in which the initial
time dependence is quadratic, as in the case of light &om
a coherently driven atom. A broadband thermal field
would inevitably produce an initial linear t dependence.
We shall see that by suitably adjusting the bandwidth of
the driving field, we can closely match correlation func-
tions for the two different cases of coherent and incoher-
ent excitation of the source atom, so that we may carry
out the following comparison between the effects of dif-
ferent kinds of antibunched light.

0.0651 (thermal), 0.0929 (coherent) for Fig. 11(a), and
(crz o2 ), = 0.108 (thermal), 0.341 (coherent) for Fig.
11(b).

These results demonstrate that the photon-counting
properties of the light emitted by an atom driven with
antibunched light depend on properties of the anti-

(2)bunched light other than those specified by gii (t) and

il2pi (o i+a i ), . Indeed, the spectral properties of the anti-
bunched driving field are quite different for the two cases,
as illustrated by Fig. 12 in which we plot the incoher-
ent fluorescence spectrum emitted by atom 1. Properties
displayed in such spectra must evidently be taken into
consideration when characterizing an antibunched light
field with respect to its influence on the purely photon-
counting properties of light emitted by the atoms upon
which it is incident. Indeed the question does arise as to
how one should characterize an arbitrary light beam in
terms of a few parameters.

2. Conapafieon with cobe' ent excitation:
digemnt kinds of antibnnched hght

VI. TWO-LEVEL ATOM DRIVEN
BY A COUPLED ATOM-CAVITY SYSTEM

The intensity of a light beam and fluctuations in the
intensity are properties that one might typically measure,
using photon counting, in order to achieve some degree
of characterization of the light beam. In the case of an-
tibunched light, both as a driving field (from atom 1)
and as the emission induced (on atom 2) by this driv-

ing field, it is interesting to consider to what extent the
photon counting properties of the induced emission are
determined by those of the driving field. It is primarily
for this reason that we want to consider finite-bandwidth
thermal excitation of the source atom, since this allows
us to make a controlled comparison of the effects of two
different sources of antibunched light. In particular, we
can compare the cases of purely coherent [Eq.(41)] and
purely incoherent [Eq.(44)] thermal excitation of atom 1

when the intensity of the light driving atom 2,

1..5
I ~ I I

I
I I II I I I

I
~ I I I

I
I I I ~

I
~ I I I

1.0

coherent ————
thermal

q y (a,+at ) —0.0556

g'; (t)

0.5

0.0

I I I ~
I

I I I I
I

I I ~ I
I

I ~ I \
I

I I I I
1.

In this section, we consider a source of light derived
from a system that is presently at the forefront of theo-
retical and experimental quantum optics research. That

92 71(+1 +1 ) ~ (44) coherent ————
thermal r)2' (a l al )= 0.556

[rl2 ——(1 —ei)(1 —e2)] and the intensity correlation func-
tion,

(2), ( i' i'() i() i) (45)g»(t) — (+ ),
are as close as possible the same for both situations. The
two different driving fields for atom 2 can then be re-
garded as having identical antibunching properties.

Such a comparison is presented in Figs. 11(a) and

ll(b), where we plot the functions g,. (t) for two difFer-(2)

ent values of the intensity g2pi(oi+o i ), emitted by atom
1 into the coupling channel g2p~. By a suitable choice

(2)of parameters, we are able to closely match gii (t) and
i12pi(oi+oi ), for the two cases (such that they would
quite certainly be indistinguishable in an experiment).

The curves describing g,. (t) for (ij) = (12), (21), (22)
are clearly different for the two cases, as are the respec-
tive intensities of light emitted &om atom 2 values o
the excited state population for atom 2 are ~cr2 oz ~, ——

(12)

0.5

(b)

0.0

FIG. 11. Comparison of intensity correlation functions for
coherent and thermal excitation of atom 1. The function
gi, (t) and the intensity q2pi(o. i+oi ) [g2 ——(1 —ei)(1 —E )]2
have been matched for the two cases. Parameters for the two
figures, referring to the master equations (43) and (40), are
(a) thermal: N; = 1.15, N = 0.207, g~ ——0.25, p& ——0.8,

= 0.3125, p2 = 1; coherent: pi ——2, geipiE = 0.25,
0.5, pq —— 1; (b) thermal: r. = 11.5, N = 0.207,

g1 0.2~
y pl —8

y g2 = 0-3125, p2 ——1; coherent: )t'~
——20,

geipiE = 2.5, e2 = 0.5, p2 ——l. (Time scale in arbitrary
units. )
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~ I I ~ equation describing the complete system can be divided
into three contributions:

cip f&p'i &&pl (&p&+
I ~ I

+-
) source ( ) atom ( I couplingBt

(46)

2

-2

The atom-cavity system is driven by a coherent field
entering through one of the mirrors. Losses through this
mirror are assumed to be negligible compared to losses
through the other mirror which serves as the output chan-
nel for the source light. Thus, we write the master equa-
tion for the driven atom-cavity source as

= [Eat —E'a, p) + g[a o, —o, a, p]
(Bpl

) source

8

4

+-p, (2o, poi+ —oi+o, p —poi+o, )

+r. (2apat —atap —pataj, (47)

gB 2

0

-2

(Cil —CO )

where E is the effective coherent field amplitude, g is the
atom-cavity coupling strength, pi is the atomic sponta-
neous emission linewidth, and ~ is the loss rate through
the output mirror.

The second two-level atom outside the cavity may pos-
sibly be different &om the cavity-confined atom, and so
the master equation describing this atom is written as

FIG. 12. Incoherent 6uorescence spectra emitted from
atom 1 and atom 2, for the parameters of Fig. 11(a). The
spectra are normalized by the total incoherent intensity. (Fre-
quency scale in arbitrary units. )

system is a single two-level atom strongly coupled to a
single mode of the electromagnetic Geld inside a cavity.
In spite of its apparent simplicity, this system has been
shown theoretically to possess a rich variety of properties
including squeezing, antibunching, and optical bistability
[21, 22]. Interesting schemes have been proposed for the
generation of Fock states and coherent superposition (or
"Schrodinger cat") states of the field [23].

Recent experiments realizing such an idealized atom-
cavity system [24] bring into consideration the question
of how the light generated by this system might inter-
act with other quantum optical systems. The coupled-
systems approach offers a means of addressing this ques-
tion, taking into account the full dynamics of the atom-
cavity driving system and allowing for the great variety
of statistical properties exhibited by the light in different
operating regimes.

We again consider the inHuence of the source light on a
single two-level atom, as depicted in Fig. 13. The master

1+ '72 (2o2 po2 o2 &2 p po2 o2 j 1 (48)
2

with 4 = u2 —~q, where ~q and u2 are the transition
&equencies for the cavity-confined atom and the external
atom, respectively.

Finally, the coupling between the output light &om the
cavity and the external atom is described by the term

(Bp&

) coupling

= —V'(2 )(n~z) ([o+ ap]+ [p ', ]j, (49)

where g gives the &action of input to atom 2 contributed
by the cavity output, i.e. , it allows for the possibility
that atom 2 may not (and usually will not) be exclusively
coupled to the field emitted &om the cavity.

Again, the master equation can be solved quickly and
efFiciently by numerical integration on a computer. A
comprehensive characterization of the light emitted from
the cavity and incident on the external atom is possible
through straightforward computations (via the quantum
regression theorem) of the intensity correlation function
(f'rom which we may also compute the intensity fluctu-
ation spectrum), quadrature squeezing spectra, and the
Buorescence spectrum.

FIG. 13. Con6guration for a two-level atom driven by
light &om a coherently driven atom-cavity system. The trans-
missivity of the output mirror is much larger than that of
the other mirror, and so the cavity is considered to be single
ended.

Photon statistics

As mentioned above, the light generated by an atom-
cavity system can exhibit a great variety of statistical
properties depending on the particular operating regime.
In keeping with previous sections, we shall concentrate
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on the influence of this light on an atom with regards
to its photon-counting properties. Again, it is in this
area, where higher-order moments of system operators
are crucial, that the coupled-systems approach offers a
new insight.

A particularly interesting range of photon statistics in
the output &om an atom-cavity system is found in the
limit of weak driving fields [22, 25], such that (ata), ((
1. This is illustrated in Fig. 14(a), where we plot the
intensity correlation function for the light emitted &om
the cavity,

(2) (' '() () )
(ata),' (50)

2.0

1,5

0

1.0
V

0.5

0.0

for a range of parameters (such that (ata) (( 1). As the
coupling strength g is increased, we observe a transition
&om antibunched to bunched light, with a "dip" appear-
ing in g(2) (t) at nonzero times. This dip has been studied
previously [22, 25] and arises from the electric field pass-
ing through zero after a photon emission. This is the
result of a subtle interference effect between the driving
coherent field and the atomic dipole (or reaction) field.

We note that the cavity output fields corresponding to
curves (a)—(d) are all nonclassical fields by virtue of the
fact that g( )(0) ( 1. In the case of curve (e) this is
not so apparent, as classical fields can be devised with a
similar behavior. However, it can be shown that classical
fields must satisfy the inequality

(n'o'(t) n(t) n).
l(n'(t)n). l' (51)

(2)( ( 2 2() 2() 2)
~2+~, 2 (53)

The most significant feature illustrated by this figure is
a dramatic enhancement of the antibunching near t = 0.

Given that a photon has been counted from atom 2,
one knows that a photon must have been emitted from
the cavity a time p2 earlier. If the probability for
the emission of a second photon from the cavity is small
after this time delay [e.g. , if g(2)(t) dips close to zero
for t of the order of p2 ], then there is little chance of
atom 2 being excited again immediately following its first
emission. Hence, the intensity correlation function for
atom 2 remains close to zero for an extended length of
time. This means that antibunching in the light emitted
from atom 2 can be enhanced even when the input field

for all t [26]. This inequality is violated at certain times
by the field corresponding to curve (e) and thus it must
also be regarded as nonclassical.

In fact, we find that the violation is very large, since
direct computation shows that to better than 1'Fo

I("(t).(0))I' = I("(o).(o)) I'

so that in this case, the left-hand side of the inequality
(51) is essentially the same as g(2)(t). As can be seen
from Fig. 14(a) in all cases, and in curve (e) in particular,
g(2)(t) can be very much less than 1, thus violating the
inequality (51). It can be seen that the light appears
to be, &om the point of view of second-order statistics,
almost coherent the approximate equality (52) shows
this. Nevertheless, the fourth-order correlation function,
g( ) (t), which refiects a genuine quantum property, is very
far from that of a coherent field, and in a quantum sense,
this field is very different &om a coherent field.

The influence of such light on a two-level atom, or,
more particularly, on the photon statistics of the light
emitted from the atom, is shown in Fig. 14(b), where
we plot

1,0
~ & s &

l
s ~ I ~
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s I s I
l

I I ~ &
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I ~ I I

0.8 I I I I
/

I I I I
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0.2 0.5

0.0
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FIG. 14. Intensity correlation function for the light emit-
ted from the cavity and atom 2. The parameters are ~ = 1,
pi = p2 ——1, gE = 0.04, il = 0.5, and (a) g = 0.4, (b) g = 0.6,
(c) g = 0.8, (d) g = 1.0, (e) g = 1.2. The inset in (b) shows a
magnified view of the region from t = 0 to t = l. (Time scale
in arbitrary units. )

FIG. 15. Intensity correlation function for the light emit-
ted from atom 2. The parameters are K = 1, pq

——1, g = 1.2,
E = 0.033, q = 0.5, and p2 ——1.5, 3. (Time scale in arbitrary
units. )
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is very strongly bunched [Fig. 14, curve (e)].
Even more dramatic eKects can be found by varying

the value of p2, as shown in Fig. 15. For p2 ——1.5,
g~2&(t) is essentially zero until t 0.7, while for p2

——3
the statistics of the light emitted from atom 2 begin to
"follow" those of the incident 6eld, with a pronounced
dip appearing near t 1. For large p2, the behavior of
atom 2 can evidently be likened to that of an idealized
photodetector.

VII. CONCLUSIONS

We have developed the coupled-systems approach in
this paper to such an extent that its full practical utility
can be seen. The next step must be calculations directly
related to practical experiments. We can say with confi-
dence that provided the mechanism for producing a given
nonclassical light beam is known, its effect on any system
can be predicted. However the range of possibilities of
nonclassical sources, systems to illuminate, and effects to
observe is enormous, and we may well 6nd surprises as we

investigate more deeply. We have investigated squeezed
light (both single mode and two mode), antibunched light
of two different kinds, and the highly nonclassical li h.
&om atom-cavity systems. The only major problem one
would expect &om realistic systems is the size of the ma-
trices which could possibly arise, since in all our examples
the number of atomic levels has been small, as have the
number of oscillator states required to model the optical
cavities. It will be necessary to devise better technical
methods where these conditions are not met.
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APPENDIX: NUMERICAL INTEGRATION
OF THE MASTER EQUATION

:—Lp, (A1)

In coupling together a number of quantum optical sys-
tems and formulating a master equation description, we
are invariably faced with a model involving a large num-

ber of basis states. If we do not wish to make any fur-
ther approximations beyond the master equation, then
we must resort to numerical solutions.

In this Appendix, we briefly outline the approach that
we have taken to solving the master equation numeri-
cally. We have found our approach to be a reasonably
practical and efBcient means of obtaining solutions on
modern workstations for problems involving up to 200
basis states. We also believe that its relative simplicity
and generality are worthy of note.

The master equation can always be written in the gen-
eral form

m—= (Hp+ pHt) + ) OgpO~t

where H and (Og, It,' = 1, m} are certain (problem spe-
cific) operators. For a system spanned by N basis states,
these operators can be written as N x N matrices. Re-
peated evaluation of Lp as a function of time constitutes
the major computational effort required in numerically
solving the master equation.

Our approach to the computation of Lp is very direct,
in that it is based simply on the evaluation of the ma-
trix products appearing in Lp. Multiplication of large
matrices is often very time consuming, but here we are
able to make use of the fact that the matrices H and
(Os, k = 1,m} are typically very sparse; in fact, for all
of the cases that we have considered, each matrix OI,
contains at most one nonzero element per row, while H
possesses at most 3 or 4 nonzero elements per row.

More speci6cally, our approach can be divided into the
following series of steps.

(i) Within a program, functions of two integers (in-
dices) are set up to specify the elements of each of the
various matrix operators H and (Oq, k = 1,m} appear-
ing in l,p; the number of functions (operators) and their
precise nature depends on the particular problem we are
considering. Hence, the master equation is essentially
speci6ed entirely in terms of the matrix operators ap-
pearing in Lp. This approach avoids the need to derive
and then program equations of motion governing the evo-
lution of individual density matrix elements. Such a ma-
trix operator-based approach is very straightforward to
follow and to generalize.

(ii) Given these functions, at the beginning of the pro-
gram we store the positions and values of the nonzero
elements of H and (Og, k = 1,m}. For a particular Os
this requires only two (one dimensional) arrays of length

(iii) Noting that pHt—: (Hp) t and Og pO&~

O~ (0&p) t, we reduce all of the matrix operations required
in the evaluation of Lp to matrix products of the form
Hp or Osp. Using the information gained in step (ii)
(regarding the positions of the nonzero elements of the
matrices H and Oy), the various matrix multiplications
are performed in such a way that only multiplications
involving the nonzero elements of H and OA. are carried
out. A caveat to our approach to computing these matrix
products is that we assume nothing about the elements
of p. We have not yet attempted to optimize our ap-
proach in this respect, but it would seem that further
improvement should be possible.

(iv) Finally, given our algorithm for evaluating Lp, we

employ a fourth-order Runge-Kutta integration scheme
(with variable step size) to compute the time evolution
of the density matrix. Typically, we make use of the
NAG (Numerical Algorithms Group) computer routine
D02BBF or the Numerical Recipes routine ODEINT [27].

Our programs are run typically on a DECstation 5000
or IBM RISC 6000 computer. Run times obviously vary
depending on the dimension of a problem and the magni-
tude of the parameters involved. However. for problems
involving approximately 100 basis states, stationary den-
sity matrices are typically obtained in times of the order
of minutes (two time correlation functions require essen-
tially the same amount of time to evaluate).
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