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Properties of a deformed Jaynes-Cummings model
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It is shown that various variants of the deformed Jaynes-Cummings model (JCM) correspond to the
JCM with an intensity-dependent coupling characterized by two additional phenomenological parame-
ters (p, q). The standard JCM is obtained for p =q =1. The quantum collapse and revival effects and the
squeezing properties of a particular variant of the (p, q)-deformed Jaynes-Cummings model are studied
numerically. The model is based on the q-deformed oscillator algebra A A ~—

q A ~A =1 that interpolates
between Fermi-Dirac and Bose-Einstein statistics. If the cavity field is prepared initially in a q-deformed
coherent state, the quantum collapse and revival effects are observed only for q = 1. For q ) 1, the atom-
ic inversion (tr3(t) ) exhibits chaoticlike behavior, which is a feature observed also in other q-deformed
JCM's. Strong squeezing is observed only for small positive and small negative q values. If q =1, the
squeezing is very weak. In the limit q =1+@,with c, «1, the algebra can be interpreted as describing a
small violation of Bose-Einstein statistics in the JCM.

PACS number(s): 42.50.Lc, 42.50.Dv, 32.90.+a

I. INTRODUCTION

The Jaynes-Cummings model (JMC) [1] of a single
two-level atom interacting with a single-mode cavity field
has been the subject of many recent investigations [2] in
laser physics and quantum optics. It has been observed
[3] that the long-time behavior of the model is very sensi-
tive to the statistical properties of the radiation field in
the initial state, revealing a number of unexpected pure
quantum features of the model [2—4]. For example, when
the field mode is initially in a coherent state [3] or in a
general squeezed state [5,6], the mean atomic excitation
energy and the mean photon number exhibit periodic col-
lapses and revivals. The dynamics predicted by the mod-
el has been supported in experiments with Rydberg
atoms in high-Q microwave cavities [7].

Recently, there have been several generalizations of the
JC Hamiltonian in which the interaction between the
atom and the radiation field is no longer linear in the field
variables [8—11].

It has been shown [12,13] that most of the nonlinear
generalizations of the JCM are only particular cases of
the JCM in which the creation and annihilation operators
of the radiation field are replaced by deformed
harmonic-oscillator operators with prescribed commuta-
tion relations. The Hamiltonian of this deformed JCM
has the following generic form:

0 copo'3+coN„+g( A 0 + A o + )

Here 0.3, 0.+ are the standard pseudospin atomic two-level
transition operators with [o+,o ]=2o3 and
[cr3,cr+]=+o~. The operators A, A, and Nz are con-
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structed from the single-mode field operators a, a~, and
N, with [a,a ]=1, [a,N]=a, where N =a a is the num-
ber operator. These operators satisfy the deformed-
oscillator commutation relations:

[A, A ]=[Nq+1] —INq],
[A,Nq]= A,
[At, Nq ]=—A

(1.2)

A =a f(N),
A t=f(N)(at)

1N~= —N, m=1, 2, . . . ,
m

(1.3)

where f(N) is an arbitrary real function of N. It is easy
to see that the commutation relations (1.2) are satisfied if

(1.4)

By specifying m and the form of the function f(N) we
obtain all the models that have been discussed in the
literature so far.

Since the JCM is one of the basic models in quantum
optics, extensions in different directions are of general in-
terest. It is quite possible that deformations character-
ized by (1.2) and (1.3) may be applied to some real physi-
cal systems with nonlinear effective interactions, which

where tN„], is an arbitrary real function of N„. The
knowledge of the function [N„] determines all the prop-
erties of the deformed-oscillator algebra (1.2). Note that
A, A become generalized Bose operators [14,15] if
IN„+ I] = [N„]+1.

The intensity-dependent coupling and the multiphoton
coupling [8—11] are generically described by the follow-
ing set of deformed-oscillator operators:
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explains the attention given to them in the literature.
The aim of the present paper is to study the time evolu-
tion of the atomic inversion and the squeezing of the
JCM with an intensity-dependent coupling characterized
by two additional deformation parameters (p, q) as phe-
nomenological constants to be determined by experiment.
We also present the numerical calculation and the results
for a particular variant of the (p, q)-deformed JCM,
namely, the (p = l, q) case.

f(X)=
N

(2.1)

The choice

II. THE q- AND (p, q)-DEFORMED JCM

The recent development of quantum groups [16] has
stimulated considerable interest in applications of q-
deformed algebraic structures to various physical prob-
lems. Thus Chaichian, Ellinas, and Kulish [17], using a
q-deformed oscillator algebra [18], were the first to gen-
eralize the JC Hamiltonian with an intensity-dependent
coupling by relating it to the quantum su (1,1) algebra.
Similarly, Buzek [19],hoping to extract possible informa-
tion about the physical meaning of the q deformation,
studied the atomic inversion of the standard JCM with a
q-deformed cavity field initially prepared in a q-deformed
coherent state. There also exists a two-parameter defor-
mation of the JCM based on the (p, q)-deformed oscilla-
tor and the quantum u (1~1) superalgebra [20]. The ex-
istence of the two-parameter deformations of the JCM
implies an infinite number of possible one-parameter de-
formations with the standard case [19] corresponding to

It is easy to see that the model of Chaichian et al. [17],
the model of Buzek [19],and the two-parameter model of
Chakrabarti and Jagannathan [20] are only particular
cases of the deformed JC Hamiltonian (1.1) with an
intensity-dependent coupling. In these particular cases
the operators A, A, and E„are given by (1.3), with

m =1 and

commutation relations of the quantum su& ~(1, 1) algebra
become

[K,K+ ]~ q
=K K+ — K+K =[2KO]

p

[KO,K+]=+K+ .
(2.5)

In the limit q =p, the model reduces to that of Chaichian,
Ellinas, and Kulish [17]. Note that su (1,1) is iso-
morphic to su&(1, 1) if Q=v'pq. The relations between
the generators of su& ~(1, 1) and the generators of
su&(1, 1) follow from

(1/2)(N —1)

[X]p q
= [&]~ Q =&pq (2.6)

where

[x] =Q' Q
'

Q-Q-'
is given by

N/2

(K )g,
' (N —1)/2 (2.7)

K+= q (K+ )g,

III. TIME EVOLUTION

To study the influence of the deformation on the dy-
namics, it is necessary to find the corresponding time-
evolution operator U(t)=e ' ', which has been found in

[12] for the Hamiltonian (1.1). For completeness, we

briefly repeat the derivation. The Hamiltonian (1.1) is
split in two parts Ho and H1, in such a way that both Ho
and H, commute with each other and are constants of
motion:

Ko=(KO)g .

Similar isomorphism between su& q(2) and su&(2) has
been found in [25].

Ix„]=[x]„=q (2.2) H=HO+H, , [HO, Hi ]=0,

gives the model of Chakrabarti and Jagannathan [20] as
well as the model of Buzek [19] when p =q. The opera-
tors A, A, and N also satisfy

—qA A =p
AA' —p 'A A=q

in addition to the commutation relations (1.2).
The choice

where

Ho =co(X„+o3),

H,
=2bo, g+(A o +Ho+),

(3.1)

and 6=—,'(coo —co) is the detuning parameter. The evolu-

tion operator U(t) factorizes as

U(t)= Uo(t)U, (t),

I&~] =I&1,', =
2

s'
(2.4)

with

Uo(t ) =e

gives the (p, q )-deformed Buck-Sukumar model [8,9].
With this choice, the operators A, A ~, and N give the
realization of the two-parameter quantum su (1,1) alge-
bra. By writing K = A, K+ = A, and Eo=X+—,', the and

I cot /2—i cutN

I cot /2 (3.2)
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—iH) t
U, (t)=e

sin(fN +,t) sin(fN t)
cos(fN +it ) i5

N~ +1

sin(fN t)—ig A

—igA
fN„

sin(fN t)
cos(fN t)+id

(3.3)

where

f =(b, +g [N„j)'~ (3.4)

is half of the Rabi frequency in the N„subspace.
The matrix elements of the operators a, a,a a, o 3, . . .

are calculated using the wave function
I itt( t ) &

= U( t ) I itt(0) & with a given initial state
ttt =m/(f„+, f„),—

where, according to (3.4)

(3.13)

I

Generally, it is not possible to find a close analytic ex-
pression for the infinite sum appearing in (tT3(t) &, Eq.
(3.11). However, the time ttt needed for the most com-
plete revival of the initial value (o 3(0) & (= —

—,
' in our

case} can be estimated from

I y(0) &
= y g„ ln & I y„. (0) & .

n=0
(3.&)

—(g2+g2t n ]
)1/2

Here lg„, (0) & is assumed to denote the atom in the
ground state

I

—
& ((o

I

—
& =0) and In & to denote the

normalized Fock states of the operators A, A t:

~ 10&=0, INq]ln &=tn] ln &,
(gt)n

(3.6)

with [n]!=[n]tn —1] [1] and [0]!=1.The initial
distribution of A quanta is assumed to be the deformed
Poisson distribution:

Ig. I'= [e, (1~12)]tt A (3.7)

where a= lale'& and e„(x) is the deformed exponential
function:

oo n

o [n]!
The mean number of A quanta at t =0 is

(3.8)

n= g nlg„l =2lal 2"

„=0
(3.9)

n(t}=n —
—,
' —(o3(t) &,

where

(3.10)

The population inversion (o3(t) & —= (P(t)l I tt7(3ti) t& and
the mean photon number n(t )= (f(t ) IN litt(t) & are relat-
ed as

IV. SQUEEZING

The squeezing properties of the JCM have been investi-
gated by many authors [5,6,9—11], in particular after it
has become possible to produce a squeezed electromag-
netic field in the laboratory [21]. States containing a
large amount of squeezing are obtained from the JCM
with the intensity-dependent coupling and with the
multiphoton-transition mechanism. Theoretically, it has
been shown that squeezed states can be constructed as
generalized coherent states using group-theoretical
methods [22]. One of such generalizations is the conjec-
ture [23] that quantum-group coherent states [18] are
natural candidates for describing squeezed quantum
states of matter.

The squeezing properties of the radiation field are usu-
ally studied by introducing two Hermitian time-
dependent quadrature operators:

g =(get~ +gte '~ )/2
(4.1)

a2=(ae'"' —a e ' ')/2i,

satisfying [a, ,a2]=i/2 The corre. sponding uncertainty
relation is (ha, )(ha&) —,', where variances («, 2) are
defined by (Aai 2) =(a] 2&

—(a, 2& . A state of the
field is considered squeezed if either (b,a, } or («2) are
smaller than —,'.

Let us define the relative variances with respect to
(«i,2)'.i = 4:

oo

(o3(t) &
= ——+ g IQ„ I 1 — sin (f„t) .

n=0
(3.11)

S, 2(t)=4(«, 2) —1 .

The squeezing condition then becomes

(4.2)

Relation (3.10) is the consequence of the fact that Ho is
the constant of motion, i.e.,

& @(t) Ia, ly(t) & =(y(0) IH, I@(0)&

(3.12)

S;(t}(0, i=1 or 2.
In terms of photon operators we have

(t) 2(gta &+(a2&e2iut+(gt2&e —2imt

( ( &
icut+ ( gt

&

—itot)2

(4.3}

(4.4}
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and similarly for S2(t). Introducing the notation (a }=e '"' ~)At(t), (a ) =e ' ' ~) A2(t), and (ata ) = Ao(t),
we obtain [24]

S,(t ) =2[ A, (t ) —A, (t )]+4cos'(()[ A, (t )
—A f(t )],

S,(t) =2[A, (t) —A, (t )]+4sin'(([A, (t)—A', (t)],
where, in the resonant case coo=co,

A, (t)=n(t)

(4.5)

=n g—lg„l'sin'(gt&[n j ),
n=O

lg. l'
A, (t ) = la l g [&n sin(gt & [ n j )sin(gt & [ n + 1 j )+&n + 1 cos(gt V [ n j )cos(gt '(/ j n + 1 j )],

o &[n+1}

Ig '
A2(t)=lal g [+n(n+1)sin(gt+[n j)sin(gtv'[n+2})&[n+I }[n+2}

(4.6)

+&(n+1)(n+2)cos(gtV[n j)cos(gtV [n+2})] .

V. THE MODEL

In an attempt to better understand the real nature of
the deformation parameter q, we study numerically
another q generalization of the JCM. Our model is ob-
tained from (2.2) by setting p = 1, i.e.,

N

[&~ j =[&]),q = (5.1)

The q-boson algebra of this model

AA —qA A=1 (5.2)

was studied in different contexts earlier [26—29]. Note
that it defines a new form of quantum statistics which in-
terpolates between Bose (q=l) and Fermi (q= —1)
statistics as q goes from 1 to —1 on the real axis. The
reason for our specific choice of the q-deformed JCM as
given by (5.2) is the possibility of studying the effect of
small violation of Bose statistics in the JCM when

q = 1+@with e ((1. In the limit q = 1, our model reduces
to the original JCM.

Now let us first examine the time evolution of the
atomic inversion (o3(t)) for a field initially in a q-
deformed coherent state (3.7) with [ n j =(1—q")/(1 —

q ).
The time behavior of ( o 3(t ) ) for different values of the
parameter q at the exact resonance (5=0) is shown in
Fig. 1 for la~ =0.8 and q = —0.2, 0.2, and 0.9. When
n »1 and q=l+e with ne(1, the revival time tz is
easily seen to be given by

I

according to relation (5.3), i.e., the revival time may be
increased or decreased over the time expected for q =1.
However, when both n and n lnq are »1, so that
[n j -q "/(q —1) the revival time t„becomes

t„——
q

" (&q + I)/&q —1,

which is very short. The quantum collapse and revival
effects are lost, as shown in Fig. 3 for lal =5 and q = l. 5
and 2.0.

The squeezing properties of the model are shown in
Fig. 4 where the long-time behavior of the function
S, z(t) for P=n/2, lal =.0.8, and different values of the
deformation parameter q are studied. We see that the ini-
tial squeezing disappears quickly for q =1 and reappears
quasiperiodically later with magnitudes between —0.4
and 0. For q small or negative, oscillations are more reg-
ular.

In Fig. 5 we show the time behavior of S,(t) for

0.4,

b
-0.2

t„=t~c (1+ 3ne+ ), — (5.3) -O.B
0 16 20 26

where tJt =(2'/g)+n is the revival time of the con-
ventional JCM when q= l. In Fig. 2 we show that for
lal =5 and q =0.99, q =1, and 1.01 the atomic inversion
( r (tt 3) ) exhibits the quantum collapse and revival effects

gt

FIG. 1. Time behavior of the atomic inversion (cr3(t)) for
lal =0.8 and q= —0.2 (full line), q=0. 2 (heavy line), and

q =0.9 (dotted line}.
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IaI =0.8, P=m. /2, and q
= —0.5. A large magnitude of

squeezing is observed in this case. The long-time
behavior of S, z(t) is also characterized by quasiperiodic
recoveries of squeezing.

VI. CONCLUSION

In this paper we have studied the time evolution and
the squeezing properties of the deformed JCM, which

0.4

corresponds to the JCM with intensity-dependent cou-

pling controlled by two additional parameters (p, q). De-
pending on the choice of deformation function [N„ I we

obtain various q- and (p, q)-deformed JCM's recently
studied in the literature.

As an interesting example of a (p, q)-deformed JCM
we have studied numerically the case (p= 1,q). The q-
boson algebra of this model

AA~ —qAtA =1

0.2-

-0.2-

-0.4-

-o.e
0 20 40 eo 80

~aala I I Iaaa a . . . .....,a.aaaialal(ll, l)III II ill'
v"" --

"'"vta&tl&III 'I Illll()(

100

offers the possibility to investigate small deviations from
Bose statistics when q= 1+@with e«1. Depending on
the value of q we observe different long-time behavior of
the atomic inversion (o3(t)) (Figs. 1 and 2). When

q) 1, the quantum collapse and revival effects are lost
and ( o 3(t ) ) shows chaotic behavior (Fig. 3), which is a
feature observed also in other q-deformed JCM's.

The long-time squeezing properties of the model are
rather chaotic with magnitudes varying between —0.4
and 0. Note that the maximum possible squeezing is —1.
For q )0, the squeezing is quasiperiodic and mainly in
the variable S2(t ) if q =1 and q ) 1, Fig. 4. The variable

S,(t) shows dominant but small squeezing only if q is

0.4

0.2-

0.6

0.4-
(a)

0 v
......salslll ' IIllaja. ......~a(alalill
'""'"(ll

I
IP"" "'"'»I(III)

0.2—

-0.2-

-0.4-

-0,2-

-0.4-

-o.e '

0 20 40
gt

60 80 100
-0.6

0 20 40 60 80 100

0.4

0.2—

(e)

0.6

0.4—
(b)

0
l

, V

... .aaall I I Illa. ..aa.aa(' '"P

0.2-

-0.2-
-0.2-

-0.4— -0.4—

-0.6
0 20 40 60 80 100

-0.6
0 20 40

gt

60 80 100

FICy. 2. Long-time behavior of the atomic inversion (o 3(t) )
for

I a I

=5 and (a) q =0.99, (b) q = 1, and (c) q = 1.01.
FIG. 3. Long-time behavior of the atomic inversion (o,(t ) )

for IaI =5 and (a) q=1.5 and (b) q=2.
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n
I 0—

20 40
gt

60 80 100 20 40

gt

60 80 100

2.6-

30—

10—

„[
0 20 40

gt

I I

60 80 100
0—

0 20 40

gt

60 100

FIG. 5. Time behavior of the S,(t) and S2(t) for ~a~ =0.8,

P= m /2, and q
= —0.5.

1.5-

o.s

-0.6 -—
0 20 40 80 100

FIG. 4. Time behavior of the S, (t) (full line) and S2(t)
(heavy line) for ~a~=0. 8 and P=rr/2, and q &0. The various
curves correspond to (a) q =0.2, (b) q =0.9, and (c) q =2.

may be viewed as a phenomenological constant control-
ling the strength of the intensity-dependent coupling, it
would be interesting to study the properties of the model
in the close vicinity of q =1. By writing q =1+@,with e
very small and ne(1 it should be possible to study small
violation of Bose-Einstein statistics by measuring the re-
vival time ttt and comparing it with t =(2n. / )/+

e s ould also mention the problem connected with
the convergence of the infinite power series in the
definitions of (o3(t)), Ao(t), A, (t), and A2(t). It is

easy to see that the convergence for realrea q requires
~a~ (~In+1I~ in the lines n~ac. Thus we find that for

on iai.
q /(1 —q) and for q ~ 1 there is no restri t'es ric ion

small, Fi . 4a.
lar ema n

g. . However, for small negative q lq vaues,
g magnitude of squeezing is observed, but onl in the

variable S,(t), Fig. 5.
u onyint e

ince, in our approach, the deformation parameter q
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