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Vibrational Schrodinger-cat states
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The optical Schrodinger-cat states are simple realizations of quantum states having nonclassical
features. It is shown that vibrational analogs of such states can be realized in an experiment of double-

pulse or chirped-pulse excitation of vibronic transitions. The possibility of conversion of vibrational
Schrodinger-cat states to chemical-cat states is discussed.

PACS number(s): 42.65.Re, 33.10.Gx, 42.50.Dv

I. INTRODUCTION

The analog of the classical harmonic oscillation in the
quantum mechanics is the coherent state

~
a & defined as

an eigenstate of the annihilation operator b~a&=a~a&.
Both in the position and in the momentum representa-
tions the absolute square of its wave function has a
Gaussian shape. It performs harmonic vibration in time
with an amplitude that depends on the initial excitation.
The superposition of two coherent states

tion and motion during Franck-Condon transitions in
both theoretical and experimental points of view [3,9,10].
In this paper, we shall discuss the possibilities of produc-
ing Schrodinger-cat-like superpositions of the vibrational
states during Franck-Condon vibronic transitions in mol-
ecules or in crystals. As we shall see such states can be
created by two short pulses separated in time or by ap-
propriately chirped single pulses with comparatively long
duration.

II. THE MODEL HAMILTONIAN

situated sufficiently far from each other in the phase
space can be considered as the superposition of two ma-
croscopically distinguishable quasiclassical states called
the Schrodinger-cat state.

Recently, great interest has been paid to such superpo-
sition states in quantum optics [1—8]. Nonclassical
features of Schrodinger-cat states, i.e., squeezing [3],
sub-Poissonian statistics, oscillation in photon statistics,
etc., were discussed rather widely. It was shown [4,6] how
the quantum interference between the coherent states in-
volved in the superposition leads to the occurrence of
nonclassical features. Due to the interference a fringe
pattern appears between the Gaussian bells representing
the coherent states in the Wigner function picture. This
fringe pattern is transformed characteristically when the
positions or the number of the coherent-states changes.
There are several promising schemes to produce nonclas-
sical states of light using the concept of Schrodinger-cat
states [7,8].

A wide interest was addressed to wave-packet forma-

Let us consider a one-vibrational-mode model specified
by the adiabatic Hamiltonians

~ 2 MC02
H; =e;+ + (q+q;)
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the Hamiltonians of Eqs. (2), (3) have the forms
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corresponding to the molecular vibrations in initial (i)
and excited (e) electronic states. Here e, , are electronic
energy levels and m;, vibrational frequencies.

In terms of the annihilation phonon operators b associ-
ated with the vibrational potential of the excited states,
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Mco,
g =9'

' 1/2

r =
—,'ln

COe

The Hamiltonian of the initial state can be diagonal-
ized by the unitary operator

—g( b' —b) r(b —(b ) ]/2

vibrational wave function has the form

l IE(t) 1 ), = f dr exp(i5r)e(r)la(r —t))„„, (14)

where la(r —t) )„his a coherent state with respect to the
phonon operator b and a(r t—) =ge

Here, g and r are displacement and squeezing parameters
correspondingly. The vibrational ground state of the ini-
tial electronic level is

(8)

E (t)=e (t)exp( i 00t)—, (10)

a, (,) is the annihilation operator of the i (e}th electron
level, d,, the dipole matrix element of the electronic tran-
sition, e(t)l and Qo are the envelope function and the
central frequency of the exciting pulse.

Let us assume that initially, at t = —~ the system is in
the ground state li )lo);. After the exciting pulse has
passed according to the first-order perturbation theory
the electronic-vibrational wave function takes the form

where lo), is the vibrational ground state of the excited
electronic level.

The Hamiltonian H'(t) describing the interaction with
the external field has the form

H'(t) = ,'d, ,E (t)—ata, + ,'d,', E'(t—)a,ta, ,

where

III. DOUBLE-PULSE EXCITATION

In the most simple case the exciting pulse is transform
limited with a Gaussian shape

—(tt /2)t —in0t2 t2
(15)

where u is the reciprocal pulse duration. The properties
of the emerging wave function were studied in Refs. [3],
[11]. This wave function, depending on the pulse dura-
tion, corresponds to several of the most important states
in quantum optics. In the case of extremely short pulses
the wave function describes a usual coherent state [Fig.
1(a)], while in the opposite limit of long pulses it is the n

phonon number state [Fig. 1(b}]. Between these limiting
cases it is close to a squeezed minimal uncertainty state
[Fig. 1(c)],or, for longer pulses it is the bananalike ampli-
tude squeezed state [Fig. 1(d)], which also appears to be
an approximate number-phase intelligent state [12] asso-
ciated with Pegg-Barnett phase operator formalism [13].
The vibrational squeezing predicted theoretically in Refs.
[3], [10) has been experimentally found recently [14].

Let us now consider two identical Gaussian-shaped
pulses following each other by an interval T,

Here, l t E ( t ) ] ), is the unnormalized vibrational wave
function of the molecule in the excited electronic state:

l [E(t)] ),= f dr E(r)exp H, (r t)+—e,t——
GO

E(t) e ( 0 (p —(u /2)ft+(T /2)] —iQ [t+(T /2)]
1/4

EQ —(u /2) [t —( Tl /2)] —i Ao[t —( Tl l2) ]
—

imp

1/42' )

xexp ——'H, (r —t) lo), . (12)

Applying Eqs. (7), (8) the wave function of the excited
state Eq. (12) can be transformed to the following form

l [E(t)] ),= f drexp(i5r)e(r)R(r —t)lo), , (13)

where 5 =0+ ( co, —co; ) /2 —00, A = ( e, —e; ) /A'.

In the following sections we shall investigate the prop-
erties of the vibrational wave function of Eq. (13) consid-
ering different types of exciting laser pulses. For the sake
of simplicity we suppose that there is no change of the vi-
brational frequency due to the electronic transition
(ru, =co, =co). In this case, the operator 2 in Eq. (13)
simplifies to a displacement operator D and the excited

here ((t is a possible additional phase difference between
the subpulses.

The vibrational state produced by such a twin pulse ex-
citation has the form

l[u T( 5 tt))I, =e ' u, t+
2

iQ( Tl /2) —
itI5+e Q,

2
(17)

(18)

To investigate the quantum properties of the superpo-
sition state of Eq. (17) it is convenient to consider its
Wigner function

W(a)= fe" " " ']"] ( [u, T, Q] le" e " "l [u, T, ttt) ),1 g (19)
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For extremely short pulses we have coherent superpo-
sition states which are the vibrational analog of the so-
called optical Schrodinger-cat states. The Wigner func-
tion and the time dependence of the absolute square of
the wave function are shown in Fig. 2(a) and 2(b) corre-
spondingly. The Wigner function consists of two bells of
the superposed coherent states and an interference fringe
between them. If the coherent states are far away the
fringe has a lot of well-pronounced peaks. On the con-
trary, if the coherent states are near enough the fringe
has only few peaks. In this case the fringe can partially
merge with the bells and, depending on the phase be-
tween the component states, may decrease the uncertain-
ty of one of the quadratures X'+ =b +b or

i (b —b) b—elow the vacuum level.
For long, strongly overlapping pulses Eq. (17) leads to

the phonon-number state shown in Fig. 1(d).
In the intermediate case of short (typically fem-

tosecond) pulses the Wigner function of this state consists
of symmetrically situated bananalike shapes revolving
clockwise with the vibrational frequency along a circle
with a radius of the shift parameter g. A wavelike fringe
pattern, according to the interference, spins between
them with the same frequency co [Fig. 3(a)]. The graph of
the absolute square of the wave function in Fig. 3 shows
that if the bananalike shapes of the Wigner function have
different projections on the real axis the fringes practical-
ly disappear after the integration over the imaginary axis.
For some time intervals b, t (u) around t =(n + ,' )T/2 (n-
is 0 or positive integer), the fringes survive the integra-
tion. As the duration of the subpulses increases, this in-
terval becomes longer [Fig. 3(b)], resulting in the number
state [Fig. 1(d}].

For small coupling constants (g & ro} the bell-like
shapes are not resolved even for ultrashort pulses. In this
case, the quantum interference results not in oscillations
but in narrowing in the spatial distribution in some inter-
vals of time in every half a period of the vibration.

IV. CHIRPED-PULSE EXCITATION

FIG. 1 ~ The time dependence of the absolute square of the
wave function ~P(q) ~

of the excited vibrational state, produced
by a single Gaussian-shaped laser pulse, during half vibrational
period. Here x and t represent the position and the time, re-
spectively. In (a), in the case of extremely short pulses u &&co,
one can see how a vibrational coherent state osci11ates along a
classical trajectory. For a slightly longer pulse the emerging vi-
brational state is practica11y a squeezed state as seen in (b). In
the case of even longer pulses the vibrational state turns into a
banana state (c) that evolves into the time independent n-
phonon state for long pulses (d).

Let us consider a single exciting pulse with linear chirp
and Gaussian envelope function,

O
—(u l2)ii +i(w l2)t ioot-

27r

Depending on the actual values of the pulse duration
(u ') and chirp (tc} the eff'ective pulse can correspond to
different type of usual pulses from single ultrashort pulses
to the double pulses of the previous section. A con-
venient method to see what kind of effective pulses we
have is the investigation of the spatial uncertainty LY+
of the emerging excited vibrational state. In Fig. 4, the
dependence of the spatial uncertainty arising from the
chirp is shown for a relatively long exciting pulse with re-
ciprocal pulse duration u =0.1m. Typical value of the
uncertainty hX+ in Fig. 4, is about 19 corresponding to
the uncertainty of the number state LY+ =2n+ 1,
n =(g/co) =9. This indicates that the resulting vibra-
tional state is similar to a Fock state and more or less
equally distributed on the circle of radius g on the a
plane. The maxima and minima of the curve have a more
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FIG. 2. The Wigner function (a) and the
time dependence of the absolute square of the
wave function !i(|(q)!' (b) of the Schrodinger-
cat state. The prominent fringe structure be-

tween the coherent states' Gaussian bells of the
Wigner function is caused by the quantum in-

terference between the two parts of the super-
position state. A similar interference fringe of
the wave function can be found around
t =+T/4, otherwise in the bigger part of the
period ! P(q)! consists of two Gaussians
representing the two superposed coherent
states.

interesting origin. A minimal value of the uncertainty
LY+ indicates that the state has a narrow spatial distri-
bution, if it is less than unity the state is squeezed [Fig.
5(a)]. On the other hand, a state with maximal value of
A ~2~X+, i.e., with a large second momentum, is symmetri-
cally distributed on the circle as faraway as possible from
the imaginary axis [Fig. 5(b)]. The state shown in Fig.
5(b) is in fact a Schrodinger-cat state produced by
chirped single-pulse excitation.

The emerging of such states during comparatively long
pulse excitation can be explained as follows. Suppose
that the duration of the exciting pulse covers several vi-
brational periods. Due to the periodicity of the vibration
the effect from the electric field E, =E (r, ) at time t

~
will

be the same as if the same electric field E, was applied at
t, +T. Therefore, the laser pulse E(t) can be substituted
by an efFective "reduced pulse" E(t) which is confined
within one vibrational period

FIG. 3. The time dependence of the absolute square of the wave function! g(q)! of the vibrationa) superposition state formed by
double-pulse electronic-vibrational excitation. Ultrashort pulses form a vibrational state shown in (b), while a little longer pulses

form a squeezed state superposition (a) or banana state superposition (b) states. The oscillation area around t =+T/4 becomes
longer as the exciting pulse duration increases.
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E(t)=
2% J QQ

—(u /2)(t+j T) +i(m /2)(t+jT) —iQO(t+jT) T T(t (
2 2

' (21)

Such an efFective pulse E(t) is shown in Fig. 6, as a function of chirp of the original pulse for reciprocal pulse dura-
tion u =0.1m. As it can be seen, there are values of the chirp w =0.399co and w =0.564co for which the effective pulse
is single peaked marked by 1 [leading to squeezed or banana-shaped states shown in Fig. 5(a)] or double peaked marked
by 2 [resulting in Schrodinger-cat-like states shown in Fig. 5(b)].

V. POPULATION ANALYSIS

Let us consider the excitation spectrum of the transition from the initial to the excited electronic level introduced by
double-pulse excitation. The population of the excited level as a function of the excitation central frequency is propor-
tional to the norm of the unnormalized vibrational wave function of Eqs. (17), (18)

, & I., T, ,5, (() j I(., T„5,(r j &,

2 i III( t
)
—I

2 )

u ~ ~ is(t& —t ) 2g+[e —1)
t) t2e~1/2

(9 /2)[t) +( T] /2)] (Q /2)[t& +(T) /2)] —(u l2)[t2+( T& l2)] —(u /2)[t~ (T~ l2)] —ip

—(u /2)[t2+(Tl/2)] —(u /2)[t) —(Tl /2)] +ittt —(u /2)[t) —(T)/2)] —(u /2)[t2 —(T(/2)]
(22)

Substituting new integral variables g = t, —tz and
2r=t, +t2 into Eq. (22) and evaluating the integral by r
we have

Finally, substituting the expression exp(g e'"~) by its
series

, ( I u, T„5,$ j ~ [u, T„5,(t) j ),
i5g'+g [e' —1]

2)i

(
2 &rgf) —y g Irene

n!
(24)

35.0—

(„Z/4)gZ
—(u /4)(g —T() iIiI—

—(u /4)(g+T) ) iI(I—+e and evaluating the second integral we find
(23)

, ( Iu, T„5,yj (Iu, T„5,(() j ),
30.0—

25.0—

211
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n!
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For the limit of vanishing g=O, Eq. (25) simplifies to

, ( I u, T, ,5,$ j i I u, T, ,5,$ j ),

FIG. 4. The variance of the quadrature operator ~+ at
different values of the exciting pulse chirp for a pulse with re-
ciprocal duration u =0. leo (the coupling constant of the
electronic-vibrational transition g =3'). The minimal (1) and
maximal (2) values of ~+ are related to states that, instead of
longer chirped pulses could have been formed by short trans-
form limited single (1) or double (2) pulses correspondingly.

=4&me /" [1+cos[(()+5T,]j, (26)

while the opposite limit of large g and very short pulses
leads to a periodic solution with a period of the molecular
vibrations. The excited-state population has a maximum
(for / =0) or a minimum (for P = a ) if the delay between
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(b)

FIG. 5. Wigner functions of vibrat&onal

t roduced by comparatively long (re-
ciproca pu se u1 1 duration u =0. leo) pulses wi

linear chirps w =0.399co a) and w-0. co

inimal and(b). (a) and (b) correspond to the minima
maximal values of the quadrature operator un-

certainty + maAX marked as (1) and (2), respec-
tively.

lectric field E(t) as a functionIG. 6. The reduced effective electric e
cal

u =0.1' and the centra requen
h 'b '

1 fto be O~=(n+ —,')co, where co is e v'

q y p t

poo pd eak, leading to a squeez
state shown in a, w i e

Schrodinger-cats-like vibra-2 a double peaked E(t) produces c ro ing
tional states [see Fig. 5(b)].
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FIG. 7. The schematic terms for creation of a chemical su-

perposition state. First either by double or appropriately
chirped single pulse one prepares a vibrational superposition
state on level e. At some moment of its separation by some

secondary pulse(s) one can transfer the molecule into molecule
A represented by the upper left term and simultaneously into
molecule B shown as the upper right term, creating this way a
chemical "Schrodinger-cat" state.

another excited level or dissociated fragments. We sug-

gest a similar experiment with a double-pulse primary ex-
citation leading to a Schrodinger vibrational state on the
level e (Fig. 7). Applying a third pulse when the two
parts of the Schrodinger-cat state are furthest from each
other one obtains a superposition of a molecule with its
fragment. If we demand that the molecular and electron-
ic state be separable, i.e., the state of the molecule be
pure, it is necessary that either the Fourier spectra of the
transform limited third pulse covers the energies of the
two Franck-Condon transitions (e~ A, e~B in Fig. 7)
or the third exciting pulse has two central frequencies
phase locked to each other.

This chemical cat state can lead us very near to the
original paradox of Schrodinger. Let us suppose that this
molecular superposition is superposition of the undam-

aged form of a virus DNA with a denaturalized variant
of the same virus. The resulting "Schrodinger virus
state" would be, in fact, a quantum-mechanical superpo-
sition of a "living" and a "dead" virus.
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