
PHYSICAL REVIEW A VOLUME 50, NUMBER 2 AUGUST 1994

Spontaneous emission near the edge of a photonic band gap
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We study spontaneous emission near the edge of a photonic band gap. Instead of a simple exponential

decay in the vacuum, spontaneous emission displays an oscillatory behavior. A single photon-atom
bound dressed state exhibits a fractional steady-state atomic population on the excited state. For a
three-level atom we evaluate the spectral splitting and subnatural linewidth of spontaneous emission. In
the presence of S—1 unexcited atoms we show that the collective time scale factor is equal to X~, where

P=
3

for an isotropic band gap and /=1 or 2 for anisotropic two-dimensional or three-dimensional

band edges, respectively.

PACS number(s): 42.50.—p, 32.80.—t, 71.55.Jv

I. INTRODUCTION

Spontaneous emission is a fundamental concept in
atomic physics. A new generation of experiments reveals
that spontaneous radiation from excited atoms can be
greatly suppressed or enhanced by placing the atoms be-
tween mirrors or in cavities [1,2]. The spectrum of spon-
taneous emission can display vacuum Rabi splitting in a
resonant high-Q cavity [3].

This modification of spontaneous emission arises from
the fact that a dielectric cavity acts as a local resonance
mode for electromagnetic wave propagation. There is a
long lifetime for radiation injected into the cavity and a
corresponding scattering resonance for radiation outside
of the cavity. The extent of isolation of modes inside the
resonator from modes outside is measured by the quality
factor of the cavity.

A perfect isolation of electromagnetic modes is possible
if a localized state of light can be formed. It has been
suggested that such states may arise in strongly scattering
dielectric microstructures [4]. In a periodic dielectric ar-

ray, this can be facilitated by a synergetic interplay be-
tween the microcavity resonances of individual dielectric
particles and the Bragg scattering resonance of the array.
This leads to the formation of a photonic band gap
(PBG). It was suggested that this would be accompanied
by the inhibition of spontaneous emission [5] as well as
the formation of strongly localized states of light [6]. The
existence of photonic band gaps has been demonstrated
both computationally [7] and experimentally [8]. Fur-
thermore, when an atom with a resonant transition
within the frequency gap is placed in the photonic band-

gap material, it has been predicted that the excited atom
forms a photon-atom bound state [9,10], the optical ana-

log of an electron-impurity level bound state in the gap of
a semiconductor.

In this paper, we derive the dynamical and spectral
properties of spontaneous emission near the edge of a
PBG. Instead of a simp1e exponential decay as it is in the
vacuum, spontaneous emission displays an oscillatory
behavior. A photon-atom bound dressed state occurs
even when the atomic resonant frequency lies outside

(near) the gap. This bound dressed state leads to a frac-
tional steady-state of the single-atom population in the
excited state. For a three-level atom, this fractionalized
state can be probed experimentally. In particular, we
derive the spectral splitting and subnatural linewidth of
spontaneous emission into the third level. We also inves-

tigate spontaneous emission of an excited two-level atom
in the presence of E—1 unexcited atoms. In particular,
we find that the collective time scale factor for emission is
proportional to N~, where P= —', for an isotropic band gap
and )= 1 or 2 for anisotropic two- and three-dimensional
(3D) band edges. This feature is distinct from both cavity
QED [11,12] and the free space cases [13],where the col-
lective scale factors are equal to N' and N, respectively.

II. SINGLE-ATOM SPONTANEOUS EMISSION

We begin by investigating a two-level atom coupled to
the radiation field in a three-dimensional periodic dielec-
tric [9]. The atom has excited state ~2), ground state

~
1),

and resonant transition frequency co2&.

The Hamiltonian of the system in the interaction pic-
ture takes the form

y~~AaHk+t~xgt (a h+12 +21ax } (2.1)

Here d2, and uz are the absolute value and unit vector of
the atomic dipole moment, V is the sample volume,

e& ——ez are the two transverse (polarization} unit vec-

tors, and eo is the Coulomb constant.
Assume the atom is initially on the excited state ~2)

and the field is in the vacuum state. The wave function of
the system then has the form

where cr; =
~i ) (j ~

(i j = 1,2}are the atomic operators; az
and a z are the radiation field annihilation and creation
operators; A&=co& —

coz, is a detuning of the radiation
mode frequency co& from the atomic resonant frequency

co2& and g& is the atomic field coupling constant
1/2

coq)d2(
e&.u& .

2eocox V
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~lb(t}&=b,(t))2, IOJ &+gb, (t)~1, [Aj &e (2.3)

The state vector ~2, IO] ) describes the atom in its excited
state ~2) and no photons present, whereas the state vec-
tor ~1, [A, ] ) describes the atom in its ground state ~1)
and a single photon in mode [A, ].

The time-dependent Schrodinger equation projected on
the one-photon sector of the Hilbert space takes the form

—(1 n—}zcos[(2na b)(—col, /c ) ] . (2.13)

frequency ~2&. In this case, we must perform an exact in-
tegration in Eq. (2.10). For the purpose of discussion we
consider a simple model Hamiltonian for electromagnetic
waves in a three-dimensional periodic dielectric. The
photon dispersion relation cuk is chosen to be isotropic
and satis6es the transcendental equation

4n cos(kL)=(1+n) cos[(2na+b)(lok/c)]

—bz(t) = g—gz, b l 2 (t)e

ih&t
bl z(t}=gzbz(t)e

(2.4)

(2.5)

This is obtained from the exact solution of the scalar
wave equation with dielectric constant [9,16]

The formal solution of Eq. (2.5) is

bl z, (t}=g~f bz(t }' « .

e(x)= g li(x mL },

(2.6) where

(2.14)

Substituting Eq. (2.6) into Eq. (2.4) we have

dt
2

0
b, (t)= —ggz f b, (t')e

The Laplace transform

bz(s) =f e "b,(t)dt,
0

can be found from Eq. (2.7) as

(2.7)

(2.8)

n' 1 if ~x~(—a
0 otherwise. (2.15)

C
arccos

4na
4n cos(kL)+(1 n)—

(1+n )
(2.16)

Here n is the refractive index of the scatterer, a is its ra-
dius, and 2a +b =L is the lattice constant. For the spe-
cial case 2na =b, tok can be found analytically from Eq.
(2.13) as

bz(s) = s+ gg& S+l COz CO~

(2.9)

Converting the mode sum over transverse plane waves
into an integral and performing the angular integral we
obtain

2ldzl & k dkbz(s}= s+
0 COk[s+E(COk COzl)]

lory symmetrizing cok given in Eq. (2.16) to all directions
in k space, we produce photonic band gaps at the spheres
~k~ =me/L with m=1, 2, 3. . . . Near the band-gap
edges the density of states becomes singular [9], the
atom-Beld interaction becomes strong, and we can expect
dynamical features of spontaneous emission decay. For
k =ko =m/L the d—ispersion relation near the band edge
co, can be approximated by [9]

(2.10)

Here, A is the cutoff in the photon wave vector [14] since
photons of energy higher than the electron rest mass mc
probe the relativistic structure of the electron wave pack-
et.

For a broadband of the density of states, such as in
vacuum, one can use the Wigner-Weisskopf approxima-
tion [15]. That is, only the pole contribution of s(s -+0+ )
in the integral of Eq. (2.10) is retained:

tok =co, + A(k —ko)

where A =—to, /ko.
Using Eq. (2.17), we evaluate Eq. (2.10) as

(s i5)'—
bz(s)= 3 zs(s —i5)' —(iP)

Here

(2.17)

(2.18)

1
lim

0+ S + l(COk N~ )

1= —iP
6) CO~

+n5(tOk —Ol., ) .

(2.11)

7/2 2
N2( 6

6m @otic
(2.19)

Substituting Eq. (2.11) into Eq. (2.10) yields

bz(s) =[s+t62, +—,
'
yz, ] (2.12)

and 5=coze —co, . The amPlitude bz(t} is given by the in-
verse Laplace transform

where 5&& and y2& are the usual Lamb shift and spontane-
ous emission rate, respectively [15]. Clearly, the spon-
taneous emission decay is purely exponential.

The %igner-%eisskopf perturbation theory, however,
is inadequate when the density of electromagnetic modes
changes rapidly in the vicinity of the atomic transition

bz(t) = . f e"bz(s)ds,
27Tl e—i oo

(2.20)

where the real number e is chosen so that s =e lies to the
right of all the singularities (poles and branch point} of
function bz(s). The inverse Laplace transform of (2.18)
yields
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2

b2(t) =2a, x, e +a&(xz+y2)e
pxlt+i5t px t+i6t

where

px t+i6t—g a~yj[1 4—(QPx,2r )]e
j=1

(2.21)

x, =(~,+~
—

( g e i(7r/—6) g i(1r/6)
)

i(77—/4)
s

( g ei(m/6) g i(—m/ 6) i(3+/4)

(2.22)

(2.23)

(2.24)

1 j2 l/3
1 4 $3

2 2 27 p3
(2.25)

Xj
a, = (j WiWk;j, i, k =1,2, 3),

a length scale given by the localization length before be-
ing Bragg rejected back to the emitting atom. The
photon-atom bound state inside the band gap has been
predicted in Ref. [9]. We emphasize here that the
photon-atom bound dressed state is present even when
the resonant atomic frequency co2, lies outside the band

gap. This bound dressed state leads to the fractionalized
steady-state atomic population in the excited state
I', =lim, „~b2(t)~ =4~a, x, ~

[Fig. 1(b)]. Clearly, the
nonzero steady-state atomic population in the excited
state is present even when the resonant atomic fre uenc

11ies outside the band gap, where the density of states
is not equal zero. The atomic level splitting, oscillatory
behavior, and fractionalized steady-state atomic popula-
tion in the excited state are all direct consequences of
strong interaction between the atom and its own localized
radiation when the atomic resonant frequency lies near

y =Qx, (j=1,2, 3),

(2.26)

(2.27)

2&Fr x ' (Pr )'" (2.28)

and 4(x) is the error function, whose series and asymp-
totic representations are given in Ref. [17]. For 5=0 one
can find from Eq. (2.22) that Px i =iP Tha.t is, the value

P given in Eq. (2.19) can be considered as a resonant fre-
quency splitting, an analog of the vacuum Rabi splitting
in cavity quantum electrodynamics [3). For large pt, the
terms of higher order than (pt) /t can be ignored, and
Eq. (2.21) reduces to

2px,, t+ibt px t+i5t
bt(t) =-2a, x, e ' +at(xz+y )e

0. 6-

O. 0-.
0

/ '~ .r

I
I

I /

/

B 6 B j 2 I 6

—3P(2+ &3 )

[1+(2+&3)']"'
It follows that these dressed states occur at frequencies
co, —P Im(x i ) and ~, —P Im(x 2 ). In the case when co&, is

far inside the gap so that the inequality (2.29) is not
satisfied we have y2 = —x2 and the second term in Eqs
(2.21) and (2.28) vanishes, i.e., there is no true atomic lev-
el splitting. Clearly froin Eq. (2.28), the branch point
contribution yields the "quasidressed" (not truly ex-
ponential) state at the band-edge frequency m . The in-

C

terference between the dressed states and "quasidressed"
state leads to oscillatory behavior of spontaneous emis-
sion decay. This is depicted in Fig. 1(a). This
phenomenon is quite distinct from a simple exponential
decay which occurs in the vacuum.

Using Eqs. (2.22) —(2.25) we can also show that
x, =i ~x, ~

. That is, the corresponding dressed state at
the frequency cu, —p~x, ~

is the photon-atom bound
dressed state with no decay. A photon which is emitted
by the atom in this dressed state will exhibit tunneling on

(2.29)

Clearly from Eqs. (2.21) and (2.28) the atomic level splits
into dressed states caused by the strong interaction be-
tween the atom and its own radiation. Using Eqs.
(2.22) —(2.25), it follows that yz =xz if

Ps1. 0-

0. 8- (b)

0. 6-

0. 2-

O. 0-—l & —10

FIG. 1. (a) Atomic population on the excited state,
P(t)= ~bz(t)~ as a function of pt and for various values of de-

tuning from photonic band edge 8= —10p (solid curve),
8 = —4P (dotted curve), 8 = —P (long-short-dashed curve), 6 =0
(long-short-short-dashed curve), 8=p (long-dashed curve), and
8= 10p (short-dashed curve). (b) Steady-state atomic population
P, =lim, „~bi(t)( =4(a, x, ~

as a function of 5/p.
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the edge of a perfect photonic band gap. These proper-
ties are strongly dependent on the detuning of the reso-
nant atomic frequency ~2& from the band-edge frequency
co, . Physically, the atom exchanges energy back and
forth with its own radiation, backscattered after tunnel-
ing a localized distance. This in turn is a result of the
vacuum Rabi splitting of the atomic level by the photonic
band edge. One level of the doublet is a localized state
within the photonic band gap, whereas the other level is a
resonance in the extended state continuum. The frequen-
cy of oscillations is directly determined by the magnitude
of the atomic level splitting. It is distinct from the well-
known Jaynes-Cummings oscillations which arise from
the interaction of the atom with an isolated cavity or
dielectric mode [18,19]. In our model, no defect mode is
present.

The excited-state population density can be measured
via absorption of a probe beam at difFerent decay times
[20]. Alternatively, the nature of the fractionalized excit-
ed state can be probed by spontaneous emission from the
excited state into the third level I3) of a A, configuration
(Fig. 2). Assume that the transition frequency mzz lies far
from the gap, so that we can use the Wigner-Weisskopf
approximation (2.11) for spontaneous emission I2)~ I3).
The Laplace transform bz(s), Eq. (2.8), can be found in
this case as

(s t 5)1/2
bz(s) =

s(s —i5)' +(i5z3+ —,'yz3)(s —i5)' —(ip)

(2.30)

where 5z3 and yz3 are the Lamb shift and spontaneous
emission decay of the transition I2)~I3). The inverse
Laplace transform of Eq. (2.30) gives exactly the same
form of bz(t) in Eq. (2.21) except 5 in Eq. (2.25) must be
replaced by 5+5zz (i/2)yz3. —The influence of the third
level I3) on the dynamics of spontaneous emission is
shown in the Fig. 3. Clearly, oscillations in spontaneous
emission decay occur even for relatively large values of
y23.

The spectrum of spontaneous emission I2) ~ I3) also
exhibits interesting properties. This spectrum is given by

P(t)
1 . 0

0 . 8

0 . 6

0. 4.

0 . 2

0 . 0 0 6 1 5

where bz(s) is given in Eq. (2.30). In Fig. 4 we plot spec-
trum S(to&) for difi'erent values of 5=toz& ro, Cl—early. ,
the spectrum S(co&) splits into a doublet with peaks at
toz3

—Plm(x f ) —5 and coz&
—PIm(xz) —5. This sPlitting

is analogous to the Autler-Townes splitting [21]. In our
case, however, there is no external field and splitting is
caused entirely by strong interaction between the atom
and its own radiation field. The linewidth of the left side-
band can be much smaller than yz& (solid curve in Fig. 4),
the natural linewidth of the spontaneous transition

FIG 3. A. tomic population on the excited level I2) of a
three-level atom as a function of Pt for 5= —P, Lamb shift
5/3 0 and for various values of the spontaneous emission decay
rate y~, =O (short-long-dashed curve), yz, =O. Ip (long-dashed
curve), y2, =0.2P (short-dashed curve), and y»=0. 5P (solid
curve).

S(coz )—I bz [ i(coz —
coz3) ]I— (2.31)

0--—6

FIG. 2. Three-level atom of a A, conSguration. The transition
frequency co» lies near the band edge while co» is assumed to be
far from the gap.

FIG. 4. Autler-Townes spectrum S(co&) of spontaneous emis-
sion I2)~ I3) (in a system of the resonant frequency splitting
p=1) for 52, =0, y2, =1, and for various values of detuning
from the band edge 5= —0.5 (long-dashed curve), 5=0 (short-
dashed curve) and 5=2 (solid curve).



1768 SAJEEV JOHN AND TRAN QUANG

III. INFLUENCE OF X—1 UNEXCITED ATOMS

In this section we investigate spontaneous emission of
an excited two-level atom in a presence of N —1 unexcit-
ed atoms in a PBG. We limit our studies to the Dicke
model [22] in a perfect photonic band gap. The Hamil-
tonian (2.1) for the multiatom case is given by

where

P3/2 NP3/2

The inverse Laplace transform of (3.8) yields

PJy
b2N(t) =2a, x le

(3.9)

H =/&&2ala2+l&yg2(a2Jl2 —J2)al ),

where

E
J,, = g oI,"' (ij =1,2) .

k=1

(3.1)

(3.2)

t3N / x2t+tSt
+a2 x2+y2 e

3—g ajy [1 4(}//—PN / xj t )]

13N~~3x ~t+i 5t
Xe (3.10)

(3.3)

The state vector ~J,M=1 —J, IOj } describes the atomic
system in the state ~J,M=1 —J) and no photons
present, whereas the state vector ~J,M=1 —J, [A, j ) de-
scribes that all atoms are in their ground state and a sin-

gle photon in mode [t(,j.
The time-dependent Schrodinger equation projected on

the one-photon sector of the Hilbert space takes the form

—ib, ~t
b2N(t)—= &N gg2—.

b lN 2.(t)edt
(3.4)

iA&t
b, „(t)=—&Ng b2N(t)e (3.5)

Equations (3.4) and (3.5) have the same forms as Eqs.
(2.4) and (2.5) except the factor 3/N. The Laplace trans-
form b2N(s) can be found from Eqs. (3.4) and (3.5) as

2d2 2to2ld2«k dk

6~ e&fg 0 t'ok[$+l(cok —co2l)]

Assume that the atomic system is initially in the
symmetrical superradiant state [22] ~J,M=1 —J) with
only one atom being in the excited state and the field is in
the vacuum state. Here

~ J,M ) states are the normalized
eigenstates of operators J3=

—,
'

(J22 —J„) and
J =—2'(J2lJl2+Jl2J23)+J3. The wave function of the

system than has the form

lt}'t(t) ~N=b2Nl J,M=1 —J, [Oj }

where the qualities x, y, and a (j=1,2, 3) are given in
Eqs. (2.22) —(2.27) except that P in Eq. (2.25) is replaced
by N p. Clearly b2N(t) has the same form as b2(t) ex-
cept with the factor P of a single atom case replaced by
N P. This means that in the presence of N 1 un—excit-
ed atoms, the resonant frequency splitting increases by
the factor of N / For 5.=0 one can find from Eq. (2.33)
that pN /x2= —,'(i&3+—l)pN / Clear. ly the rate of
spontaneous emission is also increased by a factor of
X . In the case when atoms are identical but distin-
guishable, an e6'ect similar to "radiation trapping" pre-
dicted for the case when atoms are in a cavity [11]may
occur. That is, the system will not emit its energy as the
number of atoms Ã becomes very large, and the energy is
trapped in the single atom.

IV. COLLECTIVE SCALE FACTOR
IN ANISOTROPIC BAND GAPS

The collective time scale factor X was found in pre-
vious section using the isotropic model of a PBG de-
scribed by Eq. (2.16). The exponent of N, however de-
pends sensitively on the dimension of the phase space oc-
cupied by band-edge photons of vanishing group velocity
and the resulting band-edge singularity in the overall
photon density of states. In an isotropic band edge, we
have overestimated this phase space using the entire
sphere ~k~ =sr/L. For a real dielectric crystal in three di-
mensions with an allowed point-group symmetry, the
band edge is associated with a specific point k=ko rather
than the entire sphere

~
k~ =

~ko~ [6]

(3.6) cok=-co, + A (k —ko) (4. 1)

In free space with a continuous broadband density of
state we can use the Wigner-Weisskopf approximation
(2.11}.The atomic population in the excited state is given
by

(3.7)

The dispersion relation (4.1) leads to a photonic density
of states p(co) at a band edge co, which behaves as
(to —ot, )' ' ' for co~to, . Here d is the band-edge di-
mension [9]. In this section we discuss briefiy the
influence of the anisotropic dispersion relation on the col-
lective scale factor. The Laplace transform b2N(s} in this
case can be found as

That is, the collective time scale factor is proportional to
N.

In the case when the atomic resonant frequency lies
near the edge of a PBG, we used the dispersion relation
(2.17) and the Laplace transform b2N is found as where

dNa dk
(2~) col [s + l (col to2l }]

(4.2)

(s i 5)'/2—
g)1/2 ( p )3/2

(3.g)
2 2

CO2ld 2l

2eoA
(4.3)
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and d=1,2, 3 is the band-edge dimension. Using the
dispersion relation (4.1) and changing variables of in-

tegration to q=k —kc we can write Eq (4.2) in the form

b2„(s)= s
iNa d q
(2n. ) ( co, + Aqz)[Aq' i—s]

(4.4)

For simplicity we assume ~, =co2, , i.e., the atomic reso-
nance frequency lies at the edge of a PBG. The integral
in Eq. (4.4) can be evaluated by contour integration and

b2tt(s) is given by

when s ~ -N, that is the collective scale factor is equalN, the same as for the isotropic band gap. For 2D
band edges, bztt(s) has a pole s -N with a weak logarith-
mic correction, i.e., the collective scale factor is approxi-
mately equal to N as for free space. In the 3D band-edge
case, bzN(s) has a pole s -N As a result the collective
scale factor becomes X . The last case may lead to the
intensity of superradiance being proportional to N, that
is much more intense than Dicke superradiance. This
problem will be discussed in detail elsewhere.

V. CONCLUSIONS
Na)

S t if d=l

bzx(s) = &c
s —t'Na ln2

S
if d=2

where

a
2~A co~

aa2=
4m Aco,

a
4srA ~2+to

aa4= 4~~'"~,

I

[s iNa&—+&i Na4&s ]
' if d =3,

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

In summary, we have derived a number of features of
spontaneous emission from two and three-level atoms in
which one transition frequency lies near the edge of a
PBG. These include temporal oscillations, fractionalized
steady-state atomic population on the excited state, spec-
tral splitting and subnatural linewidth. The influence of
N-1 unexcited atoms has also been considered. In partic-
ular the collective time scale factor is equal to N~, where
P= —', for an isotropic bandgap and {{1=1or 2 for aniso-
tropic 2D or 3D band edges, respectively. These are all
direct consequences of photon localization as embodied
in the photon-atom bound state. One possible experi-
mental realization of these efFects may arise from laser-
cooled atoms in the void regions of a photonic band-gap
material. Another possibility is the use of an organic im-
purity molecule such as pentacene. It has been shown
that such molecules exhibit very narrow linewidths when
placed in appropriate solid hosts [23].

Dynamical properties of spontaneous emission can be
studied in detail from the inverse Laplace transform of
bzN(s) given in Eq. (4.5). The most important distinction
of anisotropic band edges from isotropic bandgaps is in
the collective scale factor, which we can evaluate directly
from Eq. (4.5). For 10 band edges, b2tt(s) has a pole
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