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Spontaneous excitation of an accelerated atom: The contributions of vacuum
fluctuations and radiation reaction
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We consider an atom in interaction with a massless scalar quantum Seld. We discuss the structure
of the rate of variation of the atomic energy for an arbitrary stationary motion of the atom through
the quantum vacuum. Our main intention is to identify and to analyze quantitatively the distinct
contributions of vacuum Buctuations and radiation reaction to the spontaneous excitation of a
uniformly accelerated atom in its ground state. This gives an understanding of the role of the
different physical processes underlying the Unruh effect. The atom's evolution into equilibrium and
the Einstein coefBcients for spontaneous excitation and spontaneous emission are calculated.

PACS number(s): 42.50.Lc, 04.62.+v

I. INTRODUCTION

Spontaneous emission is one of the most prominent ef-
fects in the interaction of atoms with radiation. Two
heuristic pictures have been put forward to explain why
an atom in an excited state loses energy and radiates.
The 6rst one is inspired by classical electrodynamics: It
is well known that, classically, accelerated electrons in
atoms radiate. The radiation field reacts back on the
atom, causing a loss of atomic energy. This is called
radiation maction. However, the fact that the rate of
change of an atom's internal energy is always negative
leads to the instability of classical atoms with unaccept-
able consequences.

In a semiclassical theory, on the other hand, where
quantum-mechanical atoms interact with a classical ra-
diation field, only stimulated emission and absorption are
predicted; spontaneous emission is not present. Accord-
ing to such a theory, excited atoms in the vacuum do not
radiate. This has lead to the idea that spontaneous emis-
sion is connected with the quantum fiuctuations of the
radiation 6eld. In particular, spontaneous emission has
been interpreted as stimulated emission induced by vac-
uum fluctuations [1]. When making the argument quanti-
tative, however, the following question arises: since stim-
ulated emission and absorption have equal Einstein B co-
efBcients, why do vacuum fluctuations not induce "spon-
taneous absorption" [2]?

Quantum field theoretical investigations of the roles
of vacuum fluctuations and radiation reaction in sponta-
neous emission have been carried out since 1973 [3—7]. A
Heisenberg picture approach has always been used, since
it allows an easy comparison of quantum-mechanical and
classical concepts. In these studies, the notion of vac-
uum fluctuations was connected with the free solutions
of the Heisenberg equations for the quantum field, i.e.,
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the 6eld that is present even in the vacuum. Radiation
reaction was incorporated via the source field, which is
the part of the field caused by the presence of the atom
itself. Surprisingly, it turned out that seemingly the con-
tributions of vacuum fluctuations and radiation reaction
can to a large extent be chosen arbitrarily, depending on
the ordering of commuting atom and field variables.

Dalibard, Dupont-Roc, and Cohen-Tannoudji (DDC)
argued in [8] and [9] that there exists a preferred op-
erator ordering: only if one chooses a symmetric order-
ing are the distinct contributions of vacuum fluctuations
and radiation reaction to the rate of change of an atomic
observable separately Hermitian and able to possess an
independent physical meaning. Using this prescription,
one 6nds that for an atom in an excited state, vacuum
fluctuations and radiation reaction contribute equally to
the rate of change of the atomic excitation energy. For an
atom in the ground state, on the other hand, the two con-
tributions cancel precisely. There is a balance between
vacuum fluctuations and radiation reaction that prevents
transitions &om the ground state and ensures its stabil-
ity. In the same way, the formalism of DDC can be used
to study separately the effects of the two physical mecha-
nisms in a variety of situations. For example, there have
been investigations of the radiative properties of atoms
near a conducting plane [10,11] or of atomic level shifts
in cavities [12]. All these considerations refer to an atom
at rest.

In this paper, we want to study the modified efFects of
vacuum fluctuations and radiation reaction for an accel-
eruted atom coupled to a quantum 6eld in free space. It
is well known that a uniformly accelerated atom in its
ground state is spontaneously excited even in the vac-
uum [13) (cf. also [14)). This process, which is called the
Unruh egect, is connected with the emission of a parti-
cle [15,16]. The intimate relation between spontaneous
emission and the Unruh efFect has been noted previously
[17].

To understand the physical mechanisms responsible for
the spontaneous excitation of an accelerated atom, it ap-
pears promising to apply the methods developed in the
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theory of spontaneous emission for inertial atoms to the
case of accelerated atoms. We will identify the contri-
butions of vacuum Huctuations and radiation reaction to
the rate of change of the atomic Hamiltonian in the accel-
erated case. As we will see, the efI'ect of vacuum Auctua-
tions on the atom is changed by the acceleration whereas
the contribution of radiation reaction is completely unal-
tered. This leads to the following picture: for an atom in
an excited state, there will be spontaneous emission with
a modified transition rate. For an atom in the ground
state, however, the balance between vacuum fluctuations
and radiation reaction is no longer perfect. Due to the
modified vacuum Huctuation contribution, transitions to
an excited state become possible even in the vacuum:
this is the Unruh eKect. In working out the respective
details, we substantiate in a quantitative way the intu-
itive picture described by Sciama, Candelas, and Deutsch
[18] generalizing the discussion in Ref. [19]. We mention
that as far as the Unruh efkct is concerned, an alter-
native discussion based on a classical notion of vacuum
fluctuations has been given in [20].

The paper is organized as follows. In Sec. II we in-
troduce the model of an atom coupled to the radiation
field. For simplicity, we chose a two-level atom and a
scalar quantum field. In Sec. III the Heisenberg equa-
tions of motion are derived and formally solved. In Sec.
IV we identify the contributions of vacuum Quctuations
and radiation reaction to the rate of change of an ar-
bitrary atomic observable. We generalize the formalism
of DDC [9] to an atom in arbitrary stationary motion.
The special case of the evolution of the atom's excitation
energy is considered. It is applied in Sec. V to the spon-
taneous emission &om an inertial atom in vacuum and in
a heat bath. In Sec. VI we treat a uniformly accelerated
atom and discuss the physical reasons for its spontaneous
excitation. Finally, in Sec. VII we derive the evolution of
the atom's energy and the Einstein coe%cients for spon-
taneous emission and the Unruh effect.

Hp(t) = jd k~go, -o~.

a and a& are the creation and annihilation operators for
k

a "photon" with momentum k. H~(t) governs the time
evolution of the field in t,, the inertial time of the labo-
ratory system. We change to the new time variable ~.
Heisenberg's equations of motion show that the Hamil-
tonian with respect to ~ is given by

Hy (r) = d k u)g a-ag —.
k y kd&'

The decomposition of the field operator in terms of cre-
ation and annihilation operators reads

PItx) = f, d kgb ug(t)e'" + a-(k)e '"'

where gg = [2urg(27r) ]
We couple the atom and the field by the scalar coun-

terpart of the electric dipole interaction

Hl(7. ) = pR2(~)p(z(~)).

The coupling is eff'ective only on the trajectory z(r) of
the atom. p is a coupling constant which we assume to be
small. B2 is a matrix that connects only difI'erent atomic
states: R2 ——3i(R —R+), where R+ ——~+)(—~

and
R =

~

—)(+~ are the atomic raising and lowering opera-
tors. The operators B3 and By obey angular momentum
algebra: [R3, Ry] = kRy, [R+,R ] = 2R3.

The Heisenberg equations of motion for the dynamical
variables of the atom and the field can be derived from
the Hamiltonian H = H~ + HF + Hl.

d—R~(r) = +i(uoRp(r) + ipse(z(r))[R2(r), Rp(r)], (6)
d7.

II. INTERACTION OF A TWO-LEVEL ATOM
AND A SCALAR QUANTUM FIELD

R3(r) = ipse(z(r)) [Rz (r), R3(r)],
d'T

We want to study the interaction of a two-level atom
and a real scalar massless quantum field as a simplified
model of quantum electrodynamics. z ++ (t, z) are the
Minkowski coordinates referring to an inertial reference
frame. We consider an atom on a stationary trajectory
z(w) = (t(r), z(w)), where r denotes its proper time.
Throughout the paper, the time evolution of the coupled
system will be described with respect to ~. The station-
ary trajectory guarantees that the undisturbed atom has
stationary states which are called

~

—) and ~+), with ener-

gies —2~0 and + &~0 and a level spacing coo. The Hamil-

tonian that governs the time evolution of the atom with
respect to r can then be written in Dicke's [21] notation

H~(7.) = ~oR3(r),

where R3 ——3~+)(+] —
2~

—)(—~

and &= c = 1.
The &ee Hamiltonian of the quantum Geld which gen-

erates the time evolution with regard to t is given by

d—-(t( )) = — - -(t( ))k k I).

d7.
+')"R3(r)[&(z(r)) as(t(&))]—. (8)

In Fq. (8), t must be considered as a function of w.

We prefer to leave the commutators occurring in (6)—
(8) unevaluated because this will simplify the physical
picture in the later sections.

The solutions of the equations of motion can be split
into two parts: (i) the free part, which is present even
in the absence of the coupling, and (ii) the source part,
which is caused by the interaction between atom and field
and contains the coupling constant p:

Rg (r) = R~~ (r) + R~ (r),
R3(r) = R3~(r) + R;(r),
;(( )) = „'-(t( ))+ '„-(t(.))
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Formal integration of the equations of motion yields

Rt (7-)—R~ (7- )e+'~o~ ol

T

R~(~)= i', dv'P (z(r'))[R2(r')) R~(r)],
TO

We will apply their formalism to the problem of a two-

level atom coupled to the radiation field and generalize
it to arbitrary stationary trajectories z(v) of the atom.

The Heisenberg equations of motion for an arbitrary
atomic observable G(7 ) is given by

d G—(7 ) = Z[IIg(T), G(T)] + 1[JIB(7), G(r)].

Rs(v)= Rs(~p))

T

R&(w) = i p, d7' p (z(7 ')) [R2 (&'), Rs (&)],
Tp

(10)

We are interested only in the part of & due to the in-
teraction with the field:

= ipP(z(v)) [R2(~), G(~)]. (14)
(dG(~) ~

) coupling

a'-(t(~))= a'-(t(~0))e ' """""
I(. A:

T

a'„-(t(r))= ip dr'Rz(w')[P (z(w')), a (t(r))].
Tp

In the source parts of the solutions, all operators on the
right-hand side have been replaced by their free parts,
which is correct to first order in p. From (ll), we can
construct the free and source part of the quantum field

d (t(r)Z(r)) =, J d kgb a((k0)e' '(')

t (0)
$)dz(T)+'k4lr—t(T)]

lc

T

p'(t(r), z(r)) =iy, dr'R (2r')[p (z(r')), p (z(r))].
Tp

(12)

III. VACUUM FLUCTUATIONS
AND RADIATION REACTION

We assume that the initial state of the field is the vac-
uum ~0), while the atom is prepared in the state ]a),
which may be ]+) or

]
—). In principle, the time evolu-

tion of the mean value of any atomic observable G could
be calculated as the solution of a coupled set of Heisen-

berg equations analogous to (6)—(8). Our aim, however,
is to identify and separate on the basis of (12) in the rate
of change of G(v) the contributions that are caused by
two distinct physical mechanisms: (i) the change in G
produced by the fluctuations of the quantum field which

are present even in the vacuum —this part is related to
the fme part of the field and is called the contribution of
the vacuum fluctuations to

&
—and (ii) the change in G

due to the interaction with that part of the 6eld which
is caused by the atom itself. This is the contribution of
rudiation reaction to

&
and is connected with the source

part of the field.
The task of identifying the contributions of vacuum

fluctuations and radiation reaction in the dynamics of a
small system coupled to a reservoir has been considered
by Dalibard, Dupont-Roc, and Cohen-Tannoudji [8,9].

In order to identify the contributions of vacuum fiuctua-
tions and radiation reaction, we must investigate in (14)
the effects of P~ and P' separately.

At this point, however, an operator ordering problem
arises. The feature that all atomic observables commute
with P is preserved in time because of the unitary evo-
lution. This is not true for 4)~ and P' separately. The
reason for this is that the source part of P picks up con-
tributions of atomic observables during its time evolu-
tion and vice versa [cf. (9)—(11)].Because (14) contains
products of atomic and field operators, we must therefore
choose an operator ordering in (14) when discussing the
effects of Pt and 4)' separately:

(dG 7. )
) coupling

+(1 —~) [R2(~), G(~)]4(z(~))),
(15)

with an arbitrary real A. Different operator orderings will
lead to the same final results for physical quantities on
the left-hand side of (15), but will yield different inter-
pretations concerning the roles played by vacuum fluctu-
ations and radiation reaction [3—7]. However, DDC no-
ticed that there exists a preferred ordering prescription:
they showed that only if a symmetric ordering (A = 2)
of atomic and field variables is adopted, (dG/d7 )v& and
(dG/dr)&& are both Hermitian. They argued that only
under this condition, the effects of vacuum fluctuations
and radiation reaction can possess an independent phys-
ical meaning.

Adopting the symmetric ordering prescription in (14),
we can identify the contribution of the vacuum ftuctua
talons to —„dG

= -iV (&'(z(~))[R2(~), G(~)]
(dG(~) l 1.
(, d7- ) i ~ 2

+[R.(-),G(-)14'( (-))), (16)

ip(4' (z(+))[R2(r) G(7 )]
(dG(~) )) 1.

+[R.(~) G(~)]&'(z(~))) (17)

which goes back to P~, and. the contribution of radiation
reaction,
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which goes back to the source part P' of the field. We
note that if the initial state of the Geld is not the vac-
uum but some large reservoir of P particles (photons),
the expression (16) represents the reservoir fiuctuations
(dG/dr) &+. The vacuum can be regarded as a particular
reservoir.

IV. RATE OF VARIATION
OF THE ATOMIC ENERGY IN VACUUM

FOR ARBITRARY STATIONARY MOTION

We are now prepared to identify the contributions of
vacuum fluctuations and radiation reaction in the evolu-
tion of the atom s excitation energy, which is given by the
expectation value of H~ = uoRs(r). The free part of the
atomic Hamiltonian is constant in time so that the rate
of change of KA consists only of the two contributions
obtained from (16) and (17):

!

(dH~(r) l = —ia op(P (x(r) ) [R2 (r), Rs (r)]
)vF

+[R,(r), R, (r)]P (x(r))), (1S)

i~o p(0'(x(r)) [R2(r) ~ Rs(r)]
(dH~(r) l 1,

) RR

We can separate R2(r) and Rs(r) into their free part
(zeroth order in p) and source part (first order in p,);
cf. (9) and (10). In a perturbative treatment, we take
into account only terms up to order p . We will also
express all terms on the right-hand side of (18) and (19)
in terms of the free parts R2f, Rz~, and P~. This will
allow us to describe the atom's evolution with respect
to simple statistical functions of the atom and the Beld.
Therefore we use, for the corresponding source parts, the
expressions (9)—(11) from the solutions of the Heisenberg
equations above. We obtain, up to order p,

(0!- !0)Ra = wo p
dH~(r)

07
dr' y (x(r), x(r'))

x R27', R~7, R, ~ . 23

The statistical functions C and y of the Geld are well

known from linear response theory [22]. The symmetric
correlation function of the field is given by

&'(x(r), x(r')) =- 2(ol(4'(x(r)) &'(x(r'))}Io). (24)

It is sometimes also called Hadamard's elementary func-

tion and describes the fluctuations of the quantum Geld

in the vacuum state. The linear susceptibility of the Geld

is defined as

X'(*( ) *( ')) = - (0I[&'(*( )) &'(*( '))llo) (25)

and is also known as a Pauli-Jordan or Schwinger func-
tion. According to (23), it describes the linear response

of the averaged rate "
d on fluctuations of the atom.

Note that the statistical functions of the Beld have to be
evaluated along the trajectory of the atom.

We do not intend to deal with the operator dynam-
ics of Eqs. (22) and (23). Instead we are interested in
the evolution of expectation values of atomic observables.
Accordingly, we take the expectation value of Eqs. (22)
and (23) in the atom's state Ia). We can replace with

(7) to order p the commutator uro[R2(r), Rs(r)] with

i&—"R2 (r) and obtain as a central result

dHA ~

(0!$~!0) = 0, the first line of (20) does not contribute
and we obtain

(o! Io) v~ = ~ol
dHA (r)

k
(22)

i~o~(& (*(r))-[R2(r),Rs(r)]
dH~(r) 'l 1. f g y

dr )vz 2

(dHA(r) )
J RB

+[R, (r), R, (r)]P (x(r)))
1——(dp P
2

x[R'. (r') [R'(r) R'(r)1]
1—(dp P

dr'(0 (x(r)) & (x(r')))

(20)

dr' [4'(x(r)) @'(x(r'))]
2

x (R2 (r') [R2 (r), Rs (r)]
+[R2(r) R3(r)]R2(r ))

where curly brackets denote the anticommutator and we
have used the fact that &ee atom and field variables com-
mute.

We are interested only in atomic observables. Conse-
quently, we perform an averaging over the field degrees
of freedom by taking the vacuum expectation value of
(20) and (21). The right-hand sides of (20) and (21) con-
tain only free operators so that only Pf is affected. Since

T

= 2ip' «' & (x(r) ~ x(r ))
Tp

dKA v.

(27)

C (r, r ) = —(a!(R2 (r), R2 (r') }Ia),

~"(r r') = Z(al[R2(r) R'(r')]Ia).

(2s)

where (. .) = (O, a! . Io, a). The rate of change of the
atom's excitation energy is expressed entirely in terms
of statistical functions. The statistical functions of the
atom are defined analogously to (24) and (25):
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C is called the symmetric correlation function of the
atom in the state ia), y its linear susceJ)tibility. It will

be important that C and y do not depend on the
trajectory of the atom, but characterize only the atom
itself.

The physical picture implied by Eqs. (26) and (27) can
be expressed in the following way [8]: (i) the field Huctu-
ates and acts on the atom, which is polarized (contribu-
tion of the vacuum Huctuations), and (ii) the atom Huc-

tuates and perturbs the field, which in turn reacts back
on the atom (contribution of radiation reaction). The in-
timate relation between dissipative and Huctuative pro-
cesses provides an example for the Huctuation-dissipation
theorem [23,2]. Because of the symmetric operator order-
ing chosen in Sec. III, only the commutator appears in
y+ of (24). Accordingly, the radiation reaction contribu-
tion (27) does not depend on the state of the field. This is
plausible since radiation reaction is connected only with
the part of the field radiated by the atom and justifies
again the choice of the symmetric ordering.

Finally, we want to give the explicit forms of the sta-
tistical functions of the atom and the field, which will
be useful in the following sections. We obtain, for the
statistical functions of the atom,

emission from an inertially moving atom. This will pro-
vide a basis for the discussion of the role of vacuum Huc-

tuations and radiation reaction in the more general case
of accelerated atoms in the following section. We con-
sider an atom with constant velocity v" on the trajectory

t(r) = qr, x(r) = z, + vier, (34)

where p = (1 —&)2) ~. The statistical functions of the
field are easily calculated from their general forms (32)
and (33):

c(() ( ))=—,(, . ),

1

7 —7

~ (*(r) *(&')) =—,~(r —r')
4~(r —r') (36)

The contributions (26) and (27) to spontaneous emission
can now be evaluated using the statistical functions of
the atom, which are given by (30) and (31). With a
substitution u = v —7' we get

C"(r, r') = —,

' ) l(ala,'(0)lb) I

(
t J~&(&IT—T ) + 4l~&(TbT ) )

J~

X"(r,r') = —,
') l(ala,'(O)lb)l

X (
I Pg&I(TbT) ——d~& t(&TT) i

J~

(3o)

2

) = &, ) ~ tl(~l&&,'.(O)lb)l'

1
du . +((u+ie) (u —ie) )

(37)

where u g
——u —~g and the sum extends over a complete

set of atomic states.
The statistical functions of the Geld are well known

from special relativistic quantum field theory [24] with

reference to Minkowski coordinates t and z. They can
be written as functions of r

1 1
8~2 ((at+ i.)2 —i»]2

1

(b,t —ie)' —i»]2) '

x (~(&) *(r')) = — - [~(+t+ ]+~i)8~ iazi
-~(&t —I»I)]

(32)

V. SPONTANEOUS EMISSION
FROM A UNIFORMLY MOVING ATOM

In this section, we apply the previously developed for-
malism to the well known problem of the spontaneous

where b, t = t(r) —t(r'), Dx = x(r) x(r'), and P denot—es
the principal value.

+OO

x dub'(u)e' '",

—): 2~.'bl(ol&2(0)l»l' ~ (39)

This result possesses an interesting interpretation [8].
Consider Grst the case when the atom is initially in
the excited state (ia) = i+)). Then only the first
term (u~ ) urs) contributes. The vacuum Huctuations
lead to a deexcitation of the atom in the excited state:
(dII~(r)/dr)&& ( 0. This conforins with the old heuris-
tic picture of spontaneous emission as stimulated emis-
sion induced by vacuum fluctuations [1). If, on the
other hand, the atom is initially in the ground state
(ia) =

i
—)), there is only a contribution from the second

where we have extended the range of integration to infin-
ity for suKciently long times T —7p. We have also used
the identity h(u) = —ub'(u).

After the evaluation of the integrals we obtain for the
contribution of the vacuum Huctuations to the rate of
change of atomic excitation energy
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term (m ( us). We see that vacuum Huctuations tend to
excite an atom in the ground state: &dH~(r)/d~) && ) 0.
Note that, if only the effects of vacuum fluctuations are
taken into account, both spontaneous excitation and de-
excitation occur with equal frequency. Although sponta-
neous excitation does not occur for inertial atoms, this re-
sult should not come as a surprise if we take the heuristic
picture seriously: since stimulated excitation and deex-
citation have equal Einstein B coeKcients, vacuum fluc-
tuations should stimulate atomic excitation as well as
deexcitation [2].

The contribution of radiation reaction to the change in
the atom's energy becomes

ldH~ (T) p2 (1
d~, , 8' q2

~p
I

-~p+ &H~(~)) I. (44)

Note that no factors of p appear in (44) because we took
care to express all observables in the rest frame of the
atom. The solution of (44) is

1 1
&H~(~)) = —-~p+

l &H~(0)) + -~p
l

e ",
2 l 2

(45)

the familiar exponential decay to the atomic ground state
&Hg) = —zurp. The spontaneous emission rate is given= —1

by the Einstein A coefBcient of the scalar theory:

In order p, we can replace (dp(Rs) by &H~) and obtain
a differential equation for the atomic excitation energy:

+ ). -~.'sl(nl&2(0)lb)l' ~. (4o)
p 2

A = —QJp.8' (46)

The effect of radiation reaction always leads to a loss
of atomic energy, (dH&(7)/d7)&& ( 0, independent of
whether the atom is initially in the ground or excited
state. This can be compared with radiation reaction in
the classical theory, which has the same effect and results
in the instability of classical atoms.

The total rate of change of the atomic excitation en-

ergy is obtained by adding the contributions of vacuum
fluctuations and radiation reaction:

(41)

We observe that the effects of both contributions for an
atom in the ground state (&u ( urs) have equal magni-

tudes but opposite sign so that they exactly cancel:

(42)

In the ground state of an atom there is a balance be-

tween vacuum fluctuations and radiation reaction which

establishes that no spontaneous excitation to higher lev-

els is possible for inertial atoms [8,19], only transitions
to lower-lying levels (spontaneous emission) occur. This

balance also ensures the stability of the ground state: an

inertial atom in its ground state does not radiate. Equa-
tion (42) shows, on the other hand, that for an atom in

the excited state, the effects of vacuum fluctuations and

radiation reaction add with equal contributions to the
familiar phenomenon of spontaneous emission.

To calculate the Einstein A coeKcient for the sponta-
neous emission of inertially moving atoms, we simplify

Eq. (42) by noting that

) ~.'sl&ola~~(0)lb)]' + ) ~.', ]&~la, (0)lb) I

~~

(43)
&ala, (o) l~)

How would the above results have been modiGed if the
initial state of the field were not the vacuum, but a bath
of thermal radiation, described by a density matrix p =
exp( —PH) with P = 1/kT? The formalism can be easily
generalized to that case. The vacuum expectation value
in (22) and (23) has simply to be replaced by a reservoir
average. The statistical functions of the field (24) and
(25) are then replaced by thermal Green's functions

& (*( ) *( ')) = -T(~(&( ( )) &( ( '))))

Xp(~(~) *(~')) = 2T (~[&(*(r)) &(*(~'))])

(47)

(48)

&p(*(&) &(~')) = x (*(~) *(~')) (4S)

Hence we have to deal only with the symmetric cor-
relation function C& of the Geld. It can be generally

shown that C is connected to the vacuum symmetric
correlation function by [cf. [25], Eq. (2.111)]

) C~(t(~) + ikP, x(~), t(~'), x(~')). (5o)

This function appears in the expression (26) for the con-
tribution of reservoir fluctuations to the change of the
atomic energy. The terms k g 0 in (50) represent the
inHuence of the thermal heat bath.

Let us consider an atom at rest in a thermal bath of

where the trace extends over the Geld degrees of freedom.
The contributions of reservoir fluctuations and radiation
reaction to the rate of change of the atom's excitation
energy can be found according to (26) and (27) with the
formulas (47) and (48) for the finite temperature statis-
tical functions of the Geld.

The thermal Green's functions (47) and (48) can be ex-
pressed in terms of the statistical functions for the vac-
uum. As mentioned above, the linear susceptibility of
the Geld does not depend on the state of the Geld and is
therefore equal to that of the vacuum:
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+ 'k~+a=-

1
+

(r —r~ + ikP —ce) ') (51)

We will not discuss here the evaluation of (26) with the
thermal Green's function (51). This will be postponed to
below, where a comparison with the case of a uniformly
accelerated atom can be made.

VI. UNIFORMLY ACCELERATED ATOM

l,et us now generalize the preceding discussion to the
case of a uniformly accelerating atom. We go back to the
results of Sec. IV and specify the atom trajectory by

radiation. As we have seen, the contribution of radiation
reaction remains unchanged and is given by (40). To
determine the contribution of reservoir Huctuations, we

have to calculate the finite temperature symmetric cor-
relation function. If we evaluate (50) for an atom at rest
in the thermal bath [trajectory (34) with v = 0, p = 1],
we obtain

of an accelerated atom.
The contribution of the vacuum Buctuations to the rate

of change of the atomic Hamiltonian becomes with (26)

—) ~-~l(al&'(0)I»l'

OO OO 'L&~ g tCe
x du

(u+ 'k + 2ie)2

~ZQP~Q tC

+
(u+ 2 'k —2ie)'

Again, we have extended the range of integration to in-
finity for sufBciently long times. It is interesting to com-
pare (55) with the corresponding expression (37) for the
inertial atom. There, only the term k = 0 was present.
The remaining terms describe the modification due to
the acceleration. The integrals can be calculated using
the residue theorem, leading to a geometric series for the
k summation. The resulting expression for the rate of
change of atomic excitation energy caused by vacuum
Quctuations is

de 7.

1. 1
t(r) = —sinhar, z(r) = —coshar, z(r) = y(r) = 0,a a

(52)

where a is the proper acceleration. The statistical func-
tions of the field for the trajectory (52) can be evaluated
from their general forms (32) and (33). After some alge-
bra, we obtain

(1 1
xl —+

(2 e o .b 1)
—) . ~.'sl(al&2(0) Ib) I'

xl —+
(2

W

(56)

a'
& (*(r) *(r')) =-

(sinh [2(7 —r') + iae]

+ 2.sinh [z(r —r') —iae])

. t' 1

Sz '((r —r'+ 'k+ 2ie)2

(r —r'+ 'k —2ie)2)
'

& (&(r) &(r')) = —— . , ~(r —r').
8z sinh 2 (r —r')

(53)

(54)

To obtain the second line, Eq. (4.3.92) from Ref. [26] has
been used. The stationarity of the motion of the atom is
reflected by the fact that only the time difference r —r'
appears. Comparison of (53) with (51) and of (54) with
(49) and (36) shows complete agreement of the statistical
functions C and y of the field for a trajectory with
a =const through the vacuum on one hand and an inertial
trajectory which is at rest with respect to a thermal bath
with temperature T = aj2vr on the other. This well-
known fact has consequences for the separate discussion
of the innuence of vacuum Quctuations and of radiation
reaction on the spontaneous excitation and deexcitation

2
= '—) .~-~l(al&.'(0) lb) I'

x du b(u) e' "".
sinh 2u

After the evaluation of the integral, this becomes

(57)

2

) . -~.'~l&al&2(0)lb&l'
2m( 2

+ ). —~.'~l(al&2(0)l»l (58)

It is remarkable that this is the same expression as (40)
for an inertial atom, leading again always to a loss of en-

We note the appearance of the thermal terms in addition
to the inertial vacuum Huctuation terms 2. As for an
inertial atom, vacuum Huctuations tend to excite an ac-
celerated atom in the ground state and deexcite it in the
excited state. Both processes are supported with equal
magnitude and are enhanced by the thermal terms com-
pared to the inertial case.

Turning to the contribution of radiation reaction, we
find with (27)
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ergy. A similar situation is known in classical electrody-
namics: a uniformly accelerated charge on the trajectory
(52) is not subject to a radiation reaction force, although
radiation is emitted [27]. Thus the fact that the contribu-
tion of radiation reaction is not changed in the uniformly
accelerated case is perhaps a property of the particular
trajectory (52).

Finally, we add the contributions of vacuum fluctua-
tions (56) and radiation reaction (58) to obtain the total
rate of change of the atomic excitation energy:

( = ——): .' I( I&'(0) lb) I

tot

x/1+
e ~a~ot —1)

(59)

For an atom in the excited state, only the term ~
contributes. It describes the spontaneous emission of an
accelerated atom. Compared to an inertial atom, it is
modified by the appearance of the thermal term. If, how-
ever, the atom is in the ground state, there is a nonzero
contribution from the term u ( ug. For an atom in its
ground state in uniformly accelerated motion through the
Minkowski vacuum there is no perfect balance between
vacuum fluctuations and radiation reaction. Accordingly,
transitions to the excited state [(dH~(r)/dr)t, t & 0) be-
corne possible even in the vacuum. This spontaneous ex-
citation is the Unruh effect [13], which has now been
traced back to the interplay between the two underlying
physical efFects. The often stated conjecture that the Un-
ruh e8'ect goes back to the vacuum fluctuations has been
made precise in this sense.

Note that for an atom in the ground state, the atomic
energy can only increase. A loss of energy &om the
ground state, which would have fatal consequences for
the stability of the atom, is not possible according to
(59).

VII. EVOLUTION OF THE ATOMIC
POPULATION, EINSTEIN COEFFICIENTS

Analogous to the procedure in Sec. V, we can simplify
Eq. (59) to obtain a differential equation for (H~),

1 ~o
(H~(r)) = ——(uo +

2

1 Mo+
I (Hx(0)) + —~o-

e= '+1)
p (1 1

x exp ——~o
I

+
4K (2 e ~D 1) (61)

We see that the atom evolves with a modified decay pa-
rameter towards the equilibrium value

1 (dp
(H~) = —-~o+

2 e —~0+1 (62)

representing a thermal excitation with temperature T =
a/2x above the ground state. It is remarkable that the
atom obeys Fermi-Dirac statistics in thermal equilibrium.
This is due to the fermionic nature of a two-level system
(for example, the atomic raising and lowering operators
obey the anticommutation relation {B+,B f = 1).

The identification of the Einstein coefficient is more
complicated than in the inertial case, since we have now
two competing processes that both occur spontaneously.
There are two Einstein coefficients Ag and At, which
describe the transition rates corresponding to these pro-
cesses.

Einstein coefficients are defined with respect to rate
equations for the atomic populations. Consider therefore
an ensemble of N atoms. Let N~ denote the number of
atoms in the ground state, N2 the number in the excited
state, with N = N~ + N2. The rate equations describing
the two spontaneous processes above are

with

1 ( 1 1
(H„) = —

~

--~oX, + ~oiV, ~.
2 2 )

(64)

The solution of the rate equations

1 Ag
(H~(r)) = ——u)o + u)o t+

r 1 Ag+
I (H~(0)) + -~o-
l 2 At+Ay )
—(At+Ay) (65)

shows also an equilibrium state different from the ground
state and a modified decay constant. Comparing (61) and
(65), we can identify the Einstein coefficients A~ and At
for an accelerated atom:

p' f 1
As ———~o

~

1+
8x ( e ~o —1)

(66)
1

+
I
-+ .-. 1(H~(r))(2 e ~' —1)

(60) p 1
Ag = —uo

8~ e —':
Its solution gives the time evolution of the mean atomic
excitation energy

The coeKcient A~ for spontaneous emission &om an ac-
celerated atom can be compared to its inertial value (46).
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We see that the rate of spontaneous emission is enhanced
by the thermal contribution. The transition rate Ag for
the spontaneous excitation, on the other hand, is given
by (46) weighted with the thermal factor. It vanishes as
a —+ 0.

VIII. CONCLUSIONS

%e have studied atoms in arbitrary stationary m.otion
through the vacuum of a photon field. For an atom ob-
servable G, the total rate

&
with regard to the proper

time r of the atom can be split into two distinct rates
going back to vacuum fiuctuations acting on the atom
and to radiation reaction. This splitting is unique if one
demands that the two processes should separately have a
physical meaning. %hether spontaneous processes may
occur for the different states of the moving atoms depends
on the balance between the two physical processes. The
corresponding symmetric correlation function and linear
susceptibility of the field are simply obtained by calcu-
lating the respective special relativistic Green's functions
with respect to the proper time along the atom's trajec-
tory.

We computed the two contributions to the variation
of the mean energy of a state of a two-level atom for
uniform motion and for constant acceleration. For the
ground state of an atom in uniform motion, the in6u-
ence of vacuum ffuctuations is exactly canceled by the
radiation reaction. If an atom moves with constant ac-

celeration, this perfect balance is disturbed. The radia-
tion reaction remains unchanged, but the vacuum Huctu-
ations are modified by an additional term with thermal
spectrum of temperature T = ha/2zck = 4 x 10 2oK

(a/9. 81 ms 2). This has two consequences: spontaneous
excitation from the ground state becomes possible (the
Unruh efFect) and the Einstein coefficient for spontaneous
emission &om the upper state is changed. These eEects
are now traced back quantitatively to the two underlying
physical processes.

The calculations presented above can be easily tran-
scribed to other physical situations. The change to an-
other atom trajectory in Minkowski space is obvious. In
addition, continuous efForts over the past two decades
have provided us with a plethora of worked out vac-
uum expectation values of products of free-field oper-
ators (Green's functions) for different fields in various
curved space-times and in situations with boundaries.
We mention black holes [28], moving mirrors [25], cos-
mic strings [29], and Robertson-Walker universes [25). In
all these cases, the two distinct effects underlying spon-
taneous processes of atoms on certain trajectories can be
worked out following closely the scheme presented above.
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