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We investigate the nonlinear dynamics of dual-frequency-pumped four-wave mixing in both the
normal- and the anomalous-dispersion regime of optical fibers. We compare the exactly integrable
dynamics of a truncated system of nonlinear ordinary differential equations for the first four modes
of the multiwave mixing interaction with the phase-plane projections of the numerical solutions of
the nonlinear Schrodinger equation.
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I. INTRODUCTION

Electromagnetic waves at different frequencies para-
metrically mix in nonlinear optical media thereby gener-
ating new frequencies. Among media with cubic nonlin-
earity optical fibers are ideal candidates for investigat-
ing parametric mixing. Although strong conversion has
been reported in the experiments [1], early theoretical
studies [2] were limited to the linearized (i.e. , weak con-
version) regime of the interaction. With this assumption,
the growth of frequency components at the expense of one
or more pump waves is analyzed in terms of coupled lin-

ear ordinary difFerential equations and pump depletion is
neglected. This approach may be appropriate in the limit
of relatively low pump powers or, equivalently, large dif-
ference of phase velocities between the waves, which leads
to a mismatched interaction with moderate amounts of
frequency conversion. This is the usual situation that
occurs in fibers whenever strictly monochromatic waves

are considered. In fact, in this case the presence of the
stimulated Brillouin scattering (SBS) [3] for input powers
above a certain threshold value leads to pump depletion
and prevents the observation of a large amount of fre-

quency conversion in the fiber. On the other hand, when-
ever pulsed or modulated waves are used, the SBS thresh-
old may considerably grow and large frequency conver-
sions are then possible. Note that, although in the fol-

lowing theoretical analysis we will consider for simplicity
monochromatic waves and neglect SBS, the results that
we obtain are still valid for example with relatively long
pulsed pumps; that is, whenever the pump pulse time
width is long when compared with the inverse frequency
separation between the pump channels. In order to assess
the impact of four-wave mixing as a basic limitation to
the operation of fiber-based telecommunication systems
[4—8], one should consider the so-called strong-interaction
regime [9—ll], where the input power in adjacent wave-

length channels is relatively high and the &equency sepa-
ration between the channels is kept to a minimum value.

In single-mode fibers, the investigation of four-wave

mixing with depleted pumps may be achieved by nu-

merically solving the nonlinear Schrodinger (NLS) equa-
tion that governs the wave interaction process (under
certain assumptions that limit the applicability of this
equation). Although numerical solutions may be easily
obtained with standard procedures, an important insight
in the mixing process that may be important in the de-

sign of telecommunication systems may be provided by
the availability of exact solutions. Analytical solutions
of the NLS equation for time confined or periodic initial
conditions are available in principle by the inverse scat-
tering method [12,13]. Nevertheless, a simple physical
insight into the main dynamical properties of the para-
metric process (e.g., the spatial period of the frequency
conversion) may be obtained by assuming that the qual-
itative properties of the solutions may be described by
truncating the field envelope to a small number of fre-

quency components [14]. Indeed, it has been shown that,
under certain restrictive conditions, an integrable three-
mode truncation may satisfactorily describe the nonlin-

ear dynamics of the modulational instability of a single
wave in a fiber [15—18]. The simple one-dimensional trun-
cated system may mimic the dynamics that is associated
with the homoclinic manifolds of the infinite dimensional
NLS partial differential equation (PDE) [19—22]. More-
over, mode truncations are also capable of providing an
accurate description of the dynamical behavior of the nu-

merical solutions of nonintegrable PDE's, such as for ex-

ample the two coupled NLS equations that govern pulse

propagation in a birefringent fiber [23,24] or the driven-

damped NLS equation that describes the operation of a
modulational instability fiber laser [16,25].

In this work, we consider the multiwave mixing process
that is pumped by two monochromatic waves at difFer-

ent frequencies in a single-mode optical fiber. We show

that the nonlinear process of energy exchange among four

equally spaced and symmetric frequency components of
the field (i.e. , two equally intense pumps and their first
order sidebands) is exactly solvable in terms of Jacobian
elliptic functions. This finding rules out the possibility
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of chaotic evolutions in the symmetric (or antisymmet-

ric) four-wave mixing process. Note, however, that the
presence of any asymmetries, such as for example un-

equal pump amplitudes or third order dispersion, breaks
the integrability of the four-wave mixing nonlinear cou-
pled equations, which leads to chaotic power exchange
between the waves [26]. We restrict our attention here
for simplicity to the symmetric (or antisymmetric) case,
which reduces the four-mode problem to the interaction
between two waves, the pump, and the sideband mode.
We are interested in the characterization of spatial insta-
bilities in this two mode integrable model. We intend to
explore the relationship between these instabilities and
the chaotic behavior that is observed in truncations that
involve a number of modes that is larger than two [27—
32]. Moreover, we consider the effect of the size of the
mode truncation by means of the comparison between the
four-mode dynamics and the behavior of the numerical
solutions of the NLS equation. Clearly these numerical
solutions permit to include, in principle, an arbitrarily
large number of frequency modes. Based on the com-
plete integrability of the NLS equation, one would then
expect (and indeed find [33]) that the chaotic behavior of
the finite-dimensional models tends to disappear as the
size of the truncation grows larger. Nevertheless, as we
shall see, the numerical solutions of the NLS equation
still exhibit a complex multiperiodic exchange of energy
among several &equencies. This irregular behavior, if it
is not strictly speaking chaotic, definitely lies at the bor-
derline of chaos and it is worth further investigations, for
example by means of the spectral transform method as
it was done in Ref. [34].

In order to make contact with previous work, let us re-
call that the modulational instability that is induced in
a fiber by two intense pump waves that interact through
cross-phase modulation was earlier discussed in Ref. [35].
In that work, the coupled NLS equations that represent
the nonlinear propagation of the field for &equencies close
to the &equencies of the pumps are considered. This de-
scription is valid in the limit of large &equency separa-
tion (or phase velocity mismatch) between the pumps. In
this case, four-wave mixing may be neglected. We con-
sider here the opposite limit, namely the case where the
&equency separation (and the phase mismatch) between
the pumps is relatively small. The symmetric (or anti-
symmetric) dual-&equency input pump propagates either
in the normal or in the anomalous dispersion regime of
the fiber. We include in the analysis a sideband seed of
arbitrary relative intensity and phase. It has been shown
that, whenever the description of this four-wave mixing
process is based on coupled ordinary differential equa-
tions (ODE's) involving three sideband pairs (including

the pumps in this count), periodic energy exchange be-
tween the waves occurs at low powers [30—32]. Whereas
as the pump input power is increased, the energy ex-
change becomes doubly periodic and eventually spatially
chaotic. On the other hand, we show here that the trun-
cation to just two sideband pairs may be reduced to an
integrable Hamiltonian fiow on the plane [36]. Therefore,
with a four-wave truncation chaos is absent. Neverthe-
less, the presence of spatial instabilities that are associ-
ated with homoclinic trajectories in the phase plane is
closely related to the birth of chaos whenever perturba-
tions are included in the model [37].

In the final section of this paper, we discuss the ap-
plicative relevance of the present analysis by pointing
out the conditions for the experimental observability of
the wave mixing instabilities. We further brieBy out-
line by means of specific examples what is the influence
of four-wave mixing as a possible source of deteriora-
tion of the performances of wavelength multiplexed op-
tical fiber transmission systems with both distributed or
lumped periodic amplification. On the other hand, we
discuss how multiwave mixing in the anomalous disper-
sion regime may be exploited for the generation of short
optical pulses.

II. TRUNCATED EQUATIONS

In a single-mode optical fiber the nonlinear propaga-
tion of the envelope u of the electric field at the mean
&equency uo is described, in dimensionless units, by the
NLS equation

.Bu sgn(k") 8 u

8( 2 872

where k" = d2k/W2 is the group-velocity dispersion at
the mode at &equency ~p. Whereas f = z~k" ~/tp

—= z/zp
and 7 = (t —z/vg)/tp are the dimensionless propagation
distance and time. Here tp is an arbitrary time unit, and
I/vp = dk/du, vp being the group velocity of the fiber
mode at ~0.

The PDE (I) may be reduced to a finite set of 2X
coupled ODE's by means of the ansatz

K

u(g &) ) A . (g)
—(2j—1}A

~=—K+&

where the A~ are the complex amplitudes of the &e-
quency components of the field and 20 is the &equency
spacing between these spectral components. One obtains

' "- +" (" )((2, I)n)'A, , +
2

l,ma= —K+1
+2l —1A2rn —1A2l —1+2m —1—(2j—1)

Let us consider the symmetric four-mode ansatz with Ai ——A i = A~/Q2, As ——A s = A, /v 2. In other words,
we set
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The Fourier transform of Eq. (4) is schematically shown in Fig. 1. Note that we take as a reference frequency uo the
frequency which is intermediate between the two pumps. Equations (3) reduces to

.dA„12 3 2 2 2, 2 A A,*—i "=y-O'A„+ -[A,['+2[A, f' A, +A,'A,*+ [A„)'A.+
8

—i „'= p-O'A, + -~A. ~'+ 2[A„~' A, + A„'A;+
d 2 ', 2 " ' " ' 2 BA„*'

(5)

where the Hamiltonian H reads

II= +- O'IA~I'+9O'IA. I' +- IApl'+ IA. I' +2IA A.I'+ —(A!A„'+A.*'A')+ ' "
(A A*+A*A ) (6)

Equations (5) and (6) may be reduced to a one degree of freedom nonlinear oscillator equation by means of a canonical
transformation from the two complex variables u„,= [uz, [ exp(i4&, ) to the two real conjugate variables il:—[A&[2/Pi
and 4:—4, —4z, where Pq ——[Az~ + [A, [

is the conserved input power. We obtain that rI and 4 obey the coupled
nonlinear equations

dg= I9H—= —2rI(1 —rI) sin(24) —rI grI(l —rI) sin(4) =
I94 '

d4 1 4g —3 BH

d( 2
= —(r. —1) + iI + (2g —1) cos(24) + ~rI cos(O) =-

2v'1 —rI I97/

rl
2

H = —(1 —K)rI ——+ rt(l —rI) cos(24)
2 2

+rI /rI(1 —rI) cos(4). (8)

where ( = (Pi, K = 8sgn(k")O2/Pq. The new Hamilto-

nian H reads

one obtains a reduced Hamiltonian that is identical to (8)
except for a minus sign in front of the last term [i.e., the
antisymmetric Hamiltonian, say, 0, that corresponds to
the ansatz (9) is obtained from Eq. (8) by substituting
4 with C + sr].
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Note that with an antisymmetric four-mode ansatz with

Ai ———A i =—A„/+2, As ———A s = A, /~2, that is

whenever Eq. (4) is transformed into

III. NONLINEAR EIGENMODES

The fixed points of the finite dimensional system (7)
and (8), say, (rI„C',) represent the nonlinear eigenmodes
of the four-wave mixing process. They are de6ned by
setting drI/O( = d4/d( = 0 in Eqs. (7). These points are
the extrema of the Hamiltonian (8). Figure 2 shows the
dependence of the four-wave mixing eigenmodes on the
dimensionless mismatch parameter K. A simple condition
for the vanishing of the right hand side of the first of
Eqs. (7) is that 4, = 0 or C, = x. Correspondingly,
cos(2Ci, ) = 1 and cos(4, ) = kl. From the second of Eqs.
(7), one obtains that the fixed points with 4' = 0, n are
the roots of the cubic equation

52rI, + (12r, —96)iI + (54 + r —18K)g

frequency

FIG. 1. Schematic illustration of the symmetric four-wave
mixing con6guration. A~(A, ) represent the pump (sidebandl
complex amplitudes. The frequency spacing between the
waves is equal to 0' = 20.

—(9 + K —6r) = 0. (10)

The location of the solutions rI, of Eq. (10) versus the
mismatch r for both 4 = 0 and 4 = m is shown in Fig.
(2)

Another fixed point of Eqs. (7) is represented by the
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solution. Note that this truncation preserves the correct
phase relation between the four waves.

In fact, following the procedure that was outlined in
Ref. [34], the traveling-wave solutions of the NLS Eq. (1)
may be found by assuming a field of the form u((, r) =
~u(7 +v()

~
exp(ig), where P is a linear function of ( and ~.

For example, in the normal dispersion regime a traveling-
wave solution of Eq. (1) (see Ref. [34]) reads

—8
I I I I I I I I I I I I

-4 0
MISMATCH K

upi ((,~) = +Ak sn(A(~ + vf), k)
(1+k2)A2 + v2

x exp i
~
vs+( +$0

~

(12)

FIG. 2. Bifurcation diagram of the four-@rave mixing eigen-
modes with coordinates (g„4,). Solid (dashed) lines indicate
stable (unstable) eigenmodes. The linear mismatch ~ is the
bifurcation parameter.

sideband mode, that is g, = 0, and C, = icos i[(ir, —
1)/2]/2. As can be seen from Fig. 2, this sideband mode
is unstable for —1 ( ic ( 3. Note that the pump mode
is not a fixed point of Eqs. (7), since the sidebands grow
&om the nonlinear beating of the two pumps also for
A, (f = 0) = 0. In fact the creation of these sidebands
is due to the third-order susceptibility term y( l(too +
0,us+ 0, —(uo p 0); —(uo k 30)), that leads to the last
term in the second of Eqs. (5). The last couple of fixed
points is obtained from Eqs. (7) for 4, g n7r/2, with n
integer, and satisfies

2(1 + ir) 2 1 + ir,pe- ) cos 4e
3 8(l —2r)

These fixed points are stable and are shown by the
straight line in Fig. 2.

We have determined the stability of the fixed points in
Fig. 2 by calculating the second variation of the Hamil-
tonian H. Unstable fixed points are shown by dashed
lines. Note that in Fig. 2 we have reported the sym-
metric eigenmodes, i.e., those obtained from the ansatz
(4). On the basis of symmetry arguments, we obtain
immediately that the nonlinear eigenmodes for the anti-
symmetric case [see the ansatz in Eq. (9)], are simply
obtained from those of Fig. 2 by interchanging 4 with
4+ 7t. In the following section, we will consider the con-
sequence of the bifurcations in Fig. 2 on the topology of
the phase-space trajectories of the nonlinear dynamical
systein (7).

Note that the phase-locked eigensolutions (i.e. , the
nonlinear eigenmodes with 4, = O, vr) of the truncated
four-mode system (7) provide an approximation to the
exact temporal periodic phase-locked traveling-wave so-
lutions of the NLS equation [14,34]. In fact, the tem-
poral profile of the complex amplitude of these periodic
time stationary solutions may be expressed in terms of
a Jacobian elliptic function. By representing this elliptic
function as a discrete Fourier series, one obtains a super-
position of phase-locked harmonic waves. Then one may
view the four-mode nonlinear eigenmodes as a trunca-
tion of the Fourier series of the exact Jacobian function

ups((, ~) = +Ak cn(A(r + v(), k)

(1 —2k2) A2 —vx exp —z v&+
2

—40 I )
(14)

where k 6 [0, 1] is the modulus of the elliptic sine function
sn, A is an arbitrary amplitude coefficient, v is the
group velocity of the wave, and $0 is an arbitrary phase.
Considering time periodic solutions with period 2z'/0 as
we do here, the relationship v = nO (n integer) holds.
Moreover, since the function sn(x) is periodic in z with
a period equal to 4K(k), where K(k) is the complete
elliptic integral of the first kind [38], from Eq. (12) one
obtains that the amplitude A is related to the frequency
detuning 0 by the relation A = 20K(k)/z'.

The Fourier series of the elliptic sine in Eq. (12) is
formed by the antisymmetric odd harmonics of the fre-

quency detuning 0 [38]. Indeed, one obtains that the
truncation of this Fourier series to the first four modes
may be approximated by one of the eigenmodes of the
Hamiltonian H . That is, in order to go back from the

(il, p) plane to the field u one uses the antisymmetric
ansatz (4). In other words, the phase-locked eigenso-
lution uii in Eq. (12) is approximated by uii(r)
/2q, sin(07) + /2(1 —iI, ) exp(i@,) sin(30m), where rl,
is obtained from Eq. (10), and 4, = 0.

The same fixed point of II (8) in the (g, P) plane
has another interpretation in terms of exact phase locked
solutions of the NLS equation whenever the symmetric
ansatz (4) is employed. In fact, in the normal-dispersion
regime Eq. (1) has the additional traveling-wave solution
in terms of the Jacobian function cd [38]

ui2 ((,7.) = +Ak cd(A(~ + v(), k)
1+ k2 A2+ v2

xexp i~ vs+a +O'0
I

2

(13)
The truncation of the Fourier series expansion of uq2 cor-
responds to the eigenmode of the symmetric Hamiltonian0 with the same g, as before but now 4 ~ 4, + x. In
fact, ui2 ui2 ——/2rI, cos(0&)+ /2(1 —g, ) exp(i4, )
cos(30m), where now 4, = vr.

In the anomalous-dispersion regime, the phase-locked
stationary or traveling wave solutions of Eq. (1) are the
well-known so-called conoidal waves [14]
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[u((,n ) (a) Again in this case the Fourier truncation of u&3 may be
approximated by an eigenmode of Eqs. (7) with 4', = 0
whenever the symmetric ansatz (4) is employed. The ex-
act solution counterpart of this eigenmode, whenever the
antisymmetric ansatz (9) is used, involves the 3acobian
function sd [38]

0—
u((, r) = +Ak gl —k2sd(A(r + v(), k)

. ( (1 —2k)A +n
x exp —i vw+

l 2
—4o I

The truncated approximation of this solution is the eigen-
mode of the antisymmetric Hamiltonian H with the
same g, as in the previous case but with 4, = ~.

A detailed investigation of the domain of validity (in
terms of the linear mismatch r) of the four-mode trunca-
tion for approximating the exact traveling-wave solutions
of the NLS (12)—(15) is beyond the scope of this work.
We limit ourselves here to verify that, in the limit of rel-
atively large absolute values of K, an input condition to
the NLS equation that is provided by the Gxed points of
either H or H that we have described above does not
lead to appreciable power transfer between the Fourier
components, and preserves the phase-locked property of
the Geld. For example, in Fig. 3 we show the evolution
with distance ( of the power spectrum [u(O' = ~/O)[2
that is obtained &om the numerical solution of the NLS
equation (1) in the normal-dispersion regime. We have

set here r. = 4, that is O = I/v 2 with P, = l.
As can be seen in Fig. 3(a), if the two pumps

only are injected at the Gber input, that is whenever

u(0, r) = ~2 cos(Ov), four-wave mixing leads to a spa-
tially periodic energy conversion into the sidebands at
frequency 3O. Conversely, Fig. 3(b) shows that by in-

jecting along with the pumps the proper sideband seed
the Geld propagates unchanged, i.e., no frequency conver-
sion occurs. Here we have set u(0, r) = /2g, sin(Ow) +
$2(1 —7I, ) sin(3Or), that corresponds to the eigenmode

of the antisymmetric Hamiltonian H with C, = 0 and g
from Eq. (10) (see also Fig. 2).

Finally, Fig. 3(c) shows that no frequency conversion
takes place with a symmetric eigemode at the Gber input.
In other words, we have used here the symmetric initial
condition u(0, w) = /2', cos(Or) —/2(1 —rl, ) cos(3Or),
that corresponds to an eigenmode of H with 4', = vr.

Similar results were obtained by solving Eq. (1) in the
anomalous-dispersion regime with input conditions that
correspond to the antisymmetric eigenmode of H with

= 0 and the symmetric mode of H with 4 = vr.

FIG. 3. Power spectrum evolution as obtained from nu-

merical solution of the NLS equation for propagation in the
normal-dispersion regime, and K = 4. Here the frequency is
expressed in units of fl. (a) In the absence of sideband seed;

(b) with initial conditions corresponding to the 4', = 0 an-
tisymmetric eigenmode [i.e., the elliptic function sn solution
of Eq. (12)]; (c) with initial conditions corresponding to the
4', = n symmetric eigenmode [i.e., the elliptic function cd
solution of Eq. (13)].

IV. PHASE-SPACE ANALYSIS

Figures 4 and 5 show the trajectories that repre-
sent the solutions of Eqs. (7) in the phase plane

(q cos(4), g sin(4)) in the normal- and anomalous-
dispersion regimes, respectively. Since the Hamiltonian
II in Eq. (8) is a conserved quantity along (, the trajec-
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tories in Figs. 4 and 5 are also the constant level curves
of H.

Consider first the normal-dispersion regime. Figure
4(a) shows the phase portrait of the four-wave mixing
dynamics in the case r = 4. As can be seen from r Ig. 2,
in this case the sideband mode (i.e., the point rl, = 0) is
a stable center. Whereas from Eq. (10) and Fig. 2 one
obtains that another stable center exists with g, 1, and
4, = x. Away &om each of the two elliptic fixed points,
the representative point of the field moves on stable peri-
odic trajectories. In the case of Fig. 4(a), independently
of the input conditions, the relatively large value of the
linear mismatch e leads to a small periodic exchange of
energy between the pump and the sidebands.

Figure 4(b) shows that the situation is completely dif-
ferent whenever the mismatch is reduced down to Ic = 1.
In fact, in this case the sideband mode is an unstable
saddle. Figure 2 shows that the stability of the sideband
mode is lost at the bifurcation point K, = 3, where two
new stable elliptical Bxed points with Ci, = 0, x appear.
As can be seen &om the phase-space trajectories in Fig.
4(b), the spatial instability of the sideband mode entails

that for rl(t,
' = 0) 1 and i@(t,

' = o)I ( x/2, the con-
version from the two pumps into the sidebands is greatly
enhanced. Moreover, the spatial period of the conversion
diverges to infinity on the double loop homoclinic sepa-
ratrix that emanates &om the unstable saddle point with
g=0.

Figures 4(a) and 4(b) also show a trajectory that orig-
inates &om the circle with g = 1 and divides in two
distinct regions the motion within the circle. This trajec-
tory is periodically followed by the representative point
(rl, p) of the field whenever only the two pump lines are
injected into the fiber, i.e., the sideband seed is absent at
the input. Suppose that the initial point in Fig. 4(b) is
located in (ri, P) = (1,vr/2). The subsequent evolution of
this initial condition leads to the point (rl, p) = (1,3w/2)
on the unit circle and then back to the initial condition
(by moving around the unit circle).

Figure 6 shows the evolution with distance ( of the
power fraction in the pumps, g, and the relative phase
P, with an initial condition g = 1 and ~ = 1 as in Fig.
4(b). The evolution of rl and p in this figure may be
immediately understood by looking at the correspond-
ing separatrix trajectory in Fig. 4(b). Figure 4(c) (here

'x 0

0
cos 4

(b)

0
g cos 4

t
'Pn 0

'Q 0

0
g cos 4

(c)

0
g cos 4

'Pn 0
(c)

'7|l 0

0
g cost

FIG. 4. Trajectories that represent the evolution of
the four-wave mixing process in the reduced phase plane
(rl cos(4), rl sin(4)), for different values of the linear mis-
match K ) 0 (normal-dispersion regime). (a) e = 4; (b)
tc = 1; (c) e = 0.25.

0
cos 4

FIG. 5. Same as in Fig. 4, for propagation in the anoma-
lous-dispersion regime (i.e., e ( 0). (a) ~ = —4; (b) tc = —1.2;
(c) ~ = —0.5.
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0
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10 20 30 40
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l~(( ~')
I

FIG. 6. Evolution with distance t of the power g and the
phase C frem dual frequency pumping without a seed, and
ii = 1 [as in Fig. 4(b)].

v. = 0.25) shows that for r ( 0.5 also the eigenrnode
with (q, 1, Ci, = ir) exchanges its stability with the
two new stable centers in Eq. (11) and becomes an un-

stable saddle (see also Fig. 2). However, as far as the
energy conversion between the modes is concerned, this
bifurcation only plays a minor role. In fact, the orbits in
the neighborhood of the separatrix that emanates from
the new saddle point show only small displacements from
the circles with g = const.

Let us consider now the phase-plane dynamics of Eqs.

(7) in the anomalous-dispersion regime. Figure 5(a)
shows the level curves of H in a phase-mismatched situa-
tion (here r = —4). As can be seen, in this case the stable
centers are the sideband mode and the eigenmode with
iii, = 0 that is obtained from Eq. (10). In the absence
of instabilities, the energy conversion between the waves
is fairly small. As shown in Fig. 5(b), where r = —1.2,
in the anomalous-dispersion regime the first bifurcation
(as the absolute value of the linear mismatch is progres-
sively reduced) occurs for the eigenmode with Ci, = ir.
Whereas a new stable center with C, = vr appears in the
phase plane [see Fig. 5(b)].

Finally, Fig. 5(c), where r. = —0.5, shows the phase-
plane dynamics in the case of low mismatch. The bi-
furcation of the sideband mode (i.e. , with rI = 0) into
an unstable saddle generates two new symmetric stable
centers [see Eq. (11)].

V. MULTIMODE WAVE MIXING

It is important to examine the domain of validity of the
four-wave truncation in Eq. (4) by means of comparing
the exact solutions and the phase-plane dynamics of Eqs.
(7) with the direct numerical solution of Eq. (1) with
periodic boundary conditions in time. We have solved
Eq. (1) with the frequency symmetric initial condition

10—

0—

0 5 10
DISTANCE (

Pn 0;—

0— 0
'g cos 4'

~&&zg(y l6

FIG. 7. Numerical solutions of the NLS equation with a four-mode input field as in Eq. (16): (a) temporal evolution of the

field, and its power spectrum. The temporal unit is 7 = Bi /ir, and the frequency is expressed in units of 0; (b) power in the

pumps (open circles) and in the first-order sidebands (open triangles), and projection from the field u(f, r) on trajectories in

the phase plane (il sin 4', il cos4) (dots). The solid and dashed lines indicate the corresponding powers and trajectories that

are obtained from the truncated two-mode approximation. Here the initial condition is il(( = 0) = 0.9998, and 4(( = 0) = 0,
whereas m = 4 (normal-dispersiou regime).
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vl(( = 0, r) = ep + eye' ' cos(Or) + e2e* ' cos(30m),

(16)
u((r) = ) A (f)e ' (17)

where Ep is a weak seed at the mean &equency up. With-
out loss of generality, throughout this section we Gx the
(conserved) total energy of the field Pq ——1, so that

Therefore the mismatch in Eqs. (7) reads
r = 8 sgn(k")0 . By neglecting for the moment the seed
sp, one obtains from Eq. (16) that Pq ——s2&/2 + e22/2.

Moreover, g(( = 0) = ez/(sz + ez) = ez/2, and C(( =
0) = 4q —42. Note that results similar to those discussed
in what follows may be obtained for the antisymmetric
ansatz, which is obtained by replacing the cosines with
sines in Eq. (16).

For ep g 0, ty (( sp, and e2 ——0, the initial condition of
Eq. (16) is the same ansatz that is used in the study of
the modulational instability [in the anomalous-dispersion
or focusing regime, i.e., for sgn(k") & 0] of a single pump
wave at frequency up [17,18,21,22, 16]. There is a body
of literature which attests to the homoclinic boundaries
in the focusing NLS equation, which become apparent in
such investigations. The well known modulational insta-
bility is nothing but the linearization of the stable and
unstable manifolds that emanate &om the unstable pump
mode at frequency urp. As discussed in Ref. [22], great
care is required in the choice of a numerical algorithm
which respects the homoclinic structure. In fact, an in-
judicious choice of the discretization, such as for example
with the conventional split step Fourier or beam propaga-
tion method, may cause the traiectories to wander across
the separatrix leading to numerically induced chaos [22].
This of course is inconsistent with the complete integra-
bility of the NLS equation, and may be circumvented by
solving Eq. (1) with the integrable Ablowitz-Ladik dis-
cretization scheme [22].

Consider now the positive-dispersion regime, where the
self-adjointness of the scattering problem that is associ-
ated with the NLS equation leads to a real spectrum and
the absence of a homoclinic structure for the PDE (1).
Nevertheless, as we have seen, truncated four-mode and
multimode models of the type of Eq. (3) predict homo-
clinic instabilities and irregular exchange of energy be-
tween the modes as the input optical power is increased
(or the frequency separation or dispersive mismatch be-
tween the waves is decreased) [27,26). A numerical study
of the effect of the size 2K+ 1 of the truncation

lu(( &')
I

10—

0—

I (e())I'

0—

Cl O,

O

C)

44
4
4

5
DISTANCE (

10

of the solutions of Eq. (1) showed, by means of the nu-

merical calculation of the unstable Lyapunov exponents,

Pn 0&,—

!

0
cos 4

FIG. 8. Phase-plane projections from the numerically com-
puted pump and first sideband components of the field u as
in Fig. 7(b), with 4(( = 0) = n.

0
g cos 4

FIG. 9. Same as in Fig. 7, with
ious-dispersion regime) .

—4 (anoma-
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that the chaotic behavior which occurs in the resulting
coupled ODE's for the complex amplitudes A tends to
vanish as K ~ oo [33]. This result demonstrates that the
solutions of Eq. (1) are complex and multiperiodic but
not strictly chaotic, so that spatial chaos is artificially in-
troduced by the truncation to a finite number 2K+ 1 of
sidebands. The quasiperiodic behavior in the multiwave
mixing process has been recently analyzed by computing
the direct spectral transform of the regular and irregu-
lar solutions of the periodic NLS equation [34]. Clearly,
chaotic behavior may still be easily introduced in a real
physical situation whenever a perturbation to the inte-
grable Eq. (1) is present, e.g. , by including higher-order
nonlinear and dispersive terms or with periodic ampliG-
cation.

We also wish to point out that Eq. (16) with ee g 0,
~ep] &( ei, aild ez = 0, provides the same initial con-
ditions that were used in Ref. [39] in order to predict
the modulational instability of two pump waves with a
&equency separation 20. This instability leads to the
parametric growth of an initially weak seed at the &e-

quency ~ = 0 that is intermediate between the pumps.
Note that, in this mixing process, gain for the seed is
predicted in the normal-dispersion regime of the fiber.
Moreover, the nonlinear dynamics of three-wave mixing,
i.e. , in the regime of pump depletion (but neglecting four-
wave mixing), was discussed in detail in Ref. [40]. How-

ever, contrary to the predictions of the truncated three-
wave model, in the numerical simulations we found out
that the parametric growth of the weak seed. at u = 0 is
not observed. In fact, four-wave mixing prevails and as a
result the sidebands at &equencies +30 grow along the
fiber, even in the case where eo g 0, ep (& ei, ez ——0, and
where the &equency detuning 0 is chosen in such a way
to optimize the modulational instability gain of the seed.
As a consequence, we will limit ourselves to analyzing
the nonlinear wave mixing dynamics with eo ——0 in the
initial conditions (16).

Figure 7 and following Ggures show the result of the nu-

merical integration of the Ablowitz-Ladik discretization
scheme of the NLS equation (1). In Fig. 7(a) we show

the temporal and spectral evolution of the Geld versus
the dimensionless distance (. In the figures, the tempo-
ral unit is r' = Ar/vr, and the frequency is expressed in
units of B. Whereas in Fig. 7(b) we display the power in
the pumps (open circles) and in the first order sidebands
{open triangles), and the projection from the field tt((, z)

10—
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0—

Uggg

R
O

O

0
I cg

kg /s d
~f qP

(b)

0 10
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onto the trajectories of the phase plane (q sin@, q cos 4)
(dots). In the simulations, we keep the initial power ra-
tio between the pumps and the first sidebands fixed [i.e. ,

q(( = 0) = 0.9998, or ei ~2, and ez ——0.02], whereas

0
cos 4

FIG. 1P. Same as in Fig. 8, with r. = —4, and @((= P) = ~.

0
g cos 4

FIG. 11. Same as in Fig. 7, with p' = 2.
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FIG. 13. Same as in Fig. 8, with s, = 2, and C(t = 0) = s.
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FIG. 12. Same as in Fig. 9, with e = —2.

&om the numerically computed Fourier components of
the 6eld u closely follows a trajectory of the truncated
two-mode approximation [see also Fig. 4(a)]. Note that
here and in the following phase-plane plots, the numeri-
cally computed g coordinate is calculated as the energy
ratio between the pumps and the Grst sidebands only,
that is we do not consider the energy that is coupled into
the higher order sidemodes in the solutions of the NLS
equation.

Figure 8 shows the projection on the phase plane of the
numerical solution of the NLS equation with the same
input condition as in Fig. 7 but with 4(( = 0) = vr.

As can be seen by comparing the numerical projection
(dots) with the exact trajectory (solid line), also in this
case there is a good agreement between the dynamics of
the truncated model and that of the multiwave mixing.

On the other hand Fig. 9 shows that for K = —4, that
is in the anomalous-dispersion regime, the maximum en-

ergy depletion of the pumps is of about 45%, out of which
approximately 5% is coupled into the higher-order side-
bands [here 4(( = 0) = vr]. Nevertheless, by comparing
the phase-plane projection of Fig. 9(b) and Fig. 10 [here

—4 and 4(j,' = 0) = m] with the truncated two-
mode trajectories [see also Fig. 5(a)], one still finds a
good qualitative agreement between the predictions of
the two-mode truncation and the numerical solution of
the NLS equation. In fact, by inspecting the exact tra-
jectories of the phase-plane plot [5(a)] one immediately
observes the larger depletion of the pumps from the much
closer approach to the origin of the trajectories that pass
near the circle g = 1 with respect to the same curves in
the phase portrait [4(a)].

Moreover, the information about the relative phase be-
tween the pumps and the sidebands that is provided by

4(( = 0) = 0, m. Here we set 4(( = 0) = 0 and the linear
mismatch e = 4, i.e., the waves propagate in the normal-
dispersion regime of the Gber. In order to demonstrate
the validity of the two-mode truncation, in Fig. 7(b) we
also show the evolution of power in the pumps (solid line)
and in the sidebands (dashed line), as well as the phase-
plane trajectory (solid line), that are obtained from the
exact solution of Eqs. (7).

As can be seen in Fig. 7, with relatively high values
of the linear mismatch ~ there is only a small energy
conversion (i.e., less than 10%) from the pumps to the
first sidebands, and virtually no energy is transfered into
the higher-order sidebands. As one would expect, in this
case the phase-space plot in Fig. 7(b) that is obtained

cos 4

FIG. 14. Same as in Fig. 8, with r= —2, and 4,(( = 0) = s'.
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the phase-plane projections gives a useful insight for un-

derstanding the origin of the temporal compression that
is observed in the periodic pulse trains that form in the
anomalous-dispersion regime [see Fig. 9(a)j. Whereas in
the case of propagation in the normal-dispersion regime
[see Fig. 7(a)j no distinct pulse train is formed. In fact,
Fig. 9(b) shows that at the point where maximum pump
depletion occurs, the pumps and the first sidebands add
up in phase. By induction, we may conjecture that all the
sidemodes also add up in phase for v = 0, which explains
the periodic temporal compression into pulse trains of
Fig. 9(a). On the other hand, Fig. 7(b) shows that in
the normal-dispersion regime the pumps and the gener-
ated sidebands are precisely vr out of phase at the point

'v 0 Q"

0
cos 4

FIG. 16. Same as in Fig. 8, with z = 1, and 4(( = 0) = s.
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I 0

0
q cos 4

FIG. 18. Same as in Fig. 8, with tc = 0.5, and C'(( = 0) = n.

the dynamics of the energy exchange between the pumps
and the first-order sidebands is still fairly well reproduced
by the exact solutions of the two-mode truncation.

Whenever the value of Iel is reduced even further,
the higher-order modes actively participate to the pro-
cess of energy exchange along the fiber and irregular or
quasiperiodic evolutions result. In the normal-dispersion
regime, the transition to irregular behavior is illustrated
by the comparison of Figs. 15 and 16 (that have been
obtained with ~ = 1 and 4 = 0, 7r, respectively) with
Figs. 17 and 18 (where tc is reduced down to 0.5). As
can be seen from Fig. 17(b), in this last case a seem-

ingly aperiodic spatial evolution of energy in the spectral

of maximum pump depletion, hence one obtains a low
contrast ratio in the periodic wave trains in Fig. 7(a).

Let us consider now the effects of progressively decreas-
ing the absolute value of the linear mismatch K. Reduc-
ing the linear mismatch enhances the transfer of energy
from the pumps into the sidebands in the sense that both
the pump depletion and the number of generated higher-
order sidebands increase. As one would expect, whenever
a significant portion of the initial energy gets coupled into
a relatively large number of modes, the action of these
modes tends to unlock the simple integrable dynamics of
the two-mode truncation. As a consequence, a complex
or irregular behavior is expected to appear in the spectral
redistribution of energy along the Gber. As we shall see,
in order to establish more precisely the irregular charac-
ter of the full solutions of the NLS equation, we project
these numerical solutions on the phase, plane in order to
obtain an immediate visual insight that would otherwise
be unavailable from the simple inspection of the temporal
and spectral evolutions of the field u.

Figures 11 and 12 show the temporal and spectral evo-
lution of the Geld u as well as its phase portrait for e = 2
and e = —2, respectively, where 4(t,' = 0) = 0. As can
be seen, in the normal-dispersion regime there is still a
negligible fraction of energy that is coupled outside the
initially excited four waves, and the resulting dynamics is
essentially locked onto the integrable trajectories of the
truncated model. In particular, note from Figs. 11(b)
and 13 [with 4(j,' = 0) = mj that a good agreement ex-
ists both in the shape and in the period of the energy
exchange curves &om the two mode predictions and the
numerical solutions of the NLS equation. Note, however,
from Fig. 11(b) that the projection of the field u does
not exactly follow a single trajectory on the phase plane.
Rather, there is a moderate spread of trajectories that
shows up in the projection as an irregular jumping be-
tween the two domains of Fig. 11(b). In the anomalous-
dispersion regime with r = —2, Figs. 12(b) and 14 show
larger widths with respect to the e = 2 case for the range
of nearby trajectories that result from the projection of
the NLS solutions. The diagram for the energy transfer
in 12(b) first shows the appearance of a slightly quasiperi-
odic behavior. Note that in this case the periodic deple-
tion of the pumps is alinost complete, whereas about 20%
of the energy is coupled to higher-order sidemodes. This
demonstrates that even in this rather extreme situation
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FIG. 19. Same as in FiN, . 9, with e = —1. Here the evolu-
tions of power in the pumps and sidebands that are obtained
from the truncated model are not indicated.
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FIG. 20. Same as in Fig. 8, with e = —1, and 4(( = 0) = vr.

components of the field results. However, it is quite re-
markable that the projections of the field u on the phase
plane still tend to mimic to a certain extent the trajecto-
ries of the two-mode approximation. This indicates that
in some sense the information that is provided by the
phase portrait is more robust to higher-order sideband
perturbations than it is the value of the spatial period of
energy exchange.

In the anomalous-dispersion regime a much stronger
transition to spatially irregular multiwave mixing is ob-
served, as can be seen kom the plots of Figs. 19 and
20, where r = —1 and 4'(( = 0) = 0 or vr, respectively.
In fact, in this case both the period of depletion of the
pumps as well as the phase-space trajectories appear to
wander in a highly erratic fashion.

VI. APPLICATIONS
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FIG. 22. Same as in Fig. 21, in the anomalous-dispersion
regime of the 6ber.
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FIG. 21. Frequency conversion distance Z, (in units of the
dispersion length zo) versus the normalized frequency sepa-
ration 0, in the normal-dispersion regime of the 6ber. Solid
line: prediction of the truncated exactly solvable model. Dots:
from the numerical solutions of the NLS equation.

In this section we briefly discuss by means of some

specific examples the conditions for the experimental ob-

servability of the wave conversion phenomena that we

presented above. An important parameter that may be
extracted from our analysis is the distance, say, Z, [in

the dimensionless units of Eq. (1)], where the maximum

conversion &om the pump into the sidebands first occurs.
This distance may be easily obtained from the exact so-

lutions of Eqs. (5) or Eqs. (7). The solid lines in Figs. 21

and 22 show the dependence of the conversion distance

Z, (that is obtained from the present truncated model)
on the dimensionless &equency separation 0, in the case
of propagation in the normal- and in the anomalous-

dispersion regime, respectively. The dots indicate the
corresponding values of the conversion distance that are
obtained from the numerical solution of the NLS equa-

tion (1). As can be seen, there is a good agreement, as far
as the estimation of Z, is concerned, between the approx-
imated truncated four-wave model and the solutions of
the full PDE model, at least for frequencies 0 larger than
a certain critical value, say, 0,. In both cases of normal
or anomalous dispersion, the results in the figures show
that 0, = 0.3.

Let us translate these results to real physical units in
order to understand the relevance of the four-wave mix-

ing process in different experimental situations. From
the actual value of the pump frequency separation, say,
Kf(GHz), and the dimensionless value of 0, one obtains
the time scale to(nsec)= 0/(7rb. f). This parameter in
turn determines the dispersion distance zo ——to/lk" l.
Whenever the input dimensionless power in each of the
pumps is equal to 1/2, the real pump power is P
lk" ~/(2toR), where R = 2mn2/(AA), A is the wavelength,
and A is the aber effective area.

Consider for example the case of propagation in the
normal-dispersion regime. With reference to the experi-
ments in Refs. [30—32], where the dynamics of the dual-
frequency-pumped wave mixing in a Aber was investi-
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gated by means of two pulsed dye lasers at the wave-

length of 630 nm with &equency spacings of 10—20 cm
(300—600 GHz), the condition 0 = 1 and the fiber disper-
sion k" = 70 psz/km lead to zo ——15.5—3.9 m. From Fig.
21, one obtains that the conversion distance is equal to
Z zo = 10.7—2.7 m, respectively. With an effective area
of A = 1.8 x 10 m, one obtains that the optical power
in the fiber from each pump laser is equal to 3.7 or 7.3
W, respectively. In the case of Ref. [9], strong four-wave

mixing conversion was observed by means of four-wave
mixing of pulsed light from an argon laser (A = 514 nm)
that operated on two longitudinal modes (spaced by 2.1
GHz). With 0 = 0.18 and the group-velocity dispersion
of 62 ps2/m, one obtains zo ——11 km, and the conversion
distance (from Fig. 21) is equal to 61 km, for a total
input power in the fiber of 3.5 mW.

On the other hand, the impact of the four-wave mix-
ing effects that we discussed here as a potential source of
degradation of the performances of lightwave transmis-
sion systems may be appreciated by considering the case
of a dispersion shifted fiber [8]. In fact, the nonlinear in-
teraction of two adjacent wavelength channels may set a
lower bound to their &equency separation. For example,
in the case of two 2.5 Gbit/s channels that are separated
by 12.5 GHz, the dispersion k" = 1.3 ps2/km and 0 = 1
yield zo = 52 km, and the conversion distance is 36 km,
with an input power of about 3 mW &om each channel.
Note that in a system with periodic lumped amplifica-
tion [7] the conversion efficiency of the four-wave mixing
process may be enhanced by resonance effects whenever
the amplifier spacing is of the order of the conversion
distance.

As we have seen in the preceding section, in the case
of propagation in the anomalous-dispersion regime the
creation of high-order sidebands along the fiber is ac-
companied by a strong compression in time of the initial
sinusoidal wave form. This temporal compression has
a recursive behavior with the distance Z, therefore for
a given fiber length one obtains a maximum degree of
compression at a certain fixed value of the pump power.
Let us briefly discuss the potential of this effect for the
creation of a high repetition rate soliton source. Figure
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FIG. 25. Frequency spectra that correspond to the tempo-
ral envelopes in Fig. 24.

23 illustrates the compression ratio, that is the ratio be-
tween the time width of the initial sinusoidal train and
the width of the compressed pulses that forms at the dis-

tance Z, . As can be seen, whenever the input &equency
separation 0 grows smaller than 0.5 one may obtain rel-
atively large compression ratios. As it is shown in Figs.
24 and 25, the compressed pulses sit on low power wings
which could be eliminated by means of an intensity dis-
criminator such as for example a bire&ingent fiber and a
polarizer [41]. Note that another approach to produce a
pedestal-&ee train of compressed soliton pulses &om the
mixing in a fiber of a dual &equency signal may involve
the inclusion of a dissipative mechanism such as adiabatic
amplification (or equivalently, varying dispersion) along
the fiber [42,43]. In the present case of a uniform, ideally
loss-free fiber, the generation of a pulse train with a 100
GHz repetition rate and a compression factor of about
10 is obtained for 0 0.4 (see Fig. 23). With the fiber
dispersion k" = 1.4 ps2/km, the results of Fig. 22 show
that the conversion (or compression) distance is equal to
1.1 km for an input power &om each pump laser of 150
mW.

VII. CONCLUSIONS
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FIG. 24. Initial and compressed (at Z = Z, ) temporal pro-
files of the periodic signal in the fiber operating in the anoma-
lous-dispersion regime.

We have studied the exactly integrable nonlinear dy-
namics of the nonlinear mixing between four symmetric
or antisymmetric waves (i.e., two independent modes) in

the normal- and anomalous-dispersion regime of a single-

mode optical fiber. We have examined the validity of the
truncated model, that neglects the back action of higher-
order generated sidebands, by comparing the exact so-
lutions of the two-mode equations with the numerical
solutions of the NLS equation with periodic boundary
conditions. We found that the two-mode truncation may
provide a fairly good description of the dual-frequency-
pumped wave mixing process even in the strong depletion
regime of the pumps, provided that the linear mismatch
is relatively high so that the energy exchange between
the waves is almost periodic along the fiber.

Whenever the absolute value of the linear mismatch
]
r

~

is small, the dynamics of the truncated two-mode equa-
tions exhibits several bifurcation and instability phenom-
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ena. These instabilities are peculiar to the truncation in
the sense that they may have no counterpart in the higher
dimensional phase-space dynamics of the coupled ODE's
that are obtained as more and more sidebands are kept
into the count [e.g. , It —i oo in Eq. (17)]. Take for
example the normal-dispersion regime, where there are
no instabilities and no homoclinic solutions of the NLS
equation (I), which is the infinite dimensional limit of the
set of coupled multiwave mixing ODE's. Nevertheless,
we found that for low mismatches the projections on the
truncated phase plane of the numerical solutions of NLS
equation show a complex multiperiodic behavior in the
power exchange among the &equency components along
the propagation coordinate. We may therefore view the
bifurcation and spatial instability eH'ects of the simple
two-mode truncated model that we have considered here
as the signature of the spatiotemporal complexity of the
solutions of the NLS equation. %e have also briefly out-

lined the conditions for the experimental observation of
strong &equency conversion from the multiwave mixing
in Bbers, with particular relevance to applications such as
wavelength division multiplexed transmissions and high
repetition rate pulse train generation.
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