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Annihilation operators and coherent states for the haynes-Cummings model
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An alternative way of diagonalizing the Jaynes-Cummings Hamiltonian is proposed and allows the
definition of annihilation operators and coherent states for this model. Mean values and dispersions
over these states are computed and interpreted. Limiting cases which are physically interesting are
also examined.
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I. INTRODUCTION

The Jaynes-Cummings (JC) model [1],which is exten-
sively used in quantum optics, describes, in its simplest
version, the interaction of a cavity mode with a two-level
system. The interest of this model, its solvability, and
its applications have long been discussed (see Refs. [1,2]
and references quoted therein). More precisely, dynami-
cal properties have been obtained through the use of the
so-called "coherent states JC model" [2—4], i e , st.at.es
which are initially harmonic oscillator coherent states,
but that evolve according to the JC Hamiltonian.

The group theoretical approach to these states [5] has
open the way for generalizations to supergroups [6—8] and
even to quantum groups [9]. Indeed, under some hy-
potheses, the JC model may be seen as a generalization
of the SUSY harmonic oscillator system and its exact
solvability may be explained in terms of SUSY break-
ing [10]. Moreover, some ways to supersymmetrize this
model have been investigated [11,12]. From another point
of view, the JC Hamiltonian may also be interpreted as
an element of a superalgebra. Due to that, it is possible
to show the existence of a dynamical superalgebra, which
produces results about the energy spectrum [13] and the
"supercoherent states" [8]. The quantuxn group approach
follows the same lines, defining a new q Hamiltonian and
studying its properties in q-coherent states [9].

Coming back to the supergroup approach, the defini-
tion of "supercoherent states" has required the introduc-
tion of odd Grassmann numbers in the Hamiltonian as
well as in the states [8]. This fact has been justified by its
success for the supersymmetric (SUSY) harmonic oscilla-
tor [7] but leads, in our opinion (and we will coxnment on
that point in Sec. III), to some difficulties in the physical
interpretation of the results.

In this paper, the traditional approach to coherent
states, i.e., the definition of them as eigenstates of an
annihilation operator, is considered through the diago-
nalization of the JC Hamiltonian. The connection with
the group-theoretical approach is then given. It is based
on the direct product of the Weyl-Heisenberg group
with SU(2), and differs essentially from the work of Ko-
chetov [8]. The coherent states we obtain are different
from the ones studied before [2—4]. In order to show

their significance, we compute several physical quantities
over these states, like the total number of particles, the
energy and the atomic inversion. We insist on the similar-
ities and difFerences with respect to the other approaches
and make some comments on the exact resonance case
and the weak coupling limit.

The contents of the paper are the following. In Sec. II,
a brief discussion of the JC model is given. The presen-
tation explicitly exhibits the connection with the SUSY
harmonic oscillator. In Sec. III, we present an alterna-
tive way of diagonalizing the JC Hamiltonian, together
with the form of the unitary operator which realizes it.
We also explain the relevance of this diagonal form in the
definition of suitable annihilation operators. Section IV
is devoted to the definition of coherent states as eigen-
states of an annihilation operator. Their time evolution
is also given and comparison with other coherent states
of the JC model is made. In Sec. V, mean values and dis-
persions of physical quantities are computed. Interesting
properties are exhibited, as the importance of consider-
ing a large number of photons, the existence of minima
of the energy dispersion and the presence of expected
oscillations in the atomic inversion.

II. THE JAVNES-CUMMINGS MODEL
AND ITS RELATION

TO THE SUSY HARMONIC OSCILLATOR

Let us recall [1] that the JC model describes a spin-1/2
fermion (or equivalently a two-level system) in interac-
tion with a one-mode magnetic field having an oscillating
component along the 2; axis and a constant component
along the z axis. Explicitly we have

B(r, t) = —e, + c(r)[ae'("xi ') + ate 'i"" ')]e

(2.1)

where c(r) is a constant dependent on r and other pa-
rameters [14] and p is the gyromagnetic ratio. In the
rotating-wave approximation, it may be described by the
Hamiltoxiian [1,3]
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2r 2

E„=~n+ ~r(n),
E+= (u(n + 1) —r r(n + 1) . (2.10)

In this expression, at and a are the photon creation and
annihilation operators, o~ = oq + io2, where (o q, 0.2, a's)
are the usual Pauli matrices and oo is the identity matrix.
Moreover, K is a coupling constant, ~ is the field mode
kequency, and uo is the atomic &equency. Let us also
introduce the detuning

In order to make clear the connection between the JC
model and the SUSY harmonic oscillator [10], we write
the JC Hamiltonian as

1 iv
H,.= (~+-.,yr —~+ (Q Q),

2 2 ~(d

= ~ —o. (2 3) where

The exact solvability of this model is well known. Let
us here recall the energy eigenvalues and eigenstates in
order to fix the notation. We work in the Fock space

&=&~&y = ln —) =
I I ln+) =

I

0 in)&'r'

11 1
A =

(
a a+ —

~

0'0 + —173,
2r 2

W= —
~

at+ —~~, +-~„
2r

Q = —1~4)ao'+ .

(2.12)

(2.13)
n=0, 1, 2, . . . . 24

The energy eigenstates then take the form (for n
0, 1, 2, . . .)

In the absence of the oscillating component of the mag-
netic field B, and for the exact resonance (b, = 0), we

get the SUSY Hamiltonian

IEo) = 10 -) (2.5)
HJg(A = K = 0) = HsUsY = (Q Qj. (2.14)

IE., )=R ~ +II +)
1

"+' R n+1

l(b,
+

~

—+ ~r(n, + 1)
~
~n+ 1, —)( 2 r

(2.6)

The operators Q and Qt given in (2.13) become conserved
supercharges. As it has already been noticed [10], the
interaction term of the form (Qt —Q) prevents the JC
model to be supersymmetric. The exact solvability may
then be explained (in the exact resonance case) as a result
of SUSY breaking.

where

lt'~
R(n+ 1) ( 2

~

—+ Kr(n+ I) ~]n, +)
r

Kgn + I ~n+ —1, —)

r(n) = (S+ n)'~',
(2Kr

(2.7)

(2.8)

III. ANNIHILATION OPERATORS FOR Hac

The connection with the (SUSY) harmonic oscillator
is very useful for our considerations. It will be used to
find an annihilation operator for H, ~, and the associated
coherent states.

An annihilation operator for the SUSY harmonic os-
cillator H,„»may be chosen as

A = aoo.

R(n)= —+rr(n)
~

+K n
2

)- 1/2

2r. r(n)
~

—+ K r(n)
~E2 r. (2.9)

In the expression of r(n) we have introduced the param-
eter b which will play a role in the following. The corre-
sponding energy eigenvalues are

Another possibility has been proposed in Ref. [6], but
A will be prefered because it leads to an identification
of the different definitions for the coherent states of the
SUSY harmonic oscillator (see Ref. [15]). Clearly, A is
not an annihilation operator for H, ~ but we will show
that it is for the associated diagonalized Hamiltonian.

The diagonalization of H, c is easily performed by look-

ing for the unitary operator Q which connects the Hamil-
tonians. We get

I
(u(N + 1) —~ r(N +. 1) 0

0 ~N+rr(N) r
(3.2)

where N = ata, and the definition of r(N) is given in Eq. (2.8). The operator 0 takes the form
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i

z(N+i)

R(N+i)

g(~) I
—, + ~r(N)

I )
(3.3)

It can be written

0 = exp( —Z), (3.4)

where Z is the skewhermitian operator

Z = atf(N+ 1)a —f(N+ 1)ao+. (3 5)

The function f (N) reads formally

( 2~~iVf (N) = — arctan
I,A+2~r N

~

' (3.6)

[N', ~] = o, [E', Q] = [S', Qt] = o,

We are interested in the form (3.4) of 0 in order to
compare our result with the work of Buzano et at. [13].
This approach is concerned with a diagonalization of the
JC model based on the existence of a dynamical super-
algebra. More precisely, it is shown that since H, c given
in (2.2) may be written as an element of a u(l/1) super-
algebra, it is posssible to find an inner homomorphism
which diagonalizes H, ~, and then u(1/1) turns out to be
a dynamical superalgebra. Even if this result seems to
be mathematically correct, two problems arise. The first
one is the necessity of taking the coupling constant K to
be an odd Grassmann number loosing its physical inter-
pretation. The second one, which is a consequence of the
first, is that the spectrum of the diagonal Hamiltonian is
truncated.

l,et us make our remark clearer. The superalgebra
u(1/1) is shown [13] to be generated by the two even
generators Af and M given in (2.12) and the two odd
ones Q and Qt given in (2.13). The structure relations
are

Z = — f(N+ 1)Qt+ Qf(N+ 1) (s.ii)

Now let us return to the question of finding annihila-
tion operators for H, c. The diagonal Hamiltonian H~
of (3.2) will be of great help. Since it only depends on
N, an annihilator for it is given by A~ in (3.1). This ex-
plains a posteriori the introduction of the index D to re-
mind us that we are working in the diagonal basis. Since
the states depend also on the spin index 6, we introduce
the spinorial annihilation and creation operators

&0 ol &0 1~-~ —
I 1 () I ) ~+o —

I () () I) E )
(3.12)

Note that Zy~ are nothing else than the matrices a'y.
The change of notation is made in order to avoid any
confusion when we work in the different bases (diagonal
or not).

We have found candidates to be annihilation and cre-
ation operators for H, c. The operators AD and At give
rise to

HJ c Such a diagonalization is easy to realize because of
the presence of odd Grassmann quantities (their square
equals zero and they anticommute between each other).
The corresponding energy spectrum contains only gQ
(not its powers) and, with the identification g ~ K, we

have the expected spectrum for HJc, but truncated.
Our diagonalization does not have the problem men-

tioned before because we do not refer to any Grassmann
element. We get the exact spectrum for H~. Let us
mention that even if Z in {3.5) is not an element of a su-

peralgebra, it has a form which is similar to Z' in (3.10),
but with the function f (N) of (3.6) in place of Q. Indeed,
Z can be written

[M, Q] = —2Q, [M, qt] = 2Qt (3 7) &=os ot, xt =@stot, (s.is)

and

(s.s)

while the operators Zg~ become

Zy = OZy~Ot. (s.i4)

The Hamiltonian H, in (2.11) is then seen as a linear
combination of the u(1/1) generators. To be able to gen-
eralize the concept of dynamical algebra (or spectrum
generating algebra) to superalgebra, it is necessary to
take HJ~ of the form

Note that the operators op really represent the physical
spin of the system while the Z~ are annihilation and cre-
ation operators. The 0~ and Z~ must not be confused.
Due to the form of 0 in {3.3), the explicit expression of
Z is complicated.

II,'. = —,{~+~.yt —,~+ (rqt+ qr), (3.9) IV. COHERENT STATES FOR HJQ

where I' and I' are odd Grassmann numbers. Moreover,
the unitary operator

U = exp Z' = exp[ —i{vPqt + qg)], (3.10)

where g and Q are odd Grassmann numbers, diagonalizes

For the determination of coherent states, the situation
is particularly simple when we work with H~ in {3.2),
since the energy eigenstates are the Fock-space basis vec-
tors (2.4), that is the eigenstates of the SUSY harmonic
oscillator. We have then everything working in analogy
with the SUSY harmonic oscillator.



1728 Y. BERUBE-LAUZIERE, V. HUSSIN, AND L. M. NIETO

Let us recall that coherent states can be defined in
three ways: as minimum uncertainty states, as eigen-
states of an annihilation operator or as displacement op-
erator states. We will adopt the last way which is also
known as the group theoretical approach [7]. For the
second one, we will easily see that it is a consequence of
the group-theoretical approach. Note that the first way
would require a comparison with a classical version of the
JC model.

To the annihilation and creation operators A, At,
and to Z~, we associate the displacement operator (in
analogy with the SUSY harmonic oscillator [7])

T(z, P) = exp(zAt —zA + PZ+ —PE ),

z, P e C. (4.l)

odd Grassmann number and to give a type to the gen-
erators (to graduate the vector space): the operators A
and At will be taken even while the operators Z~ will
be taken odd. With such a definition, the states (4.9)
will become eigenstates of both A and Z . The main
problem will be in the interpretation of the odd Grass-
mann numbers since, as it has already been mentioned,
the coupling constant K will also become an odd Grass-
mann number (for the consistency of the theory). This is
actually the reason why we have not decided to use the
super group approach.

Let us end this section by giving the time evolution
of the fundamental states (4.9); the time evolution of
the general state (4.7) will be obtained easily by linear
combination. We start with the diagonal case for which
the evolution operator is

It can be written

T(z ) ) = D(z) ~(~) (4.2)

j —it j~(%+1}—Kr(1V+1}] o—tH(t) it[~N+vr—(N)] )I

(4.&o)

where

D(z) = exp(zAt —zA ),

S(P) = exp(PZ —PZ ) . (4.S)

and we compute

lz, &, +) = && (&)Iz, +) = U (&)&lz, +) . (4 &I)

They are explicitly given by

The coherent states are then defined by

z, &). = T(z, &).lo, -)

Clearly, the coherent states for H, ~ are

(4.4)
Ized+) e

—
i i'/e —*

lz &) =&lz &). =T(z &)l&o) (4.5) (4.12)

where

T(z, P) = OT(z, P) Ot . (4 6)

lz, P). = cos(~/2) I
I

+»n(~/2)e'~
I o I, (4.7)

(o&

with P = (0/2)e'~ and lz) the normalized state

From the harmonic-oscillator coherent states [7], we eas-

ily get

These are similar to the states obtained by the evolution

of the harmonic-oscillator coherent states except for the
supplementary oscillation for each n in the sum. This
implies that the coherent state does not evolve in time

to another coherent state, on the contrary to the case of
the harmonic oscillator.

Moreover, our states (4.12) are different from the ones

considered in the other approaches of "coherent states 3C
model" [2—4]. Indeed, all these approaches deal with the
states (4.9) (or a mixture of them) and their evolution is

given by

(4.8) U„(t)lz,+). = e-"H" Iz, +). . (4.IS)

The state lz, P) ~ is then a linear combination of the "fun-

damental coherent states" V. RELEVANT PHYSICAL QUANTITIES

lz+) =
I () I

lz —) (4.9)

which are both eigenstates of A (but not of E ).
Let us mention that, even if we refer to the SUSY har-

monic oscillator, the preceding approach is only based
on a group and not on a supergroup. Indeed the group
we are working with is the direct product of the Weyl-
Heisenberg group and SU(2). To change to supergroups
we only have to change the complex number P into an

To put the emphasis on the similarities and diKer-

ences between our states and the usual ones, we com-

pute several physical quantities of the system over the
states (4.12). They will be the total number of particles,
the energy, and the atomic inversion.

Let now begin by some generalities and notations
which will clarify the dependence of our physical quan-

tities on the characteristics of the system. First, let us

recall the introduction of the parameter b in the expres-
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sion of r(n) in (2.8). It will be used as a variable in the
following. It contains both the detuning 6 and the cou-

pling parameter r. and leads to the exact resonance case
when b = 0 or to the weak coupling limit when 6 ~ oo.
The new parameter z = (z( is also introduced and will

be proved to be a good approximation of the number of
photons. Second, we will deal with the function

OO

G(6, z) = e-*) —,r(n+1) = e *) —,v'6+n+1.
n=o n=o

(5.1)

Note that it can be shown to have the integral form [16]

(N)+= x+ ———e
2 4r

(N) =z ——+ —e *
2 4e

x" 1)-='(-. ).z" 1
-n!rn

(5.8)

Comparing with the harmonic oscillator where (N) = z,
we have a correction due to the interaction. Since the
coupling constant v is usually small, we can say that a
good approximation of the average number of photons is
x. Indeed, the contribution of the terms containing the
series is, in this case, approximately 1/2.

The evaluation of the mean values of the number of
photons N = a~a is less trivial and gives

G(6 z) = e e*'
7l p

x[(6+ 1)e l~+ l + ze l~+ l~
] dt. (5.2)

B. The energy

G(6, z) ~z, (5.3)

which is independent of 6. Finally, the calculations will
be done explicitly over the fundamental states (4.12)
since for a general state (z, P, t) we can use (4.7)
and (4.12) to write the mean value and dispersion of an
operator X. If we put

(X)~ = (z, t, +(X(z, t, +),
(X)+~ = (z, t, +(X(z, t, p), (5.4)

the mean value of I over a general coherent state is

A useful property is its asymptotic behavior. Using
Laplace's method [17], we can see from Eq. (5.2) that
for large z we have

(H„)+——(u[(z + 1) —AG(6, z)],
(H, ) = (u[z + AG(6 —1,z)], (5.9)

while the values of the dispersion are more complicated
and present interesting features

We compute the mean values and dispersions of the
energy in the fundamental states and study their be-
havior with respect to both z and 6. Note that since
(H,c)+ ——(H, ~) + ——0, the calculations over the gen-
eral coherent states through Eqs. (5.5) and (5.6) do not
give anything new with respect to the results for the fun-
damental states. Indeed, we can see &om (5.6) that the
dispersion attains its minimum only over the pure states.
The mean values are easily computed and take the simple
form

1
(X) = —[(1 —cos 8) (X)+ + (1 + cos 8) (X)

2

+.; 8(.'~(x), +.-'~(x), )].
In the case of having (X)+ ——(X) + ——0 (this will be
the case in what follows), the square of the dispersion is
simply

(Ax)2 —= (X2) —(X)'
=

2 [(1 —cos 8) (b,x)+ + (1 + cos 8) (b X)
+ 2 sin 8((X)+ —(X) ) ] . (5.6)

A. The number of particles

The operator JV in (2.12) corresponds to the total num-
ber of particles. It is a constant of Inotion and is invariant
under the transformation by O. We then get

(Af)+ ——x+1, (Af) = x, (EJV)+ = (b,JV)' = x,
(5 7)

which are known results in connection with the SUSY
harmonic oscillator.

(AH„)' = (u'(A'6+ (1+A')z

—2Az G(6 —1,z) —G(6, z)
—A2 G(6 —1,z) ). (5.11)

We have introduced A = e/~ because it will be useful to
examine the dependence of the dispersions on the physi-
cal parameters.

First, when a large number of photons is considered,
we can use the asymptotic behavior (5.3) of G(6, z) to
see that

(b,H, )~ 1

(H, )~ ~z' (5.12)

as in the harmonic-oscillator case.
Second, we want to see how the dispersion evolves with

respect to a variation of the characteristics of the system,
i.e., the detuning 4 and the coupling constant K, through
b and A. Let us then concentrate on the form of (AHJ ) 2+

(b,Hgc) =(u (A (1+6') y (1+1 )x

+2Az[G(6, x) —G(6+ 1, x)] —A'[G(6, z)]'j,
(5.10)
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2r. - n! r{n)

(s.is)

cos p„{t)
r(n + 1)

e then get

(5.16)

1- OG ~ e.z" sin(2trv'n+ 1)
2 — — n!

. (s.i7)
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x = 20
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ao 30 40 50 60 70

FIG. 4. The collapse and revivals of the atomic inversion
in a general coherent state for x = 20 and b = 0.

VI. CONCLUSION

A natural definition [15] of coherent states for the
SUSY harmonic oscillator has lead us to the construc-

Notice that the derivative of this function with respect
to t is precisely the value obtained in Eq. (3.2) of Ref. [3]
(up to a constant factor, and for m = 1).

In Fig. 4, we show the graph of our (os) for x = 20.
It is of similar form as the ones obtained in many other
papers (see, for example, Refs. [3,4]) and that although
the expression of (as) is not exactly the same in all the
cases. In fact, this is not surprising because of the oscil-
lating behavior of the series and the relationship between
the different forms of (era) already mentioned. Figure 4
shows the revivals that characterize the atomic inversion
in this model.

tion of corresponding states for the JC model. Our main
idea has been to diagonalize the JC Hamiltonian so that
the coherent states we were searching for were trans-
formed as the ones of the SUSY harmonic oscillator. The
explicit form of the 3C coherent states has been given
using the unitary transformation realizing the diagonal-
ization. Our coherent states have physically interesting
properties and are also advantageously compared with
the harmonic-oscillator coherent states (both bosonic and
SUSY).

In fact, the connection of the JC model with the SUSY
harmonic oscillator has led to tentatives [8,11—13] of
treating this model using "superstructures. " As we have
already noticed, the problem which appears deals with
the introduction of odd Grassmann quantities that can-
not directly be interpreted physically. We have avoided
this approach in our work. Nevertheless, the considera-
tion of a superclassical version of the JC model (close to
that of the SUSY harmonic oscillator) would make possi-
ble an interpretation of the Grassmann objects. It would
also possibly lead to a superclassical limit of our coherent
states. This is a direction for future developments of our
work.
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