
PHYSICAL REVIEW A VOLUME 50, NUMBER 2 AUGUST 1994

Exponential gain and self-bunching in a collective atomic recoil laser
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%'e show how a collection of noninverted two-level systems, under the action of a quasiresonant pump
field, can produce an exponential amplification of a probe signal through the mechanism of a dynamical

instability with spatial self-bunching in a way very similar to that experienced by a high-gain free-

electron laser. We offer a detailed description of this phenomenon, specify the conditions under which it
takes place, and sketch possible experimental parameters for its observation in a gaseous medium.

PACS number(s): 42.55.—f, 42.50.—p, 32.80.Pj

I. INTRODUCTION

The two best known sources of coherent radiation, the
ordinary laser and the free-electron laser (FEL), share an
important physical trait: they generate electromagnetic
waves through a noise-initiated process of self-
organization. For the rest, however, their modes of
operation are different enough that one may even ques-
tion the wisdom of using the term "laser" in conjunction
with the FEL. In an ordinary laser, for example, the en-

ergy is stored initially as excitation of internal degrees of
freedom of the active medium, while in a free-electron
laser it is brought into the interaction region as transla-
tional kinetic energy of the incident electron beam. The
spectral character of laser light is constrained mainly by
the gain profile of the active medium, while in a free-
electron laser the frequency of the emitted radiation is as-
signed by the speed of the incident electrons, and can be
varied, in principle, over a very wide range; hence, the
FEL is intrinsically a widely tunable source. Further-
more, the laser gain originates from the induced atomic
polarization, under the constraint that a suitable popula-
tion inversion exists in the active medium; in a free-
electron laser, instead, amplification of coherent radiation
follows the spontaneous emergence of a suf5ciently large
electron bunching, i.e., the appearance of a periodic spa-
tial structure in the form of a longitudinal grating on the
scale of the electromagnetic wavelength. Hence, light
amplification in a FEL is the result of a coherent scatter-
ing process from the grating structure created within the
active medium, and it comes at the expense of a recoil in
the momentum of the individual electrons.

In this paper we describe a source of tunable coherent
radiation, the collective atomic recoil laser (CARL), a
kind of hybrid between the FEL and the ordinary laser,
with physica1 features common to both. Its essential con-
ceptual framework was outlined in Ref. [l]; here we dis-
cuss, in additional details, the basic features of this sys-
tem and its operating principles, we make some specific
predictions, and offer a preliminary analysis for an exper-
imental proof of principle.

We visualize the active medium of this new source of
coherent radiation as a beam of two-level atoms [2]. The
atoms, initially in the lower state of the laser transition,
are driven by a counterpropagating light field near or on
resonance with their Doppler-shifted transition frequen-
cy, and for appropriate values of the parameters they can
amplify a weak copropagating field through an exponen-
tial instability which is reminiscent of the threshold
behavior of a free-electron laser [3].

This system unifies many aspects of the physics of the
FEL and of the atomic laser in a mode of operation that
does not require the initial preparation of a state of popu-
lation inversion, a feature that is also common to the so-
called inversionless lasers [4]. As in the laser, the active
medium is characterized by bound states which play a
key role in the amplification process, as we show in the
main body of this paper, but do not possess a population
inversion. Common to the FEL, instead, is the existence
of a reservoir of momentum that can be transformed
partly into radiation through a kind of cooperative
Compton scattering. Furthermore, optical gain is initiat-
ed by the growth of a bunching parameter.

Perhaps one of the most singular features of the CARL
system is the combined role played in the amplification
process by the small signal response of the driven atoms
and by the atomic recoil. In fact, in the early stages of
the evolution the response of the driven atoms to a weak
probe matches qualitatively some of the gain and absorp-
tion features predicted by Mollow for stationary driven
systems [5], hence, it displays symmetric gain sidebands
when the driving field is resonant with the atomic transi-
tion and the Raman gain peak and absorption dip, other-
wise. However, it also shows the characteristic antisym-
metric Madey gain [6] of the free-electron laser when the
Doppler-shifted pump and probe frequencies coincide.
This latter feature is a characteristic effect of the atomic
recoil; moreover, because the translational degrees of
freedom are built into the model, the Madey gain profile
becomes more pronounced and loses its antisymmetric
shape as the momentum of the atoms decreases. Select-
ing the probe frequency in correspondence to the Madey
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gain feature yields strong exponential amplification fur-
ther into the evolution. This aspect of the problem is
unique to this system, as far as we know.

This paper is organized as follows. In Sec. II we dis-
cuss the details of the model and derive the equations of
motion; in Sec. III we present selected results and inter-
pret their physical significance; finally in Sec. IV we sum-
marize our conclusions, comment on some recent work
by Courtois and co-workers [7], and give a preliminary
estimate of the CARL parameters for a selected gaseous
medium.

II. DISCUSSION OF THE MODEL
AND EQUATIONS OF MOTION

Our model is based on the Hamiltonian of a collection
of two-level atoms interacting with a counterpropagating
driving field (the pump), having prescribed amplitude and
carrier frequency, and a copropagating optical probe. In
addition to the internal atomic degrees of freedom, which
are typical of laser models, we take explicit account of
the center-of-mass motion, whose role in the light
amplification process is just as important, as already stat-
ed. The explicit form of the Hamiltonian is

2

H=fico, a,a, +fitoiaiai+Acoo g S,~+ g
N N p.

j=l j=1

+i fi g, a ti g S e
j=1

turn and the second the conservation of the number of ex-
citations. If we combine Eqs. (2.2a) and (2.2b) and elimi-
nate the number operator of the driving field, a2a2, we

can also write

N

(p +fikiS, )+iri(k, +ki)a ia, =const,
j=1

(2.3)

whose obvious physical implication is that the expecta-
tion value of the number operator for the probe field,

atria„can grow either as the result of a loss of internal
atomic energy or a decrease of the center-of-mass kinetic
energy. This setting represents a generalization of the
basic mechanisms by which energy is produced in the
laser and in the FEL; in fact, the laser Hamiltonian does
not involve the momentum and position operators pj and
z, while the FEL Hamiltonian does not include the
angular-momentum operators, descriptive of the internal
degrees of freedom of the active medium.

In this paper we analyze the dynamical evolution of the
coherent atomic recoil laser within the framework of the
standard semiclassical approximation. Thus, we first
construct the Heisenberg equations of motion for the
relevant operators, map the operator equations into their
c-number counterparts in the usual factorized form, and
finally introduce appropriate, slowly varying variables
[8]

This program is accomplished by introducing the slow-
ly varying variables a„az, and S according to the
definitions

N

+gian g S, ~
' ' —H. a.

j=1
(2.1)

k, +kz
a, (t)=a, (t)exp i coi—+ p(0) t (2.4a)

g p. +iiik, aia, —iiik2a2a2=const,
j=1

N

g S,~. +a ia, +a2a2 =const;
j=1

(2.2a)

(2.2b)

the first represents the conservation of the total rnomen-

where N is the number of atoms in the interaction volume
V, co1 2=ck1 2 are the carrier frequencies of the probe and

pump fields, respectively, k, and ki are the correspond-
ing wave numbers, and cop is the atomic transition fre-
quency when the atoms are at rest relative to the ob-
server; g, (i =1,2) are the couplings constants, defined as
@[co;/(2iit'so V) ]'~, and p is the modulus of the atomic di-

pole moment. S, and SJ* are the standard effective
angular-momentum operators (in units of iri) describing
the evolution of the internal degrees of freedom of the jth
atom (thus, S, measures one-half the difference between
the excited- and ground-state populations of the jth
atom); z~ and p denote, respectively, the position and
momentum operators of the center of mass of the jth
atom and a; (i =1,2) are the photon creation operators
of the copropagating field (index 1) and of the counter-
propagating driving field (index 2). The operators obey
the usual commutation relations.

The Hamiltonian (2.1) admits two constants of the
motion,

az(t) =azexp( ico2t ), —

S~ (t)=S (t)exp[ —ikz(z +et)],

(2.4b)

(2.4c)

8, (t)=(k, +k, ) z, (t) p(0)

r

(2.4d)

5p, (t) =p, ( t) p(0), — (2.4e)

and the population difference between the ground and ex-
cited states of the jth atom,

D (t)= —2S, .(t) .. (2.4f)

Finally, the required equations of motion take the form

de,.

dt
k, +k2

5p. ,
m

(2.5a)

d 5p. = —haik, g, a, S e'+fik. 2gzaz'S, .+c.c. , (2.5b)p~
—ie. Oe

dt

da, N —t.e,.=i5i,a, +g, g S,e
dt j=1

(2.5c)

where p(0)—=mu(0) is the average initial momentum of
the incident atoms. Furthermore, we define the new posi-
tion and momentum variables 8 (t) and 5p (t),

r
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dSj co2 5pj p ' p+52 p Sj g)Q )Dje g2Q2D~.dt c m

—yiS

=(2gia, *S,e '+2g2a2'SJ+c. c. )

where we have introduced the detuning parameters

52, =(ki+k2)[U(0) —U„,],
52,0 k2[U(0) —

U, , il

(2.5d)

(2.5e)

(2.6a)

(2.6b)

=[2p(A ie '+32)S.+c.c. ]—I ~~(D
—D'q),

7

(2.10e)

where the remaining parameters are defined as follows:

&2, i

COrP

&2,0
~2 o=

CO„P
(2. 11a)

—(P, +26,20)S, p—D (A, e '+ A2) —I iSi i
d~ 2

(2. 10d)

with
r, =

CO„P
II

COrP
(2.11b)

CO
~ CO2 COp CO 2

CO~ +CO2 '
CO2

(2.6c)

and added phenomenological decay terms to the polariza-
tion and population equations (D'q is the equilibrium
population difference in the absence of both driving and
probe beams; in our case, D' =1 because each incident
atom is assumed to be in the ground state as it enters the
interaction region). Note that the two resonance condi-
tions 52 o =52, =0, taken together, imply

COp COp

1 —
Po

' 1+Pc ' (2.7)

with pa= U (0)/c, i.e., they imply a resonance between the
atomic transition frequency cop and the Doppler-shifted
frequencies of the probe and the pump beams.

As our final step we introduce the so-called universal
scaling, well known from the theory of the free-electron
laser, and cast the working equations in dimensionless
form. For simplicity, we let k i =kz —=k =co/c,
g &

=g2 ——g and, furthermore, define the dimensionless
CARL parameter

2/3
g v'N

P
CO„

1/3
E
V

(2.&)

5pj
7=CO Pt, P

Rkp
0

Q] 2
A& 2= ' (A2 real for definiteness) .

v Np

The final form of the CARL equations of motion is

(2.9}

dO.
(2.10a)

dPj ~
—i e. +i e.= —A ', e '5, —A, e 'Sj*+232ReSj,

d~

I
+ —ie.=ih2, A, +—g S,e

d~ ' N.

(2.10b)

(2.10c)

where co„=2irik2/m is the single-photon recoil frequency
shift [9], the scaled time ~, and the new dependent vari-
ables P, and A, 2 according to the definitions

Equations (2.10) form a closed, self-consistent set of
equations for the internal and translational atomic de-
grees of freedom, coupled to the driving field A 2 and the
probe field A &, whose amplification is the main objective
of this work. In arriving at this result, as already men-
tioned, we have assumed k, =kz=—k; if kiAk2, Eqs.
(2.10) are still valid in the so-called Bambini-Renieri
frame [10] moving with a verlicity U„i [see Eq. (2.6c)],
where the transformed frequencies coincide. We note
that for a nearly resonant interaction, i.e., 52, =0, it fol-
lows that U(0) =v„,. We distinguish two cases:

(i) Nonrelativistic particles [U(0) «c]; in this case we
have co, =co2 and our equations are valid in the laboratory
frame.

(ii) Relativistic particles [U(0)=c]; in this case it fol-
lows tha:

C +Vr 1
CO)—

C V„)

1+po
COp

—
COp O'I/' CO2,

1 —
po

(2.12)

where y=(1 —
Pii) '~; hence coi can be considerably

larger than co2. Thus, our formulation can also account
for the dynamics of relativistic particles; of course, in this
case one needs an additional Lorentz transformation of
Eq. (2.10) back to the laboratory frame. This additional
step is straightforward and will be discussed elsewhere.

Equations (2.10d) and (2.10e) are the atomic Bloch
equations, generalized for the inclusion of the atomic
translational motion. In addition to the familiar detuning
term b, z OS in the polarization equation (2.10d}, one may
note the appearance of the time-dependent detuning con-
tribution PJS /2 resulting from . the recoil suffered by the
atoms under the action of the driving and probe fields. If
we ignore the probe field (A, =0), Eqs. (2.10) describe
the usual cooling process for times long compared to I ~

'

and I
~~

'. If, instead, we set 32 =0 and Sj=1, for all j,
the modified equations (2.10a)—(2.10c) reduce to the trad
itional FEL equations.

The structure of Eq. (2.10c) indicates that the probe
field A

&
can be amplified in the presence of an atomic po-

larization (but without the need for an initial population
inversion} if the phase of the polarization has the ap-
propriate value and if the atomic positions are properly
bunched. If the scaled position variables are uniformly
distributed between 0 and 2m. , just as one has at the begin-
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ning of the evolution, no macroscopic field source exists
even if the atomic polarization variables S. are maxim-

ized for all values ofj because
0.0

N

e '=0. (2.13) CI

U
-0.5

Equations (2.10) for a wide range of parameters predict
the development of an exponential instability for the
probe field and for the bunching parameter -1.0-

-40 -20 0 20 40N, g—ge
N

1

(2.14)

The result of this instability is the growth of a macro-
scopic field and the spontaneous creation of a longitudi-
nal spatial structure in the initially uniform atomic beam
with a periodicity that matches the wavelength of the
reflected field. This type of behavior can be easily
demonstrated by numerical integration of Fqs. (2.10) as
we discuss in the next section for several parameter set-
tings of interest.

4

U

I
I I

-40 -20 0 20 40

III. SOLUTION OF THE MODEL EQUATIONS
AND DISCUSSION OF THE RESULTS

Ideally, it would be useful to preface a survey of the
numerical solutions with a formal linear stability analysis
of the problem, not only as a guide to the selection of the
parameters but also, and especially, to illuminate the
physical origin of the amplification process. In the case of
an ordinary laser (this is true also for a FEL), the initial
state of the system is a stationary state which becomes
unstable at threshold and yields an exponential growth of
the field following any initial perturbation.

The initial state of the CARL, instead, is not a station-
ary state, because Eq. (2.10d) at r=0 takes the form

FIG. 1. Frequency dependence of the gain spectrum
G(r, h', ) [Eq. (3.2)] for (a) ~=2 and (b) v=5. The parameters
chosen for the simulation are I = 1, p =3 A2 =2 52 p

= 15.

0.0

Sj = —
p A~CO.dr, p

(3.1)

&I
~ -0.5-
U

Nevertheless, it is still possible to acquire useful informa-
tion on the physical nature of the amplification process
and, especially, on the response of the driven atoms to a
weak probe with the help of the short-time evolution of
the probe intensity or, more precisely, of the quantity

-1.0-
-40 -20 20 40

I A, (~) I' —
I A, (o) I'

G(~, 52, )=
A, (0)

(32) 0.0

over a suitable range of values of the detuning parameter
h2, . When viewed as a function of h2 &, for a fixed value
of ~ and of the remaining system parameters, 6 can be in-
terpreted, loosely speaking, as a kind of probe
gain —absorption spectrum. This interpretation becomes
rigorously correct if the probe intensity varies exponen-
tially as IA, (~)I =IA, (0)I exp[a(b. z, )~], where a is a
rate constant, and if av «1; however, even if these con-
ditions are not satisfied, this quantity continues to o8'er
useful insight into the mechanism of amplification, as we
now show.

Figure 1 displays a typical frequency dependence of the
"gain spectrum" for 52 0&0 and for two selected values

-40
I I I I

-20 0
I I

I
I I

I

20 40

FIG. 2. Frequency dependence of the gain spectrum
G(v, hz &) [Eq. (3.2)] in the limit of no atomic recoil, i.e., with
the momentum I'J- of each atom set (artificially) equal to zero in
the CARL equations (2.10). Curve (a) corresponds to v =2 and
curve (b) to v=5. The parameters chosen for this simulation
are the same as for Fig. 1, i.e., I =1,p=3, A2 =2, hp p= 15.
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We now turn out attention to the long-time behavior of
the solutions of Eq. (2.10). A typical result is shown in
Fig. 5 for the same parameters used in Fig. 1 in the neigh-
borhood of 62 i=0. Figure 5(a) displays the temporal
evolution of the probe intensity and the buildup of a mac-
roscopic pulse after a characteristic period of lethargy,
which is the signature of the developing grating struc-
ture. Unlike most temporal instabilities in laser physics,
which are characterized by an initial exponential growth,
the probe intensity in our case evolves in a rather compli-
cated and, apparently, not exponential way during the
first few units of time (roughly, 0&r&8 in this figure)
and then undergoes an exponential growth, as shown in
the range 8 & r & 15 of the semilogarithmic inset. The de-
gree of spatial organization of the atoms is surprisingly
large, as evidenced in Fig. 5(b) by the maximum value of
the bunching parameter ( =0.8). In Fig. 5(c) we show the
temporal evolution of the average atomic momentum:
during the buildup phase of the probe field and immedi-
ately after the creation of a macroscopic polarization (in-
dicated by the small-scale Rabi oscillations at the start of
the trace), the average atomic momentum decrease al-
most linearly as a result of the retarding action of the
driving field A2. When the probe field begins to grow,
the deceleration of the atomic motion proceeds at a con-
siderably larger rate, showing that the probe
amplification process evolves at the expense of atomic
kinetic-energy loss. The subsequent acceleration of the
atoms, following the peak of the amplified pulse, is ap-
parently caused by the copropagating probe field, which

(3.3a)

(3.3b)

is now sufficiently large to produce an appreciable pon-
deromotive force; the transfer of energy back to the
atoms is the immediate cause for the decrease of the
probe intensity and the eventual formation of the first
amplified pulse. Figure 5(d) displays the evolution of the
real and imaginary parts of the average polarization. The
initial transient is characterized by rapid Rabi oscilla-
tions, which are followed by a period of lethargy and by
the telltale signs of probe amplification. Here the most
significant feature is that, apart from the initial oscillato-
ry phase, the absolute value of the real part of the aver-
age polarization is much smaller than that of the corre-
sponding imaginary part. This is indicative that the
dispersive part of the atomic response plays a more
significant role than the absorptive component. We can
mention at this point that the corresponding solution for
b,2, =20 [Raman gain peak in Fig. 1(b)] also displays
probe amplification, with a lower peak intensity, while
for 52, = —20 the initial probe field is absorbed.

In order to gain some additional understanding into
the physical principles that govern the CARL process, it
is convenient to focus on the evolution in a regime where
the internal degrees of freedom DJ and Sj can be elim-
inated adiabatically. In this limit (dS~ ldr, dDJ /dr=0)
we have

SJ = — (A ie '+ A2) I + (PJ+252
—o)

J

DJ = [I' + ,'(P +26.2o—) ],1

J

0.4- a) 1.0-

0.2-

0.0-,
0 10 20 30 40 50

0.0-,
0 10 20 30 40 50

0-

-2-

L
0.2-

M

E
~ ~

0.0
r-

CC

]Re(s)/

10
I

20 30 40
i

50

-0.2-

I

10
I

20
I

30
I

40
I

50

FIG. 5. Temporal behavior of the solution of the CARL equations (2.10) for I =1,p=3 22=2 52o= 15 and 621=1 (a)
Time dependence of the probe intensity; the inset displays the logarithm of the intensity for the first 20 units of time. (b) Time depen-
dence of the bunching parameter [Eq. (2.14)]. (c) Time dependence of the average atomic momentum P (d) Time dependen. ce of the
real and imaginary parts of the average polarization S.
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where

8 =[I + —,'(P +2~,o)']+4p'I Aie '+ Ai (3.3c)

0.6 )

dO J p
d'7

(3.4a)

With the help of Eqs. (3.3), Eqs. (2.10a)—(2.10c ta e t e
form 0.2

I
!

0.0-—
0 20

1

40
I

60 80

i8—. i8.+ —A2(P +2bio)(A*, e ' —Aie ')
2

(3.4b)

N —i8.
A — g (A, +Aie ')

ardT LT ~

i J

X I'+ (P +2b—, ) . (3.4c)J

0.0-
0 40 60 80 10()

%'e see at once that, in the special case A, =,=0 the adi-
abatic equation (3.4b) describes the ordinary cooling pro-

theo-d that in the limit of large driving fields, t e op-cess an t a, in
2 ). Because ate of momentum decrease is I' p .

large decrease of the atomic momentum through thee nor-
1 decreases the available kineticmal cooling process a so ec

f theh ld be used in the amplification o t e
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a to do so is by selecting small values of the ratio
I /(2p) or, equivalently, by imposing e

y (&cu,p, where y =
y i y—

A roof of this statement is shown in Figs. a — c.
The smaller peak power of the amp

'
p

A proo o
am lified robe for the

case 1 =2 [Fig. 6(b)] indicates that a significant loss of
atomic momentum as ah t ken place through the ordinary

~ ~1' chanism, as one can confirm directly y in-cooling mec an'

e momen-spection o e ef th temporal behavior of the average m
and the sizeturn [Fi . 6(c)]. The duration of the lethargy and e s'turn ,'Fig. c .

of the bunching parameter (not shown) aown& are essentially the
same in both cases but, as the probe field begins to grow,

'ficantl smaller in the casethe average momentum is significan y
I =2 than for I =0.1, as one should expect.

f I /(2 ) is made on the basis of rate
rguments, the results shown in igs.equations argume

f the exactbeen obtaine romd f the numerical solution of
we(2.10). In fact, quite generally, wequations of motion, w

ted that the predictions drawn on the asis o
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also for the exact equations of motion, p

qS.
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sufficiently smaller than pAz, as one can easily verify
from Eqs. (3.4b), (3.4c}, and (3.3c). A test of this state-
ment is shown in Fig. 8 for different selections of the pa-
rameters I, p, and Az.

IV. COMMENTS AND CONCLUSIONS

By taking into account the translation degrees of free-
dom of the active medium, we have described a mecha-
nism that can lead to the exponential amplification of a
weak probe. Roughly speaking, we can interpret the pro-
cess of amplification as evolving in two steps: first, the
external field creates a weak gain profile in the frequency
response of a collection of independent driven atoms and
begins the buildup of a spatial structure with the help of
the atomic recoil; next the probe, whose carrier frequency
lies within a selected gain region of the active medium,
undergoes exponential amplification. The role of the
atomic recoil is essential to this process: not only is it the
cause of the emergence of the spatial grating pattern, but
it also reinforces the coherent growth of the signal to be
amplified as energy is transferred form the atoms to the
probe field.

An alternative way of interpreting the probe
amplification is to view it as the reflection of the driving
field from the moving grating pattern or as a kind of
coherent scattering from the bound states of the atom. If
the active medium is stationary, apart from the thermal
motion such as one has in an ordinary gas cell or in opti-
cal molasses, the frequency of the reflected light may be
shifted from the frequency of the pump field, at most by a
small amount of the order of the effective Rabi frequency
of the pump. If the atoms, instead are injected at relativ-
istic speed into the interaction region, the reflected signal
can be upshifted to a frequency of the order of 4y co2,
well into the short-wavelength region of the electromag-
netic spectrum if the relativistic factor y is sufBciently
greater than unity.

An experiment has been reported recently by Courtois
and co-workers [7], showing a small-gain regime in a cold
gas of cesium atoms. This experiment employed nearly
copropagating pump and probe beams, with hz o &0, and
yielded an antisymmetric gain profile with a shape similar

to the short-time Madey profile described in Fig. 1(a}.
The experimental structure displays zero gain at a fre-
quency b,z O=O (in our notation) and a functional form
that is the derivative of the thermal Gaussian velocity
distribution of the atoms. The spatial bunching they
infer arises from the partial optical trapping produced by
the two applied fields. In contrast, the Madey gain in the
short-time limit has the functional form of the derivative
of the square of the sine function that arises from the
pendulum dynamics [6]. Furthermore, the exponential
regime predicted in our paper is characterized by a large
gain in the neighborhood of 52, =0 [see, for example,
Figs. 5(a) and 6(a)]. Therefore, it appears that these ex-
perimental results are not a verification of the effects dis-
cussed here, especially because we see no evidence of col-
lective self-bunching due to the self-consistent field gen-
erated by the bunching itself.

If this identification is correct, it would appear that the
selected configuration cannot lead easily to the observa-
tion of the exponential amplification regime. Neverthe-
less, in our opinion, the experiments reported by Verkerk
et al. represent a significant accomplishment as a demon-
stration of the CARL gain mechanism in the small gain
regime.

We conclude with a preliminary estimate of a few
relevant parameters for a gas of rubidium atoms driven at
the 5 S,&i

—5 P3/2 resonance line (A, =780.24 nm). For
this atomic transition and counterpropagating pump and
probe beams, the single-photon recoil frequency shift is
co„=9.6X10 sec ' and the dimensionless CARL param-
eter is p=4. 2X10 n ', where n is the gas density mea-
sured in units of m . Thus, it follows that the collective
linewidth co„p has the approximate value 4X10 n'~
sec '. For a gas density of 10's atoms/mi, we have
p=4. 2X10 andes, p=4X10 sec

Our numerical solutions show a wide range of lethargy
times and output pulse durations, in addition to those
displayed in the figures. If we select v=20 as a charac-
teristic dimensionless evolution time, this corresponds to
50 nsec for the rubidium parameters listed above. We
may also mention that, with a full width at half max-
imum, hv=6 MHz and a corresponding polarization re-
laxation rate yz =~hv= 1.9 X 10 sec ', the condition for
negligible cooling y~ &&co,p is very well satisfied.

In this paper, we have not considered the role played
by the velocity spread of the active medium, which we
have implicitly assumed to be made up of monoenergetic
atoms. Qualitatively, however, it is reasonable to expect
that the assumption of negligible velocity spread should
continue to be valid as long as the associated spread in
frequency shifts remains smaller than the collective
linewidth co„p or about 64 MHz (4X 10 rad/sec) for the
numerical example given above. This issue, as weil as ad-
ditional consequences of our theoretical analysis, wi11 be
analyzed elsewhere.
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