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Nonlinear atom optics: General formalism and atomic solitons
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We present a many-body theory of nonlinear atom optics, and discuss some of its physical impli-
cations in the coherent regime. Considering a system of N identical two-level atoms interacting with
classical and quantum-mechanical electromagnetic 6elds, we derive a Fock-space many-particle mas-
ter equation. Introducing a Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy and a Hartree-Fock
factorization to truncate this hierarchy, we obtain an effective nonlinear single-particle master equa-
tion that forms the basis of nonlinear atom optics. In the second part of the paper, we concentrate on
the coherent part of that master equation, and derive an effective single-atom nonlinear Schrodinger
equation. This equation leads to the prediction of a number of effects, and in particular, several
kinds of atomic solitons. We discuss and numerically study two such kinds of solitons, Thirring
solitons and gap solitons. Finally, the axial containment of an atomic gap soliton is illustrated.

PACS number(s): 42.50.Vk, 03.75.Be

I. INTRODUCTION

Considerable progress has recently been made towards
the manipulation of trapped and cooled atoms in opti-
cal fields. One example is the observation of quantized
atomic motion in one-, two-, and three-dimensional opti-
cal lattices [1—4]. More generally, the study of the physics
of ultracold atoms in light fields opens up a broad new
field of fundaxnental and applied research. It plays an es-
sential role in understanding the fundamental limitations
of atomic cooling, and hence of devices such as atomic
clocks: The many-body effects that are expected to oc-
cur when the atomic temperature is near the recoil limit
are bound to lead to shift and broadening mechanisms,
and possibly nonlinear heating, thereby infiuencing the
achievable performance of these devices. Many-body ef-
fects are also expected to be important in lithographic
applications, whose basic principles are closely related
to those of optical lattices: In order to achieve reason-
able writing speeds, high atomic densities will clearly
be required. In addition to these immediate practical
concerns, the availability of ultracold atoms is of con-
siderable interest in atom interferometry, since it natu-
rally leads to the possibility of coherently splitting atoxnic
wave functions with a large separation between the arms
of the interferometer. Such macroscopic separations are
highly desirable since most applications of atom inter-
feroxnetry require that the arms of the interferometer be
placed in different environments and/or that large areas
be covered by the interferometers, as, e.g. , in gyroscopic
applications.

This paper deals with the physics of ultracold atoms
in light fields, in the regime where two-body interactions
become important [5—8]. Here, the words "in light fields"
are emphasized because it is important to realize the dif-
ference between the situation at hand and the closely
related problem of Bose condensation of atomic vapors
[9,10], where the understanding of many-body interac-
tions is also of central ixnportance: In Bose condensation,
one needs to carefully balance the favorable efFects of col-

lisions, which are essential in rethermalizing the sample
during evaporative cooling, and their detrimental efFects,
which are most importantly heating, as well as possibly
a collapse of the Bose condensate for attractive interac-
tions. Thus the presence of light fields is to be avoided
in that situation, and the major source of many-body
effects is the short-range van der Waals interaction be-
tween ground state atoms, which becomes important at
the high densities necessary to reach Bose condensation.
Our point of view is difFerent, and complementary: We
view many-body interactions as having a positive efFect,
which may lead to novel kinds of collective atomic be-
haviors in optically driven, relatively low density atomic
systems. For this reason, we are interested in using the ef-
fects of the long-range dipole-dipole interaction between
excited and ground state atoms. This interaction is sec-
ond order in perturbation theory, while the van der Waals
interaction is fourth order, hence the lower densities that
we need to consider.

It is important at this point to give a note of cau-
tion about attractive versus repulsive interactions. In
contrast to the &ee space situation, atoms in periodic
light fields are characterized by a band structure, and can
therefore have either positive or negative effective masses.
Thus an interaction which might naively be thought of
as, say, repulsive, becomes effectively attractive for a neg-
ative effective mass. Hence sweeping arguments based
solely on the sign of the interaction are misleading at
best. In particular, we shall see that an atomic sample
in a light field can sustain many-atom bound state soliton
solutions for both signs of the two-body potential.

The net efFect of any two-body interaction Vi2(r) is
given by its overlap with the atomic wave functions, prop-
erly symmetrized in the case of indistinguishable parti-
cles. As soon as this integral becomes significant, it be-
comes incorrect to treat the atoms in the sample as in-
dependent. We shall see that xnany-body effects can lead
to an effective nonlinear behavior of the single atoxns.
This regime, that we call "nonlinear atom optics, " is to
de Broglie optics what nonlinear optics is to conventional
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optics. It suggests that novel effects such as the genera-
tion of atomic solitons and solitary waves, atomic wave
mixing, and atomic phase conjugation should be possi-
ble. In addition, sufficiently high atomic densities in opti-
cal lattices could lead to spontaneous pattern formation
and the creation of other stable long-range structures,
such as possibly superlattices. Even more intriguing per-
haps, the combination of nonlinearities with dissipation,
in the form of spontaneous emission and of a "pump"
mechanism, suggests the possibility of a "coherent atomic
beam generator, " which could loosely be considered as
the atom optics version of a laser.

The erst part of this paper outlines the derivation
of an effective single-atom master equation for nonlin-
ear atom optics: In Sec. II we apply the Power-Zienau
transformation to the minimal coupling Hamiltonian to
go to the multipolar Hamiltonian [11].This Hamiltonian
has the advantage that the atom-field coupling is writ-
ten in terms of the physical, retarded fields. Our model
is then obtained by performing the dipole and rotating-
wave approximations on the Power-Zienau Hamiltonian,
and describing the atoms as two-level systems. The
vacuum field is adiabatically eliminated in Sec. III
in the Born-Markov approximation, thereby deriving a
many-body master equation in the many-particle Fock
space. The reduction of this master equation to an ef-
fective single-atom master equation involves two steps:
First we develop a Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy for one-, two-, . . . , X-atom
density matrices, a step described in Sec. IV. This hi-

erarchy is finally truncated in Sec. V by performing a
Hartree-Fock approximation. The result of this develop-
ment is an effective, nonlinear single-atom master equa-
tion including the effects of spontaneous emission as well

as the long-range dipole-dipole interaction. In addition,
an imaginary potential appears in this equation, which
describes nonlocally confined excitation and decay pro-
cesses.

In the second part of the paper, we concentrate on the
coherent part of the effective single-atom master equation
only. That is, we neglect dissipative effects as well as the
imaginary potential. Both terms together are the single-
particle equivalent of the many-body Lindblad-type Liou-
villian [12] that describes the destruction of coherences.
In this coherent case, the evolution of the system is de-
scribed by a nonlinear Schrodinger equation, which is
presented in Sec. VI. The remainder of the paper shows
that these equations admit envelope solitons, and in Secs.
VII and VIII, we discuss specifically two kinds of atomic
solitons, Thirring solitons and gap solitons. The possibil-
ity of soliton oscillations in a focused laser beam is also
analyzed. Finally, Sec. IX is a summary and conclusion.

ing upon the circumstances. Instead of the Coulomb
gauge, we chose to work within the multipole expansion,
in which the evaluation of atom-atom interactions is more
conveniently carried out [11].Specifically, we proceed by
performing a Power-Zienau transformation on the mini-
mal coupling Hamiltonian

H=) (H, +V)+-) V,, +By, (2)

where

fj, =) P. + " dAA(r- —8, )
q.,

2m, (
* c p

xB(R, + A(r —R;))

+2' drP&, r +—
2 /r —r'/

V;= — drP; r E'i r, (4)

V,, = 4vr dry;(r) Pg, (r) + drdr' 'q~(r)q (")
/r —r'/

=4~ drP r -Pj r „

and

dr[8 (r) + Z~(r)],8~

where E~(r) is the conjugate momentum of the trans-

verse part of the vector potential A(r), 8(r) is the
magnetic field, and the index i runs over the atoms
and o., over their constituents. The charge density is

q(r) = g, q, h(r —r, ). We assume charge neutrality,

q, = 0, and furthermore that it is meaningful to
consider individual atoms. Hence we ignore the effects of
electron exchange.

When applied to the minimal coupling Hamiltonian
(1), the Power-Zienau transformation yields the new
Hamiltonian

II. MODEL

Since atom-atom interactions are mediated by the elec-
tromagnetic field, we seek to develop a model describ-
ing the dynamics of atoms in the vacuum field, as well
as external laser fields that describe, e.g. , cooling and
trapping fields and atom optical elements, and that may
be treated quantum mechanically or classically, depend-

where P;(r) is the polarization of atom i. Note that in
the new representation we still use the symbols p, /m,
and fz(r), with the understanding that these operators
belong to the conjugate momentum of x, and Ai. (r),
respectively [and not to the velocity v and the electric
reld Z~(r)].

The Hamiltonian (2) is still exact. We new proceed
to simplify it by dropping all magnetic terms and re-
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placing the Hamiltonian (3) by that of a few-level atom,
specifically a two-level system in this paper. The polar-
ization of atom i is then replaced by P;(r) = (di20+ +
dizo )h(r r—;)", so that the contact interaction (5) reads,
for our two-level systems,

Vi2 —37rhpp(o+ [g) 0 + rr g o+)b(lkpl(r, —r, )). (7)

In this equation, we have dropped nonresonant terms to
be consistent with the rotating-wave approximation that
will be performed later on, and have introduced the spon-
taneous decay rate hpp

——4ldi2] kp/3. It is worth men-
tioning at this point that the only instantaneous coupling
is the two-body contact interaction (5).

In the next section, we adiabatically eliminate the vac-
uum field, thereby introducing the dipole-dipole interac-
tion between atoms. In preparation of this step, it is
useful to split the dipole interaction term (4) into a con-
tribution containing the vacuum modes of the field and
a contribution due to the macroscopically populated ex-
ternal laser fields. Our model Hamiltonian reduces then
to

'8 = 21, + 2]i —f der)(r) Cz(r)'
where in addition to the Hamiltonian (3), 'R, includes
the contact term (5) as well as the part of the dipole
interaction (4) due to macroscopic fields.

We conclude this section by introducing a few useful
definitions and notations. First, we note that in the fol-
lowing, single or two--particle operators in the Hilbert
space of fixed-particle number are indicated by a hat,
e.g., a, b, . . . , A, B, . . . . Calligraphic letters A, 8, . . . are
reserved for operators in Fock space. Also, we introduce
the positive frequency component of the "electromagnetic
field":

E~+(r) = ) ie(K)a„e'"'",
(rc)

where e is a compound index labeling both the polar-
ization i and wave vector k of a field mode, e(z)
[2m he~/V]i~2e;(k), i = 1, 2 and e;(k) are the usual polar-
ization vectors. In second quantization, the dipole mo-
ment operator of the system is

h(r —r).
We finally recall that "integrating over numbers" such

as dl, d2 means a summation over a complete set of quan-
tum numbers for the single-particle system under consid-
eration. In our case, this could be, e.g. , a spin and coor-
dinate, or a quasimomentum and band index. Formally
stated, the dummy index r is the spectrum of r", so it is
a one-, two-, or three-dimensional vector depending on
the experimental configuration. The wave vector k is of
course always three dimensional.

III. MASTER EQUATION

Since we are only interested in the dynamics of the
atoms coupled to the macroscopic fields described by the
system Hamiltonian 'R„we now eliminate the vacuum
modes of this system for the case of a bath at T = 0
in the Born-Markov approximation [13]. (More general
results for the case of a reservoir at temperature T g 0
are given in Ref. [14].) In the interaction picture with

respect to 'R, + 'Ry this procedure yields the Liouville
equation for the system reduced density operator g, in
Fock space,

1
d~211 ( [21,1(i), [21.1(r), 2,1 [~)]]),

(12)

where the operators in 'R,
y carry the time dependence of

their &ee fields. We assume as usual the coarse-grained
factorization of g(v), y into g7"'g, (v), where g&~"' is the
thermal equilibrium density operator of the bath, thereby
being left with free-field expectation values.

Since the correlation functions of the reservoir decay
over a time scale short compared to the characteristic
time of the system dynamics, it is possible to extend the
upper integration limit t to infinity on the right-hand side
of Eq. (12). The evaluation of this integral then reduces
to the evaluation of the half-sided Fourier transform of
the field correlation

5' [p(ri2) + ib(up(ri2)]

rp(r) = f d[i)(1[d(r)[2)21(1)'2(2)

= di28+(r) + di28 (r), (10)

@f7 d X 1 0 T 2

where d(r) = (di2cr+ + di2cr )b(r —r). Hence, in the
rotating-wave approximation, the dipole interaction re-
duces to

where ri2 ——lri —r2l and urp is the Bohr frequency of the
atomic electronic transition. This &equency now appears
since in reverting from the interaction representation we
must account for the fact that the operators 8+(ri~2)
appearing in Eq. (12) are to be taken at different times t
and t —a. The explicit forms of p(riq) and 6&up(ri2) are

x kt(1)4 (2)f~+(r) + H.c., p(r12) = —jo(kol&i21)
2

where &om here on the polarization vectors of Z& are
understood to be multiplied by the dipole moment dy2
of the particles, and the operator o+(r) is given by o+

——fl 3[e(r») ' e(d»)] ) j2(kol&»l) (14)
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b~. (r») =-go ( 1 l I'id)'
27) o (id —idp) ()dp)

x &o(~lr»l/c)

1 21 —3 [e(ri2) . e(di2)]
2

x&2(~lr»l/c) (15)

Here the functions ji are modified spherical Bessel func-

tions of the first kind [15], e(x) is the unit vector in di-
rection x, and P(1/x) stands for principal value.

In usual quantum optics, the imaginary part of the
bath correlation functions is associated with an infinite
"Lamb shift" that is normally ignored. More caution is
needed in the present situation: hide(ri2) depends on the
distance between two atoms. Hence it contains contri-
butions involving the dipole operators of two atoms, in
addition to the usual single-atom terms. It is possible
to reorder the operators appearing in Eq. (12) so as to
obtain a von Neumann equation which resembles a single-
atom one. This reordering leads to the final forin of the
Fock-space master equation,

[+ay gy] drldr2Vdiiy(ri2)[~ (rl)yS (r2) + ~ (rl)8 (r2)y g]

drh6ido(0)[4 (r, e)4(r, e) —4't(r, g)iIy(r, g), g]

d~1d~2 f ~12 ~ ~1 ~ ~2 g+ g~ ~1 ~2 2 ~2 0 ~1 (16)

where Vd;z is the dipole-dipole potential between atoms,

v„„i~») = y, (yo)~»i) ——it —3)e(r») e(d&y)) )yyiyol"»I)),
Ago 2

the functions y, being modified spherical Bessel functions of the second kind [15].

IV. BBGKY HIERARCHY

The Fock-space master equation (16) contains more information than necessary for most experimental measure-
ments, which can normally access only a small subset of one- and two-particle observables. It is therefore meaningful
to reduce Eq. (16) to a BBGKY hierarchy of reduced density operator equations for low particle number subspaces
of the many-particle Fock space. We proceed by defining a normalized density operator in the N-particle subspace of
the Fock space as

ptv(l, . . . , N; 1', . . . , N') 4't(i) ~0)(0~
dN( }div(. }

with Trj = f dN(i}p~(l, . . . , ¹ 1, . . . , N) = l. Expectation values of operator products are related in an obvious
way to such reduced density matrices. For example, we have

d '(i}ptv(1, . . . , N —1, a; 1, . . . , N —1, b),

(4t (d) iIit (c)41(a)4(b)) =:N(N —1)p2 (a, b; e, d)

= N(N —1) d (i} ~p(1, . . . , N—2, a, b;1, . . . , N —2, c, d). (20)

In this paper, we are primarily interested in deriving an
equation of motion for the single-particle density matrix
pi(a, b) =: (a[p~b). However, this equation is coupled
to the two-particle density matrix p2(a, b; c, d), and so
on. This coupled system of equations forms a BBGKY
hierarchy analogous to a classical physics situation [16],
with the addition of a damping part in the initial N-
particle equation. Specifically, for pi(a; b) this yields the

I

equation of motion

N "( ' ) = +-T([&,+t(b)~(a)]g}

+ Ti([

+ Tr(4't(b)4(a) Cg} (21)



50 NONLINEAR ATOM OPTICS: GENERAL FORMALISM AND. . . 1685

In the first two terms on the right-hand side of this ex-
pression, we have separated the single-particle contribu-
tions &om those originating &om two-body interactions.
The single-particle contribution to Eq. (21) is readily
reexpressed as

ree

where V is the sum of the dipole-dipole and contact in-
teractions and p2 is the two-particle density matrix. The
contribution of the Liouvillian Z(0 to Eq. (21) is best
evaluated by expressing it in Fourier space as

—„T([»@ (b) @( )]8= —&-„( I [»p ] lb) (22) &0= —
4 4

[~+(k)~ {k)j+jS+{k)$ (k)
3' dO k

where jq denotes the single-particle density operator.
Here, H is the single-particle Hamiltonian and includes
the coupling to cooling and trapping 6elds, atom optical
elements, etc. However, it does not include the contact
term, which is a two-body interaction included in the sec-
ond term on the right-hand side of Eq. (21). This term
requires some care in its evaluation, since as seen &om
Eq. (16), V still contains self-interaction terms. These
terms, which are infinite, must be identi6ed and elimi-
nated. This yields 6nally

-'T ([& @'(b)@(a)]~j= &(& -1)-(al—T 2([v p20lb)

(23)

—28 (k)(08+(k)],

where [see also Eq. (1.0)]

d(k) = f d(~)(&]'(k)]&)d" (k) d (&),

with

(24)

(25)

e+(k) = y 1 —[e(k) e(dre)]e J dr (rtr)e+'"'". (26)

Separating the one- and two-particle contributions gives
then

Tr(kt(b) 4 (a)Zj)

3p dOk= —N a cr+ k ~ k pg+pgo. + k o k —2& k pgcr+ k + Ã —1 —Tr V, , p2 5, 27

where V, is not to be taken as a symmetrized matrix
element.

Surprisingly perhaps, the two-body effects of l'. take
the form of a Hamiltonian contribution, but with an
imaginary potential

ihp0 t . . (1 3[e(d~2) e(r~2)] ~
20 0 r12

2
I g2 2

V. HARTREE-POCK APPROXIMATION

The BBGKY hierarchy can be self-consistently trun-
cated by diHerent schemes of various degrees of sophisti-
cation, and whose appropriateness depends considerably
on the physics involved. Here, we use the simplest such
method, the Hartree-Pock approximation: %e truncate
the BBGKY hierarchy after the single-particle density
matrix while keeping the influence of the particle statis-
tics by introducing the ansatz

xje(ke]~rre]~)I (e- kkkr —k+ me-). (2s) p2(a, b; c, d) = pi (a; c)pg (b; d) —ripe (a; d) pg (b; c)
+Ap2(a, b; c, d),

This Hermitian term describes excitation and decay pro-
cesses which are not locally con6ned, and its physical
origin lies in the fact that a particle that decays at x
need not reappear in its lower electronic level at that
same location. A similar term appears in the Heisenberg
picture approach of Zhang et al. [S]

where g = p1 for bosons and fermions, respectively. It
is assumed that Ap2 remains negligible during the time
evolution. Equation (29) also includes the Hartree ap-
proximation, by setting g = 0. Two-atom density opera-
tors appear in Eqs. (23) and (27). With the Hartree-Fock
ansatz, the right-hand side of Eq. (23) becomes

i l—
l

—
l
N(N —1)[(a:1[Vl2: 3)p2(2, 3;b, 1) —p2(a, 3;1,2)(1:2]Vlb: 3)]2hy

l
N(N —1)((a:llVl2: 3) [pz(2; b)p) (3; 1) —ppz(3;b)pz(2; 1)]

gh)
[p&(a'1)»(3 2) —~»(a 2)p~(3 1)1(1:2IVlb: 3)) (30)
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where we have introduced the symmetrized matrix element (a: llVl2: 3} = (a: llVl2: 3) —g(a: llVl3: 2). The
corresponding term in Eq. (27) may be expressed as

—
l

—„ I
N(N —1)[(a: 1IV 12: » p2(2 3 b 1) —p2(a 3 1 2) (1:2IV. lb: 3))

~~)
i')= —

l

—
l
N(N —1)((a: 1

l
V l2: 3) [p) (2; b) py (3; 1) —

)7py (2; 1)py (3; b)]

—[pq (a; 1)pq (3; 2) —)7pq (a; 2)pq (3; 1)](1:2l V, lb: 3)}.
Regrouping all terms yields the e6'ective single-atom Hartree-Fock master equation of nonlinear atom optics

(9p(a; b)

Ot

~

(N —l) j d('j((u: li(V d V )i2: 2) (p(2 k)p(2; 2) —pp(2 2) p(2; I))

—[p(a; 1)p(3; 2) —)7p(a; 2)p(3; 1)) (1:2l(V + V, /2) lb: 3)}
3po dO k

a k+(k)k (k)p, + p, d+(k) k(k) —2k (k)p, k+(k) k), (32)

where we have changed the notation &om pq to p since no
ambiguity is possible kom now on. This equation is the
central result of this paper: It is the basis for studying
atom optics in the presence of a two-body dipole-dipole
interaction and of spontaneous emission.

A2

a = —Mo.s + MZ cos(qr) (o + + 0. ),2M
(34)

wave number q. The single-particle Hamiltonian for this
system is (see, e.g. , [17])

VI. COHERENT REGIME

In the remainder of this paper we isolate the coherent
part of the master equation (32), which entails neglect-
ing spontaneous emission and the imaginary potential V, .
Neglecting both of these terms is consistent since they
both have the same origin and do not conserve Tr(p ),
that is, the purity of the state, in contrast to the dipole-
dipole potential. In the coherent regime, which neglects
dissipative processes, we are then left with the single-
particle Hamiltonian H and the two-body potential V,
which includes both the dipole-dipole and the contact
terms. In that case, and for bosonic atoms, the master
equation (32) is equivalent to the nonlinear Schrodinger
equation

ik = f d2(2(H~~2)d(2)

+(lV —l) f dld2dl(l, i~V~2, 2)

x&*(1)4 (2)4(3)

with the identification p(a;b) = [P(a)]*/(b). This equa-
tion is equivalent to that previously obtained in the
Hartree approximation which is appropriate for bosons
[7]

We now specialize to the case of a system of two-
level atoms with lower electronic level lg) and upper elec-
tronic level le), w'hich is interacting with a standing-wave,
monochromatic classical laser field of frequency ~ and

where M is the atomic mass, b = u —~0 is the detuning
between the laser frequency and the electronic transition
frequency ~0, and 'R is the field Rabi frequency.

In addition, we assume that the two-body interaction
may be adequately described by a contact potential of
the form

V = (V./2q)b('») (~'C ~-+~- e ~+).

The coefficient Vp/2q in Eq. (35) then reffects the fact
that the range of the dipole-dipole interaction is of the
order of an optical wavelength A = 2z/q, and Vo is of the
order of hpo.

Though not essential, this approximation, which re-
places the full potential by its erst moment, provides
considerable physical insight into the many-body atomic
bound states discussed in Secs. VII and VIII. It is impor-
tant to realize that the approximation (35) is not valid
in general, but should be quite good for ultracold atoms.
Specifically, the problem is characterized by three length
scales. The first one is determined by the contact po-
tential appearing in the Power-Zienau Hamiltonian and
is of the order of the Bohr radius ao. The second one,
of the order of an optical wavelength, is given by the
range of the dipole-dipole interaction. The third one is
the thermal de Broglie wavelength Ag of the atoms. The
approximation of the dipole-dipole potential by a contact
interaction is expected to be valid provided that Ag )& A,
i.e., for temperatures well below the recoil limit. Note
also that at the moderate atomic densities we are consid-
ering, we are justified in ignoring the eKects of the "true"
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B4's(x)
Bt

+hR cos(qz) Ps(z)
+(N - 1)(v /q) I&.(*)I'&.(*)

h2 B2 1
Ps(z) + -Mgs(z)

+hR cos(qz)P, (x)
+(N —1)(Vo/q) I&.(*)I'&s(z)

(36)

These equations show that, from the perspective of a
single atom, the N —1 other bosonic atoms effectively act
as a nonlinear medium. This is analogous to the situa-
tion in conventional nonlinear optics, where the presence
of a medium can lead to an effective nonlinear behavior
of the light field when the medium dynamics is traced
over. In the present case, the ultimate origin of the non-
linear behavior of the atoms is their interaction with the
vacuum field. Hence the reversal of the roles of light and
matter between the situations of conventional and atom
optics is carried over into the nonlinear regime. We note,
however, that the dipole-dipole interaction leads only to
a modulation of the upper state wave function due to the
presence of a lower state population and vice versa (cross-
phase modulation. ) This is in contrast to a third-order
optical nonlinearity, which generally also includes a term
corresponding to the self-interaction of the invidual com-
ponents of the wave function (self-phase modulation. )

As pointed out in Ref. [7], the dynamical effects de-
scribed by Eqs. (36) include matter-wave phase conju-
gation, soliton solutions, and nonlinear focusing effects.
This work also showed how nonlinear effects modify the
usual Pendellosung of atomic Bragg scattering. In the
next two sections, we investigate numerically the gener-
ation of Thirring solitons and gap solitons. A different
class of soliton solutions has also been predicted in Ref.
[8] for atoms difFracted ofF resonance by a traveling wave
Geld.

VII. THIRRING SOLITONS

First we consider atomic Thirring solitons, which oc-
cur for an ensemble of ultracold atoms interacting with
a resonant standing-wave light field. Specifically, we as-
sume that the efFective single-particle states Pz(x, t) and
P, (x, t) can be expressed as

Ps(x, t) = G(x, t) exp(iqx/2) exp( —iraq„t/4),

P, (x, t) = E(x, t) exp( —iqx/2) exp( —iu„t/4), (38)

where the envelopes G(x, t) and E(x, t) are assumed to

contact potential (7).
In coordinate representation, we have P(l) ~ P„(x),

where p = e or g labels the electronic state. Combining
Eqs. (34) and (35) with Eq. (33) then yields the pair of
nonlinear Schrodinger equations for the effective single-
particle states P, s(x) [7],

vary slowly over an optical wavelength, q ]G(x, t)] )&

q]B G(z, t) ] » [B G(x, t) ~, and tu„= hq /2m is the recoil
frequency. Equation (37) describes a quasi plane wave

corresponding to an electrotranslational state with the
atom in its ground electronic state and momentum hq/2,
while Eq. (38) corresponds to an atom in its excited elec-
tronic state and momentum —hq/2. We may confine our
attention to these two states in the limit u„/R )) 1. Sub-
stituting Eqs. (37) and (38) into Eq. (36) and dropping
nonslowly varying terms yields the pair of equations

. BG(z, t)
Bt

ih'q BG(x, t) hR E z, t
2M Bz 2

+(N —1)(Vp/q) [E(x, t)
~

G(*,t),
(39)

. BE(z, t) ih2q BE(x, t) hR
Bt 2M Bz 2

+(N —1)(V, /q) IG(z, t) I'E(z, t)

In the plane-wave limit where G and E are indepen-
dent of z, these equations describe the velocity-tuned
(Doppleron) resonance between the two electrotransla-
tional states.

The pair of envelope equations (39) can be converted
to the canonical form of the classical massive Thirring
model (MTM) of field theory by making the substitutions
qx ~ X, ur„t -+ T, R/2tu„~ m, (N —1)Vp/2fuu„m —g,
E ~ yi, and G ~ y2 [18]. The MTM is an integrable
classical field theory with soliton solutions. In particular,
it possesses a two-parameter family of fundamental soli-
ton solutions whose parameters control the velocity and
charge of the soliton. The same soliton solutions apply
to the present problem, where the velocity corresponds
to a transverse velocity and the charge is fixed by the
normalization of the atomic wave function. Then, the
atomic Thirring soliton takes the form

i(2 ( hR/2 l' '
. (1 —p)G (* t) q I (N —1)IVoI)l

"nQ I, + p)l
R sin Qxsech p(qz —p~„t) 6 iQ/2

24)~

'Rcos Qx exp ke q(pqe —te„q) + ee]2(d.

(4o)

E(xt)=k ~
( )

sinQ
((N —1)[Vp[)

"
(1—P)

RsinQ
xsech p(qx —p~„t) p iQ/2

24)~

Rcos Qx exp +i
2(d~

'7(Pqx —id t) + qrp

where Q = (N —1)~vp~/4Fuu„, P = 2Mv/hq is the atomic
momentum in units of hq, v being the soliton velocity,
andy = (1—P ) ~ . The parameter P is constrainedbe-
tween —1 and 1, and the Thirring soliton velocity is there-
fore constrained between +hq/2M, that is, less than half
the recoil limit. Using the solution Eq. (40), we may also
introduce the soliton width xp as xp ——2u„/pRqsinQ.
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This width is broad compared with an optical wavelength
if u„/R )) p. Since p & 1, the conditions on the soliton
width are in keeping with our original assumption based
on the ansatz in Eqs. (37) and (38).

An important feature of the Thirring soliton (40) is
that the upper (lower) sign corresponds to an attractive
(repulsive) potential. Thus Thirring solitons are possi-
ble irrespective of the sign of the two-body interaction.
The atomic Thirring soliton is a coherent superposition
of the two electrotranslational states participating in the
Doppleron resonance. This combination has the property
that it does not distort under the combined effects of the
diffracting standing-wave light Geld and of the nonlinear-
ity due to many-body effects. In contrast, without the
nonlinearity the standing wave acts as a dispersive ele-
ment which causes any input of finite spatial extent to
broaden and also generally leads to diffraction into other
scattering orders. The atomic Thirring soliton is immune
to both of these processes.

The key property of atomic solitons is that they rep-
resent many-atom bound states which are immune to
wave-packet spreading. To verify the nonspreading na-
ture of the approximate Thirring solitons we have per-
formed a number of numerical simulations of the original
Eqs. (36) using Eqs. (40) as initial conditions. The nu-
merical simulations employed the split-step method using
a fast Fourier transform applied to Eqs. (36). (This nu-
merical method is well known in the Geld of nonlinear
optics. ) We have found that the atomic Thirring soli-
tons propagate over long times without spreading for a
large range of parameters, and we have verified the lim-
ited range of validity, ur„/'R )) 1. Figure 1 shows an
example of our numerical results where we have used
parameters (N —1)Vp ——1.6k'„(attractive interac-
tion), u, /'R = 1.1, and P = 0.25. For comparison, in
Fig. 2 we have neglected many-body effects, Vo = 0,
and wave-packet spreading is evident (the packet trav-
els at an angle due to the finite velocity). The solitonic

0.15
i

0.05
00

100

FIG. 2. Same initial condition as in Fig. 1 but Vo = 0.0
in Eq. (36). The dispersion destroys the inital soliton shape
very fast.

VIII. GAP SOLITONS

nature of the solution is demonstrated in Fig. 3 where
two identical solitons with opposite velocities P = +0.25
are collided: In keeping with their solitonic nature the
wave packets emerge relatively unscathed &om the col-
lision. (Radiation components are also present after the
collision, showing that these solutions are more properly
referred to as solitary waves. ) However, the approxi-
mate soliton solution (40) predicts soliton propagation
for (N —1)Vo

———0.9Ru„, in apparent contradiction with
the numerics. The result in Fig. 1 is actually a testi-
mony to the robustness of the soliton solution even be-
yond its apparent regime of validity since we have used
tu„/'R = 1.1 in the simulation. The simulation therefore
shows that soliton solutions appear for a broader range
of parameters, but with renormalized soliton parameters.
Similar results were obtained for a repulsive two-body in-
teraction.

0.15

Atomic Thirring solitons present two major restric-
tions, namely, that they occur on resonance and have
low transverse velocities ~v~ ( hq/2M. While Thirring

0.0
00

0.4

00

-vo

FIG. 1. A traveling solitary wave solution of Eq. (36). A
Thirring solitou with the parameters (N —1)Vo ———0.9hcu„,
P = 0 25fuu„/q, R = 0.9hu„.was used as mitial condition. In
the dynamics (N —1)Vo was set to (N —1)Vo = —1.6hcu„.
Plotted is P, the probability density to find a particle at x
independent of its electronic state, averaged over one wave-
length, as a function of the dimensionless coordinates X = qx,
T = (d~E.

IOO

FIG. 3. With the same settings as in Fig. 1, two counter-
propagating Thirring solitons were used as initial condition
for Eq. (36). The solitary wave character is clearly shown by
the almost unperturbed shape of the single wave packets.
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i(~x —0 t)P„(x,t) = e' "* " ' u„(z),I (41)

where P„(z,t) is a 2-spinor with components P, „(z,t)
and Pg „(z,t), and u„(x) is a 2-spinor with components
u, „(z) and us „(z), r. is the quasimomentum, restricted
to the first Brillouin zone, the eigenstates are labeled
by the index p = (n, e), and E„(r) = hO„ is the cor-
responding eigenenergy. Previous studies of the near-
resonant Kapitza-Dirac efFect have discussed how the dis-
persion relation E„(r) can be interpreted in terms of en-

ergy bands, n being the band index. An example of band
structure is shown in Fig. 4. We assume periodic bound-
ary conditions with period L, so that strictly speaking,
the quasimomentum K takes on discrete values only, but
for all practical purposes it can be treated as a contin-
uous variable. The eigenfunctions u„(z) are scaled to
obey the orthogonality condition

solitons may still be relevant in cavity /ED geometries
where spontaneous emission is inhibited, avoiding the
detrimental effects of spontaneous emission generally re-
quires working off resonance. For the present problem of
atomic motion in a standi. ng-wave 6eld, atomic gap soli-
tons are the appropriate generalization which may also
be used for ofF-resonance operation. In addition, gap soli-
tons allow for a broader range of velocities. In this sec-
tion, we discuss atomic gap solitons and numerically illus-
trate them without going into many of the mathematical
details, since they follow from a rather straightforward
generalization of the theory developed in great detail by
Sipe and Windful and de Sterke and Sipe in the context
of nonlinear optical propagation in periodic structures
[19—21]. A systematic derivation of atomic gap solitons
starting from Eqs. (36), using the Floquet-Bloch theo-
rem and a multiple scales analysis, can be transcribed in
a one-to-one manner from those papers.

To proceed we first consider the efFective single-particle
Eqs. (36) without the nonlinear terms proportional to
Vo. It is well known that these linear equations have
eigensolutions of the Floquet-Bloch form

g(x, t) = A„(x, t)P„(x, t), (43)

the envelope A„(z, t) varies slowly on the length scale of
q as well as on the temporal scale of 0„.Within the
effective mass approximation, the equation of motion for

A„(z, t) is

(B B) 5' B'A
(44)

The normalization of the atomic wave function requires
that the envelope A„(t) be likewise normalized to unity.
It is important to realize that despite the scalar nature
of Eq. (44), our description still retains the two-state
nature of the atomic system, as evident from Eq. (43).

We now need to include the nonlinear terms arising
from nonlinear effects. Our basic assumption is that
these terms can be treated perturbatively and do not
significantly modify the underlying band structure. (For
a more precise discussion of these notions, see Ref. [20].)
The many-body efFects then lead to a nonlinear modifi-
cation of Eq. (44). From Eq. (36), the effects of the
nonlinearity may be expressed in matrix form as

0
0 ~

(45)

Consider first the case where A„(z, t) is independent of z.
Substituting the ansatz (43) into Eq. (45) and taking the
dot product with exp[ —i(mz —O„t)]ut (z) to obtain the
projection onto the envelope A„ then yields the nonlinear
term

t VP m (N —1)(V /q)I'„IA„I A„, (46)

where the dimensionless parameter I'„ is

To each point on the band structure we can associate
a group velocity v„(r) = (BO„/Bir) as well as an effective

mass m„(r) = h(B2O„/Bz )
i which may be either pos-

itive or negative. Consider then a wave packet consisting
of a slow modulation of the pth eigenstate,

a
dzut (z) u„(z)e'i" "]*= h„„.

0
(42) L

, (*)I'I ., (*)I'
L (47)

-0.5

E/[E]

0.5

which is independent of the quantization length I It.
is important to note at this point that the form (46) is
retained even when A& depends on x. The justi6cation
for this fact rests on the method of multiple scales, where
the envelope A„ formally varies with a different spatial
variable (the slow variable) than the modulated eigen-
function (the fast variable).

Combining the nonlinear term (46) with Eq. (44)
yields the nonlinear Schrodinger equation

PIC. 4. The first five energy bands of the single-particle
Hamiltonian Eq. (34) for R = 2.1M„and 6 = 0.0. The
energy is plotted in units of hen„. The quasimomentum m is
plotted in units of hq, and the energy is in units of the recoil
energy /1 q /2M.

qBt Bx) " 2m„Bx2
+(N —1)(Vo/q)I'„IA„I A„.

(48)
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Atomic gap solitons arise from the balance between the
linear dispersion due to the standing-wave light field [the
kinetic energy term in Eq. (48)] and the potential pro-
vided by the many-body effects [the nonlinear term in
Eq. (48)]. For the case sgn(m„Vp) = —1, the nonlinear
Schrodinger equation has a fundamental bright soliton
solution, the atomic gap soliton, of the form

1
A„(z, t) = sech [(z —zp —v„t)/m„] e *'~'/", (49)

2tp~

0.08

P
0.0

500

where the soliton width m„ is given by

4 M
qI'„m„(N —1)Vp 100

and

h2
6p

2fA~ QJ
(51)

The total energy of the atomic gap soliton is S'„
E„+e„, with E„being the energy derived from the band
structure.

Equation (48) also admits dark atomic gap solitons
when sgn(m„Vp) = 1. In this case the finite quantization
length I is essential to normalize the wave function. In
the limit that q (& m„(& I, the basic dark soliton may
be approximated by Eq. (49) with sech replaced by tanh.

We have performed a broad range of numerical sim-
ulations nf Eqs. (36) combined with Eq. (43) as ini-
tial condition. The parameters m„, v„, and I'„ for the
atomic gap soliton were obtained from band structure
calculations. The soliton (or at least solitary wave) na-
ture of the approximate envelope solutions was estab-
lished by their invariance under propagation and their
robustness against collisions. The numerical simulations
yielded plots analogous to Fig. 1 for atomic Thirring
solitons.

Rather than dwelling on the numerical validation of
the atomic gap solitons, we conclude by demonstrating
numerically how they can be contained axially in a fo-
cused laser beam. Realizable standing-wave laser fields
have a beam profile of the form cos(qz) f(z/zest) along
the laser axis, where x~ ——qm0 is the Rayleigh range,
m0 is the transverse spot size at the beam waist x = 0,
and f(0) = 1. For the purposes of illustration, we as-
sume f (x/zest) = 1 —(z/xR) . This is a good approxima-
tion for the situation that we are interested in, where the
Rayleigh range is much greater than the predicted size of
the atomic gap soliton, x~ )) x~. The question we wish
to address is whether the slow axial variation of the laser
Geld destabilizes the gap soliton, causing it to fall out of
the laser focus, or whether it leads to axial confinement.

We proceed by substituting cos(qx) by
[1—(x/xz) ) cos(qx) in Eqs. (36). This introduces in each
equation a new term —MZ(x/x~) cos(qx)P, s i which we
treat as a perturbation. The effect of this linear pertur-
bation on the gap soliton envelope A„may be found in
a manner analogous to that of the nonlinear terms: The
axial field variation adds a harmonic potential m„cu2z /2
to Eq. (48), where

FIG. 5. A gap soliton oscillating in an inhomogeneous laser

beam. As initial condition for Eq. (36) we chose a travel-

ing soliton solution (49) of Eq. (48) with the initial veloc-

ity c = 0.05 in dimensionless units X = qx and T = u t.
The initial width and the nonlinearity were adjusted to al-

low a soliton solution in the unperturbed case. Plotted is the

probability averaged over one wavelength as a function of the

dimensionless coordinates X = qx, T = u t. The carrier so-

lution was the Bloch-wave function in the 6rst doppleron res-

onance at the upper band gap -Pp, i- at a detuning b/~„= 1.5
and a Rabi frequency 'R/u = 1.7.

2 2ARQ!P
P 2

77lp Xp
(52)

and

L

exp
——— dzu„(z) 0'i up(z) cos(qz).

0

From Eq. (52) we see that for sgn(m„u„) = —1, the ax-
ial variation of the laser field provides a confining poten-
tial, while the gap soliton will fall out of the laser focus
in the other case. Figure 5 shows a numerical simula-
tion which verifies that gap solitons can be axially con-
fined, thereby undergoing oscillations around the laser
focus while maintaining their basic sech profile.

IX. SUMMARY AND CONCLUSION

In this paper, we have presented a forrnal development
of the theory of nonlinear atom optics. Starting from
an ensemble of N atoms interacting with the vacuum
electromagnetic field as well as an arbitrary number of
classical laser fields required, e.g. , for cooling, trapping,
and/or atom optics, we derived a Fock state master equa-
tion by adiabatically eliminating the vacuum modes. An
effective single-atom master equation was then obtained
by constructing a BBGKY hierarchy and introducing a
Hartree-Pock ansatz. In future work, we will apply this
master equation to the study of a number of problems in
atom optics. For instance, we demonstrated in the sec-
ond part of the paper how nonlinear atom optics leads to
the prediction of atomic solitons, provided that only the
coherent part of the dynamics is retained. The nonlin-



50 NONLINEAR ATOM OPTICS: GENERAL FORMALISM AND. . . 1691

ear master equation will permit us to assess the effects
of spontaneous emission on these solitons. In addition, a
number of other problems can be addressed within this
formalism. We have mentioned that the effective nonlin-
earity provided by the dipole-dipole interaction between
ground and excited levels may lead to intriguing effects
such as atomic wave mixing and phase conjugation of
matter waves. Again, the understanding of the role of
spontaneous emission is necessary in order to assess the
practicality of these ideas. In addition, the extension
of this work to multilevel atoms will permit us to ad-
dress a number of further problems: For instance, suf-
ficiently high atomic densities in optical lattices could
lead to spontaneous pattern formation and the creation
of other stable long-range structures, such as possibly
superlattices. Even more intriguing perhaps, the com-
bination of nonlinearities with dissipation, in the form
of spontaneous emission, and of a "pump" mechanism
suggests the possibility of a "coherent atomic beam gen-
erator, " which could loosely be considered as the atom
optics equivalent of a laser. These, and other problems
in nonlinear atom optics, will be the subject of future
investigations.

Turning now to the more formal aspects of our theory,
it is important to emphasize that the Hartree-Fock ap-
proxirnation is not without its difficulties and shortcom-
ings. While linear master equations of the Lindblad type
[12j, usually encountered in quantum and atom optics,

have a built-in conversation of norm, Hermiticity, and
positivity, only the Grst two of these properties are obvi-
ous for the time-dependent Hartree-Fock approximation.
Hence improvements past this ansatz must be attempted.
The obvious direction is to generalize the ansatz (18) to
a full Fock-space density operator that is not diagonal
and pure in number space.

Also, due to its intrinsic nonlinear character, it does
not appear that the effective master equation is amenable
to numerical solutions by Monte Carlo wave function sim-
ulations. Yet, the theory that we developed was of course
linear at the onset. Hence one intriguing line of investiga-
tion would consist in attempting to 6rst cast the theory in
the framework of the Monte Carlo wave functions formal-
ism, and then perform a Hartree-Fock ansatz. It is not at
all obvious that such an approach will give the same re-
sult as the present one, but their comparison might help
shed new light on the Hartree-Fock approximation.
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