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We propose that the threshold of a laser is more appropriately described by the pump power
(or current) needed to bring the mean cavity photon number to unity, rather than the conventional
“definition” that it is the pump power at which the optical gain equals the cavity loss. In general the
two definitions agree to within a factor of 2, but in a class of microcavity lasers with high spontaneous
emission coupling efficiency and high absorption loss, the definitions may differ by several orders of
magnitude. We show that in this regime the laser undergoes a transition from a linear (amplifier)
behavior to a nonlinear (oscillatory) behavior at our proposed threshold pump rate. The photon
recycling resulting from the high spontaneous emission coupling efficiency and high absorption may
in this case result in lasing without population inversion, and coherent light is generated via “loss
saturation” instead of gain saturation. This mechanism for lasing without inversion is very different
from lasing without inversion using a radiation trapped state.

PACS number(s): 42.50.Dv, 42.50.Lc, 42.50.Ar, 42.55.Px

I. INTRODUCTION

In recent years the interest in microcavity masers and
lasers has increased. The idea behind these devices is
that if the cavity volume is reduced to about one wave-
length cubed, only one, or at most a few, modes will
interact with the atoms constituting the gain medium.
One consequence of this interaction with few modes is
that dissipation (i.e., coupling to the radiation mode con-
tinuum), which washes away the features of the coherent
interaction between the field and the gain medium, is
kept to a minimum. Therefore microcavity devices, and
micromasers in particular, have been used to probe the
quantum-mechanical features of the light-matter interac-
tion {1,2]. In contrast, most of the features of the co-
herent interaction between light and matter are washed
out by intrinsic averaging over all quantum-mechanical
phases in masers of macroscopic dimensions and with
some loss [3]. In this paper we demonstrate that in mi-
crocavity semiconductor lasers, some unusual features
are retained even if the phase of atomic dipole mo-
ment is averaged over (physically this is accomplished
by phonon scattering). We shall concentrate on contin-
uously pumped optical devices, but some of our conclu-
sions may be applicable to micromasers, although the
micromasers usually are pumped and probed in a very
different fashion using Rydberg atoms in flight.

One advantage of having only one or a few optical
modes interacting with the gain medium is that very
little power is carried away by spontaneous emission in
spurious modes and hence the threshold power of mi-
crocavity lasers can be very low [4-7]. In the extreme
case, when only a single electromagnetic mode interacts
with the gain material, the input power versus output
power curve is ideally a straight line. This result is easy
to understand, because if radiative recombination dom-
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inates, and all the radiation goes into a single mode,
the device quantum efficiency is always close to unity.
Hence every electron is converted to a photon which is de-
tected, irrespective of pump power. Due to the absence of
any signature of the threshold in the input power versus
output power characteristics, such as a kink or “knee,”
some of the early investigators dubbed them “threshold-
less lasers” [4,5]. In this paper we will argue that every
microcavity laser has a threshold, but sometimes that
threshold is reached even before the gain medium is pop-
ulation inverted.

Conventionally, the threshold is taken as the pump
power (injection current) needed to make the gain of the
optical mode equal the cavity losses. This is not a defini-
tion, and it cannot be, because the optical gain is always
smaller than the cavity loss because of the spontaneous
emission [this can be seen from (2) below]. Nonetheless,
the conventional threshold “definition” works in macro-
scopic lasers since in lasers with large cavity volume
(> A3), the spontaneous emission contributes only a neg-
ligible amount of power to the lasing mode just above the
threshold. The small spontaneous emission coupling co-
efficient 3 is also the reason the gain is pinned above
threshold (gain saturation) at a level very close to that
of the optical loss.

For a microcavity laser, in which most of the sponta-
neous emission goes into a single mode, the conventional
threshold “definition” sometimes fails. In these lasers,
several transitions that usually are associated with las-
ing (such as the increase of the temporal coherence of the
optical field, the increase of the quantum efficiency, the
pinning of the population inversion, and the resonance
peak of the intensity noise) take place at pump pow-
ers that may be several orders of magnitude below the
conventional threshold. What uniquely characterizes the
transitions is that they all occur at the point where the
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stimulated emission starts to overtake the spontaneous
emission. For any mode and any linear gain medium,
this will happen when the mean photon number in the
mode is unity. We propose that this is a more suitable
definition of the threshold than the conventional “defini-
tion” for the reason stated above, and for the fact that
the proposed threshold could be experimentally assessed,
whereas the conventional threshold condition really
cannot even be reached at any finite pump rate. In the
following we will refer to the threshold definition

Pth = 1, (1)

where Py, is the mean photon number in the lasing mode
at threshold as the quantum threshold condition since it
is more intimately coupled to the microscopic emission
processes than the conventional definition.

In the paper it shall be shown that this definition is
valid for a larger class of lasers than the conventional
definition. The quantum threshold is associated with the
changes in physical characteristics of the system men-
tioned above, even when 3 — 1. In this regime all tran-
sitions are smoother than in the small 3 regime if plotted
or measured as a function of the pump power. (If plotted
versus the mean cavity photon number the transitions are
smooth in both regimes.) The transitions, and hence the
threshold, become “fuzzy,” and it has been argued that
since the transitions are no longer “sharp,” the concept
of a threshold is not meaningful. Taken to the extreme,
one may then argue that as 8 — 1, the device becomes
thresholdless. Our viewpoint is exactly the opposite. We
believe that as the transitions become more “fuzzy” it
becomes so much more important to have a well defined
threshold. The definition should also allow one to ex-
perimentally verify whether one is operating below or
above threshold. It is inarguably so that the device char-
acteristics in a # = 1 laser will not differ much as the
pump power is varied from, say 10% below to 10% above
the quantum threshold power. Nonetheless, the proposed
definition will always be in the zone separating the linear
(amplifier) device regime from the nonlinear (laser) op-
erating regime irrespective of 3. Sufficiently far from the
quantum threshold the characteristics of the device will
always be linear for smaller pump powers and nonlinear
for higher pump powers. Hence a “thresholdless” laser
does not exist, or at least it does not if the laser gain
medium qualitatively follows, e.g., (4) below.

In [6] we stated that in a microcavity laser where the
absorption rate is higher than the cavity loss rate (£ > 1,
see below), the quantum threshold condition (1) may not
be suitable since it was found that it is possible in some
circumstances to reach (1) before the population is in-
verted. In this paper we retract this statement. Even
though the population is not inverted, we may observe
all transitions associated with lasing once the quantum
threshold is reached, and above the quantum threshold
the device will be nonlinear. Lasing without population
inversion contradicts the classical threshold, per defini-
tion. On the contrary, the quantum threshold condi-
tion encompasses the lasing without population inversion
regime as a special case, and therefore this condition

is more general. We would like to stress that in most
cases, and specifically in the macroscopic laser regime,
the quantum threshold condition and the classical thresh-
old condition coincide within a factor of 2 [6]. However,
in this report we focus on the regime when the two defi-
nitions disagree, i.e., the lasing without inversion regime.
Note that the present mechanism for lasing without pop-
ulation inversion is different from the mechanism utilizing
a quantum-mechanical interference between two upper or
lower laser levels in a radiation trapped state [9,10].

As an example of a transition that may occur before
the medium is inverted, we will show that it is possi-
ble to get amplitude squeezing in noninverted (formally
absorbing) devices. We will also discuss how lasing and
squeezing without inversion can be detected, for it is ob-
viously not sufficient to observe the output field, since
that only tells us whether or not the device is lasing, not
whether the gain medium is population inverted. We pro-
pose using the sign of the quantum correlation between
the photon flux and the carrier number as a criterion for
inversion. The correlation is positive in a noninverted
laser and becomes negative when the population becomes
inverted [11-13].

II. LANGEVIN EQUATIONS

The quantum Langevin equations for the carrier num-
ber N and the photon number P in a semiconductor
diode laser can be written [14]

dP Jé]
— =[g—~|P+ =N + Fp, 2
g ~ NP+ N+ Fp (2)

dN N N

— =R, - — — — —gP + Fy. 3
dt Ry Tep  Tnr g& + N (3)

Here R, is the injected number of carriers, g is the op-
tical power gain, and + is the photon loss rate, all per
unit time. 7,, is the radiative spontaneous recombina-
tion time, 7,, the nonradiative recombination time, and
( is the fraction of spontaneous emission that enters the
lasing mode. Fp and Fy are Langevin fluctuation forces
driving the photon and carrier fluctuations, respectively,
whose spectral density can be calculated using the fluc-
tuation dissipation theorem [14,15]. Using a linear gain
model and the relation linking the spontaneous and stim-
ulated emission rates (Einstein’s A and B coefficients),
the gain g may be written as

B

Tsp

g=—(N—-Ny), (4)

where N; is the transparency carrier number. Using (2)
and (4), it is easy to derive the mean carrier number as
a function of the mean photon number

N:Nti—f—ﬁ(1+%) : (5)

Here, the dimensionless parameter { = [BN;/v7,, has
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been introduced. £ is the mean cavity photon num-
ber at transparency, and £ > 1 indicates an absorption
rate SN;/T,p larger than the cavity loss rate y. From
the equation it is easy to see that IV increases approxi-
mately linearly with P until P equals unity, then it be-
comes clamped. This indicates that at the photon num-
ber unity, the system undergoes a transition from the
linear operating regime to the nonlinear regime [8]. It
should be noted that (5) is a very general equation. For
any laser parameters, the transition always takes place
at P =1, and the only dependence in (5) on cavity loss,
spontaneous emission coupling factor, and spontaneous
emission lifetime is via £. Hence the onset of clamping
of the carrier number at the quantum threshold is also
valid for the ideal 8 — 1 microcavity laser. It is also
easy to see that as long as P is smaller than &, N is
smaller than N;. That is, in the region 1 < P < £, the
population is noninverted but the device is operating in a
saturated, nonlinear regime. A ¢ larger than unity should
be possible to obtain using cavity QED effects, increas-
ing B faster than decreasing the cavity volume [16,17].
We will explore this regime of lasing without inversion
below. Before doing that, it should be pointed out that a
large ¢ is often not desirable in a laser since it raises the
threshold pump rate, broadens the laser linewidth (at a
given pump rate), and increases the population inversion
factor nsp = N/(N — N;), which, using (5), high above
threshold can be expressed n,, =1+ ¢.

To calculate measurable quantities, we need the cavity
boundary condition

I=~.P-F,, (6)

relating the external photon flux I to the cavity photon
number P, the output coupling losses 7., and the vac-
uum fluctuations ¥, impinging on the output coupling
mirror [15]. For clarity, we shall express v, as 7.y where
Ne = Ye/7 is the output coupling efficiency of the mode.
The total free carrier to photon quantum efficiency below
threshold can be calculated from (3) and (5) as

_ Bne
"= 150+60-B+9)°

where we have used the dimensionless parameter ¥ =
Tep/Tnr- It is seen that in order to have a high quantum
efficiency when £ is higher than unity, two conditions
must be fulfilled. First, 1 — 8 must be smaller than 1/¢.
In addition, 7,,, must be larger than £7,p. It is seen that
the emission and subsequent reabsorption of the photons
when £ is high, the photon recycling, augments the re-
quirements for a high spontaneous emission coupling ra-
tio and a long nonradiative recombination time. This is
easy to understand. Every time a photon is reabsorbed,
the excitation has a new chance to recombine nonradia-
tively, or radiatively into nonlasing modes. To give an
example, assume that we have a 3 = 1 laser with a non-
radiative lifetime 1000 times longer than the spontaneous
lifetime. If the photon is reabsorbed on the average, say,
1000 times, the probability of having the excitation decay
nonradiatively is still about 1 — 0.9991°°° ~ 0.632.

In [6], it was shown that the pump rate needed to sat-
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FIG. 1. Mean cavity photon number versus injection cur-
rent for a £ = 1033 microcavity laser. The solid lines are for
9 = 0, i.e., Thr = 00, and the dashed lines are for ¥ = 0.05,
i.e., Thr = 207;p. The mean output power is found by mul-
tiplying the photon number with the photon energy and the
output coupling rate y7e.

isfy the quantum threshold condition can be expressed
Rpn = gol(0+B+9) +E1-B+9).  (8)

In Fig. 1 the mean photon number versus injection
current of a microcavity laser with ¢ = 10383 is plotted.
The vertical dashed line separates the regions of popula-
tion inversion and noninversion, and clearly, the thresh-
old jump (the kink in the curve) can appear well before
population inversion is established. The dashed lines are
plots of the same quantity for ¥ = 0.05. Even at this
relatively small value of nonradiative recombination, a
distinct threshold jump appears even when 3 — 1, de-
creasing the difference between the transparency current
and the threshold current. From (8) it is clear that in-
creasing 3, in this case, above 0.95, will only marginally
affect the threshold current. The reason is that in this
regime the dominant loss process below threshold is non-
radiative recombination, and not spontaneous emission
into nonlasing modes.

III. SQUEEZING WITHOUT INVERSION

In this section we will, as one example, show how the
output photon flux intensity noise changes (undergoes a
transition) as the pump power is increased. To see a clear
transition it is necessary to drive the laser with a quiet
current, with sub-Poissonian electron count statistics. If
one drives the laser with a Poissonian current, no tran-
sition can be seen as the current exceeds the quantum
threshold (8,18].

It is well known that intensity noise reduction below
the shot noise is closely associated with high quantum
efficiency. In order to transfer the quiet statistics of the
injection current to the photon flux it is detrimental that
both the conversion process and the subsequent detection
have a high quantum efficiency. In Fig. 2 we have solved
the linearized fluctuation equations (using the formalism
in [14,15]) and plotted the low-frequency [< 1/(£7.p)]
intensity noise spectral density. While it is true that
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FIG. 2. Low-frequency intensity noise (relative to the shot
noise limit) versus injection current. The injection current
has been assumed to be free of noise.

the linearized rate equations are not accurate when the
photon number is close to unity, the error is only of the
order of 10% [18]. Since the effects we consider here
span over several orders of magnitude the error is small
in comparison and the analysis justified. It is assumed
that the injection current has no noise and that 7. = 1
and ¥ = 10~7. The parameters are such that ¢ ~ 1034.
The finite squeezing at low frequencies when 8 = 1 is
due to the nonvanishing nonradiative recombination as-
sumed. With ¥ = 0 a 8 = 1 laser would exhibit perfect
low-frequency squeezing at all pump rates. It may be
surprising that if 3 decreases from unity to 0.999 almost
all squeezing below threshold disappears. The reason is,
as illustrated in the preceding section, that the photon
recycling increases the spontaneous emission into nonlas-
ing modes and therefore decreases the quantum efficiency
as manifested by (7). In Fig. 2 it is also evident that in
lasers with 8 < 1 there is an intensity noise peak at a
distinct injection current. The location of this peak cor-
responds well to the proposed quantum threshold.

In Fig. 3 the intensity noise spectral density normalized
to the standard quantum limit is plotted. Since § =
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FIG. 3. Intensity noise (relative to the shot noise) versus
frequency and injection current. The parameters are the same
as in the previous figure.

1, 7. = 1, and ¥ = 10~7 has been assumed, (almost)
every injected electron gives rise to an emitted photon.
In such a system the photon flux and injection current
must be (nearly) identical in the low-frequency range. (A
Poissonian current will give rise to a Poissonian photon
flux, as demonstrated in [8] and [18].) The thick line in
the previous figure can be seen reproduced at the extreme
left (at 107® GHz) in this figure. It is also seen that
the absorption induced photon recycling slows the system
down considerably below threshold. The squeezing cutoff
frequency is approximately 1/({7,p)-

When the quantum threshold current is reached, the
system response grows faster, and the squeezing band-
width increases. However, there is no excess noise at
any frequency in this loss saturation dominated regime.
At yet higher injection currents (about 0.1 mA), there
is a relaxation oscillation noise peak. This is because
at this point, the stimulated emission and absorption be-
come equal, so there is neither loss nor gain saturation.
Since the system is such that there is an (almost) one-to-
one correspondence between injected carriers and emit-
ted photons, at low frequencies there is always squeezing.
At this pump rate the typical time scale of the system
(indicated by, e.g., the squeezing bandwidth) is 1/7,p.
At still higher pump rates the stimulated emission starts
to dominate, the gain saturation quenches the relaxation
oscillations, and the time scale of the system (squeez-
ing bandwidth) approaches the cavity loss rate . (The
squeezing floor at high pumping is due to the nonvanish-
ing nonradiative recombination assumed.)

IV. PROPOSAL FOR AN EXPERIMENTAL
TEST: CARRIER NUMBER
AND THE PHOTON FLUX CORRELATION

In the two preceding sections we showed that as a
B ~ 1, £ > 1 laser is driven above the quantum thresh-
old it will exhibit characteristics that are nonlinear and
laserlike. We have argued that even if the population is
noninverted, the output light will have all the character-
istics of light from an ordinary laser and therefore the
quantum threshold condition is more appropriate than
the ordinary condition. However, since it is predicted
that all signatures of the output field are similar in the
noninverted and inverted regimes, it will be difficult to
determine whether the population is inverted or not from
simply observing the output. In this section we propose
that the low-frequency correlation between the carrier
number and the photon flux Cr n could provide a means
to qualitatively separate the inverted from the nonin-
verted regime to support or disprove our prediction of
inversionless lasing. For the interesting regimes of £ and
(3, the in-phase correlation changes sign from positive to
negative when the population becomes inverted.

The low-frequency correlation between the carrier
number and the photon flux, with possible applications,
were discussed in [11-13], but not in the context of las-
ing without population inversion. Figure 4 shows the real
part of the low-frequency correlation between the carrier
number and the photon flux Cr n. Note that even if the



50 DEFINITION OF A LASER THRESHOLD 1679

05 |-

0.0

Noninversion
-0.5

Carrier number -Photon flux

-1.0 | ] ]
105 104 103 102 10t 1 101 102
Injection Current (mA)

Normalized Correlation (real part)

FIG. 4. Normalized correlation (real part) between carrier
number and photon flux versus injection current. The pump
current has been assumed to be perfectly noise suppressed.
The circles on the lines show the threshold current for the
corresponding value of 3.

real part of the correlation function between the carrier
number and the photon flux is low (it disappears for a
pump noise suppressed 3 = 1,4 = 0,7 = 1 laser), the
imaginary part due to carrier storage effects can remain
high [13]. As shown, in the microcavity lasing without
population inversion, the positive correlation is enhanced
above lasing threshold roughly to the point when the
medium becomes inverted. The positive correlation is
due to photon recycling, that is, an increase in the cav-
ity photon number above the average value increases the
number of carriers since the absorption is larger than
the stimulated emission. In this regime, “loss” is sat-
urated due to the onset of absorption assisted photon
recycling. On the other hand, in the (normal) regime of
lasing with population inversion, the correlation becomes
negative, since an increase in the photon number results
in a decrease of the carrier number. This is ordinary
“gain saturation.” In principle, an experimental mean to
identify lasing without inversion in a microcavity would
be to measure a positive correlation between the carrier
number and the photon flux in the region above lasing
threshold. The threshold in turn could be identified by
monitoring the intensity noise of the laser as a function
of the injection current.

Experimental verification of the departure from the
classical threshold, and hence of squeezing without in-
version and positive carrier number-photon flux above
threshold, may be realized in the not so distant future.
In [19] a GaAs hemispherical laser with a 3 of 0.05 to 0.1
was reported, and in [20] a 3 value of 0.2-0.3 was reported
for an InGaAs microdisc laser. These microcavities had
a cavity decay rate v of about 10'2 s~ a spontaneous
emission lifetime 7,, shorter than 1 ns, and a near unity
internal quantum efficiency. If such microcavities have,
say, five quantum wells of 200 A thickness and 7 pm
diameter and these quantum wells have a transparency
carrier density of 1017 cm™3, the value of £ is about 50,
and the effect is within reach, at least for the laser with
highest 8.

V. CONCLUSIONS

In summary, we have proposed a quantum threshold
condition which is valid for a larger class of lasers than
is the conventional classical definition. In most cases the
two definitions predict the same threshold power within a
factor of 2 (the quantum threshold always being the lower
one). The condition predicts that the threshold in some
circumstances can be reached before the lasing medium
is population inverted. In such 8 ~ 1, £ > 1 lasers,
the quantum threshold is substantially lower than that
predicted with the conventional definition. It was shown
that in reaching the quantum threshold the laser went
from a linear (light emitting diode) operating regime to
a nonlinear (laser) regime. However, in the noninverted
laser loss saturation rather than gain saturation was the
source of nonlinearity. Finally, an experimental test of
lasing without inversion was proposed. It was shown
that the in-phase carrier number-intensity noise corre-
lation changes sign as the population is inverted, and
monitoring the intensity noise or the spectral linewidth
simultaneously with the correlation would establish ex-
perimental proof for operation in this new regime.
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