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Influence of correlated stochastic perturbations on the nonlinear optical properties of a dimer
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The problem of correlated diagonal fluctuations is treated in the particular case of a dimer.
Specifically, we analyze the influence of the correlation existing between the fluctuations on different
sites. The local fluctuations induce a frequency modulation on the individual monomers. When these
fluctuations are correlated, the internal dynamics of the dimer is altered. As a consequence, these inter-
site correlations give an additional contribution to the linear and nonlinear optical responses of the di-
mer. While this process has been discussed previously for 5-function-correlated Gaussian-Markovian
processes, we consider here the non-5-function-correlated case. The linear absorption spectrum and the
third-order susceptibility in a degenerate-four-wave-mixing experiment are considered in order to em-

phasize the role of the correlated fluctuations in the linear and nonlinear regimes, respectively.

PACS number(s): 42.65.—k

I. INTRODUCTION

The theoretical descriptions of nonlinear optical
responses of molecular compounds have been the object
of numerous works these last few years [1—4]. Depend-
ing on the specific properties of the system under investi-
gation, various approaches have been developed. They
range from the local-field approximation commonly used
in condensed phases [5—9] to the generalized master
equation which has been applied successfully to a number
of systems [10,11].

In most of the problems concerned with molecules em-
bedded in liquid or solid phases, we are faced with the
problem of partitioning the system off into guest mole-
cules and surroundings. The description of the surround-
ing degrees of freedom can be very different, according to
the specific features that one would like to emphasize.
The choice of an appropriate description is mainly deter-
mined by the nature of the relevant part of the system,
i.e., the one playing a fundamental role in the dynamical
evolution. Sometimes, it can be a subset of degrees of
freedom like in some problems of electronic [12], vibra-
tional [13], or many other types of nonradiative relaxa-
tions [14]. In this case, the reduced density-matrix for-
malism [15] is well adapted to their descriptions. Other
times, it can be populations, like in some problems of
transport of quantum particles, such as electrons and ex-
citons [1,16] in a surrounding medium. Then, a partition
of the density matrix in diagonal and nondiagonal parts
like the one proposed in the Mori-Zwanzig formalism
[17]is suited best.

Of course, because of the complexity of the systems, at
some level approximations must be made in the descrip-
tion, and this is always done to the detriment of the ir-
relevant parts. Very often however, this partition into
relevant and irrelevant parts needs to be modified when
physical parameters change in amplitude. This is partic-
ularly true in the study of the coherent motion of energy
in a linear chain. As the temperatUre is raised, the

coherent motion is disturbed by the inhuence of phonons,
and for very high temperatures a hopping regime is estab-
lished [18,19]. In these two limiting cases, the descrip-
tion of the relevant degrees of freedom does not rest upon
the same physical quantities. Here, the coherences can
be done away with in the high-temperature regime.

The limiting low- and high-temperature regimes can be
conveniently described by either pure quantum theory or
the Pauli master type of equation, respectively. However,
a description capable of bridging the gap between these
two limiting cases can only be done in the framework of
the stochastic approach. This is the point of view taken
in the interesting model proposed some years ago by
Haken and co-workers [18,19], Reineker [20], and
Rackovsky and Silbey [21]. It is based on the 5-
function-correlated Gaussian-Markov processes, which
account for the inhuence of the phonons and give rise to
Auctuations of the site energies and transfer-matrix ele-
ments. This model has been extended quite recently to
study the nonlinear optical properties of an aggregate
[22]. However, these previous treatments involve an
infinite temperature of the bath which can be acceptable
for magnetic resonance experiments, but not when deal-

ing with high-frequency molecular vibrations. At lower
temperatures, the bath correlation times are expected to
be finite, so that the assumption of 5-function-correlated
Gaussian-Markov processes must be loosened. To this
end, a number of authors have extended the descriptions
of dynamical studies to the intermediate regime. They
use either dichotomic [23—25] or Gaussian non-5-
function-correlated Markov processes [26—33]. The rela-
tions between these models have also been established
[34].

Blumen and Silbey [35] studied the optical line shape
of an exeiton interacting with phonons using a Gaussian-
Markov process with nonzero correlation time. Hut they
truncated the cumulant expansion to the second order.
This method was shown to be incorrect in the general
case by Fox [36,37] and Rips and Capek [38] because all
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higher-order cumulants are nonvanishing; in fact, this ex-
pansion may not even converge. The second-order cumu-
lant expansion is exact in the white-noise limit (zero-
correlation time limit) [36,38] and in the vanishing exci-
tonic bandwidth limit (zero static coupling) only [38].

Recently, Dubovsky and Mukamel [39] have analyzed
the role of correlations between the local fluctuations on
neighboring molecules. While this problem has been
handled in the white-noise limit, we will be concerned
here with the intermediate regime. For the sake of con-
venience, this study will be done on a simple dimer sys-
tem. It has to be stressed that, until these last few years,
the exact solution of the stochastic dimer problem was
only known for the dichotomie Markov processes [24].
Then, quite recently, Chvosta [40] investigated the ab-
sorption line shape and the dynamics of a dimer with sto-
chastic modulation of local energy at just one site by us-

ing the dichotomic Markov process and then reaching
the Gaussian-Markov regime as a limiting case by sum-
ming over stochastic dichotomic Markov processes.

In Sec. II, we describe the dimer model used to study
the influence of non-5-function-correlated fluctuations.
Then, in Secs. III and IV, the general formalism is intro-
duced to describe the linear and the nonlinear optical
responses. The absorption bandshape and the third-order
optical susceptibiltity of a degenerate-four-wave-mixing
experiment are introduced to observe these e8'ects. Final-
ly, in Sec. V, we present some numerical simulations and
discuss the physical results.

II. DESCRIPTION OF THE DIMKR

To study the influence of possible correlations between
fluctuations of the transition energy of the individual
molecules, we introduce a dimer model composed of two
identical moleeules interacting through a coupling term
V. For the sake of convenience, each monomer is de-
scribed by a two-level system with electronic gap ficoo and
parallel transition dipole moments p,o, as depicted in Fig.
1. The influence of the phonons acting on the dimer is
accounted for by a local diagonal stochastic perturbation
which induces a frequency modulation of the electronic
transition of the individual molecules. While the case of
independent diagonal fluctuations has generally been con-
sidered, we wish to address the specific problem of corre-
lated fluctuations.

In the local basis set, the Hamiltonian of the dimer
takes the form

FIG. 1. Energy-level scheme of the dimer in the local basis
set.

Hd; (t) =Ho+H(t), (2.1)

where the zero-order Hamiltonian corresponds to

H, =fico, g Ip & &p I

p=1

+2'~ I&; & &&;I+ir V[II & &2I+ I2& & ll], (2.2)

if IB, & stands for the doubly excited state and lp & for the
singly excited states on site p of the dimer. The stochas-
tic part of the Hamiltonian is given by

H(t)= g ~p(t)lp &&pl+[~i(t)+~2(t)]l&; &&&;I . (2.3)

This fluctuating contribution is assumed to be induced by
a Gaussian-Markov process with zero mean value,
characterized by single-site correlation functions

as well as by intersite correlation functions
I

&Ei(t)E2(t ) &
= &Ei(t)Ei(t ) & =I Lie (2.5)

This latter correlation function allows for the existence of
a common origin of the random forces acting on the indi-
vidual molecules. Above, we have introduced the nota-
tions 5, for the amplitudes of the fluctuations and y,

'

for their corresponding correlation times.
As usual, because of the coupling V, it is convenient to

introduce the diagonalized states and their corresponding
energies

IA, &= [(—1)'ll&+I2&],v'2

co; =coo+( —I)'V, i =1,2 .
(2.6)

Of course, the doubly excited state is invariant under this
transformation. Therefore, in this new representation,
the Hamiltonians take the forms

(2.7)

+ ~

[—~,(t)+~,(t)][I~,&& ~, I+I~, && ~, l]

+[~ (t)+~ (t)]la; &&a; I
.

The scheme of energy levels is shown in Fig. 2, and
corresponds to a coupling V assumed to be real and nega-
tive. In absence of fluctuations, only the symmetric state
I A2 & carries oscillator strength because of the transition
dipole moment v'2p, o. The states IA, & and IAz& are
separated by an energy gap equa1 to 2V. They are sub-
jected to a nondiagonal fluctuating interaction
I/2[ e, (t)+@2(t—)] which may mix them or induce tran-
sitions between them [22]. Through this nondiagonal sto-
chastic coupling, part of the oscillator strength is
transferred from level I A2 & to level I A, &. It is because
of this nondiagonal fluctuation that H(t) does not com-
rnute with the Ho and that the usual cumulant expansion
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response, and second, it will provide a reference for the
algebraic expressions and numerical results of Sec. IV
and facilitate the ensuing discussion. The Hamiltonian of
the dimer interacting with the laser beam is given by

~A,. t(„„,,„
(v. , +v )j~

FIG. 2. Diagonal representation of the dimer restricted to
the doubly excited states.

H(r) =H„(r)+H,„,(r),
where the radiation-field Hamiltonian takes the form

H; «(t)= —&2(Mod E(r, t)

x[la, &&gl+Ig&& a, I+la, &&a, l

+la;&& a, l] .

(3.1)

(3.2)

cannot yield the exact solution at the second order of the
development. Indeed, Fox [36,37] and Rips and Capek
[38) have shown that in such a situation all higher-order
cumulants do not vanish.

In this work, in order to be able to carry out a mean-
ingful evaluation of linear and nonlinear optical responses
for finite correlation times between the stochastic vari-
ables, we will restrict ourselves to the strong-coupling
limit [22,31] V)) b, ;, so that we can neglect the residual
stochastic interaction between these levels, as well as the
residual oscillator strength that

~ A, & borrows from

~ Ai &. In this way, the internal dynamics of the dimer
can be restricted to the one of a three-level system

[ ~g &, ~
A z &, ~8; & ] subjected to diagonal ffuctuations only

and therefore solvable. However, it must be emphasized
that we have to deal with a very specific three-level model
for which the fiuctuations of both excited-state energies
are essentially identical (a feature that does not affect the
linear response, but plays an important role in third-
order optical processes) and depend on the initial intersite
correlation in a transparent way.

Let us finally mention that the cumulant expansion up
to the second order also yields the exact solution in the
limit where the static coupling V vanishes [38], but in
such a situation the intersite correlations will not affect
the optical responses, which will remain those of two in-

dependent molecules.
A similar problem has been considered previously by

Dubovsky and Mukamel in the white-noise liinit [39].
Here, because the Auctuations are characterized by finite
correlation times, the model is valid for any time scale of
the system-bath dynamics.

Here, d stands for the unit vector characterizing the
orientation of the dipole moments p,o. For a steady-state
experiment, the electric field corresponds to

E(r, t ) =eEoe'"' '""+c.=c. , (3.3)

where c.c. denotes the complex-conjugate part, and co, k, e
are the frequency, wave vector, and unit polarization vec-
tor, respectively.

The linear polarization of the dimer is obtained by
first-order time-dependent perturbation theory [42] and
can be expressed as the average value of the dipole mo-
ment operator

P" '(r, t ) =Tr[ & p' "(r, t ) &p], (3 4)

& p"'(r, r ) &
= — Jdr, &

G—(r r()L,«(r—, )p(r, ) &, (3.5)

where L;«(t, } is the Liouvillian of the radiation-matter
interaction L(«(ti)=[H«(r(), ] and G(t t, ) is defined-

by

G(r t()=e — ' Texp' ——J drL, (r) .
1

(i jfi)L~tl
Xe (3.6)

Here, T stands for the chronological operator and L(t)
for the Liouvillian corresponding to the stochastic part
H(t) of the dimer Hamiltonian. The Liouvillian Ls is

given by

where the symbols Tr and & & stand for the trace and the
stochastic average, respectively. The contribution to the
first ord-er density matrix with respect to H, (t«) is given

by

III. STUDY OF THE LINEAR OPTICAL
RESPONSE

L =L —i%I (3.7}

Though there have been a number of earlier attempts
to look at the linear response of a dimer [21,24,25,40,41],
an extension of these approaches to nonlinear responses
is far from trivia1 in the case of finite correlation times. It
is the aim of this paper to investigate the effect of these
finite correlation times as we11 as those of intersite corre-
lation on the third-order response in the strong-coupling
limit where such an extension is feasible. However, for
the sake of convenience, it is appropriate to start with the
evaluation of the optical line shape. The interest is two-
fold: first it will enable us to show how the calculations
are carried out in the much simpler situation of linear

-s'- ('~~
L~(t) =e L(t)e

The additional notations,

L,„,(t) = —d E(r, t )L„,
„L= 2v[(M(ol ai &&gl+ Ig && ~&I

+l~, &&Il, I+Ill, && ~, l},],
have also been introduced for convenience.

(3.8)

(3.9)

where Lo stands for the Liouvillian of the zero-order part
Ho and I for the damping Liouville operator. Notice
that in Eq. (3.6) we have used the interaction picture
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This expression of R ' "(co) carries all the information concerning the internal dynamics of the system. For instance, the
absorption spectrum is directly related to the imaginary part of R'"(Lo). One way to carry out the time integration in

Eq. (3.20) is to take the series expansion of the exponential function exp[ —(b„./2y, )e ' ' ]. This leads to

2i q (t)(')nr(')+a'(/2r&) + + 1
R co = ——poe

fi n=Qm =Q
t

tl

0

2/0

m

1

2'V
&

1

—In2 —I'~+I g~ gz + + +nyQ+rny]
2 VQ 2~1

1

1~2—LN+I ~ & + + +npQ+~p~
2yQ 2y,

(3.21)

Notice that for n =m =0, the above energy denominators are those leading to the usual Markovian line shape. The
farther away from the Markovian limit that the parameters put the system, the more terms have to be summed over be-
fore the series converges.

IV. NONLINEAR OPTICAL RESPONSE

In this section, we will be concerned with the determination of the nonlinear response of the dimer. Our emphasis
will be mainly on the third-order hyperpolarizability y& '(co„'co, to&, m„), which characterizes any optical four-wave mix-
ing [6]. For our purpose, three stationary laser beams are required to determine the nonlinear response by a steady-
state experiment. Therefore, the total electric field is just a linear combination of fields, similar to the one used in the
study of the linear response.

To obtain the expression of the third-order hyperpolarizability, we need to evaluate the third-order contribution of
the polarization

P& '(r, t ) =Tr[(p& '(r, t ) )p, ],
where the third-order contribution to the averaged density matrix can be expressed as

(p' '(r t))= f dt, f dtt f dt, &G(t t, )L;„,(t, )G(t, t,—)L;„,(tt)G(tt —t, )Lt(tt))p(t ) . ,.
—„

(4. 1)

(4.2)

It is assumed that the dimer is initially in its ground state.
It must be mentioned that the factorization assumption
cannot be applied here, as would be the case in the
white-noise limit or zero-correlation time limit [9,22]. In
other words, as a consequence of the finite correlation
times, the statistical average has to be taken over the
product of propagators (GL;„,GL;„,GL;„& ) and cannot
be broken down to a product of averaged propagators
(G)L;„,(G)L;„,(G)L;„,. In the evaluation of this sta-
tistical average there resides the complexity of calculat-
ing nonlinear responses, whereas the knowledge of ( G )
by itself is sufhcient for linear responses. By inspection of
Eq. (4.2) we see that we need the following matrix ele-
ments of the propagator

[t&~, ~ )+—r,, )&t . )t —'

tJIiG (t t' =e—-
+- 1

X Texp —— drL..., (r)

i Wj, (4.3)

G„„(t t') =1, —

—r (,t —t')
G (t t') =1—e—A2A A A

ggA2 A2
(4.4)

6 {t tt) —e 2 2 2 2

2 2 2 2

From Eq. (4.1) we see that we have to evaluate the matrix
elements of the third-order averaged density matrix
(ps„' (r, t)) and (p'z'z (r, t)) and their complex conju-

gA2 2 1

gate. These matrix elements involve a statistical average
over double and triple time-ordered exponentials.
Indeed, assuming that the system is initially in its ground
state, eoherences and/or excited-state populations are
created by the interaction L;„, with the external optical
fields. The third-order coherences of interest here are
brought about by processes involving three steps. First,
we always create a first-order coherence between the
ground state and the ~A2) level. Then, we may either
create an excited-state population in level

~ A2 ) or built
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up coherences between ~g ) and ~8, ). A last interaction
generates the third-order coherences between ~g ) and

~ A3 ), ~ Az ), and ~8; ), from which the induced polariza-
tion follows. Thus, considering Eqs. (4.2)—(4.4), we end

l

up with a product of two or three time-ordered exponen-
tials.

As an example, we will treat the case of a triple prod-
uct contributing to p~„' (r, t ):

g

e

M(t, t„tttt),=( Texp ——f dt'L „„(t
1

2 2

1X Texp —' f—'dt Le e'(t )'TexP ——' f dt Lee t'„(t')
)

f1 4

=exp —' ——' t'LgA gA
t' ——' t'LgB t' ——' ' t'L

A gA
t'

1 2 3

2

(4.5)

with the usual restriction t ) t, ) t2 ) t3 Noti.ce that, though this expression has been obtained by breaking the opera-
tors up into their matrix elements, we cannot apply the cumulant expansion up to second order only without consider-
ing either the strong-coupling limit or taking V =0. Indeed, since the calculation proceeds along the same lines as in
$ec. III, it involves the passage from L(t) to Lt(t) in the interaction picture. It is therefore essential that L(t) com-
mutes with Lz in the considered subspace. Hence

I 1
M(t, t&, t2, t3)=exp — f f dt'dt"(L» (t')L» (t")) exp — f f dt'dt"(L»(t')L»(t")) .

'2

f1
Xexp —,f f dt dt (L«'t„"(t )Lte „('t ))"
Xexp — f f dt'dt" (L t3 ~ (t')L „„(t")) (4.6)

Performing the double-time integration, we get

M(t, t„tz, t3)=exp[ ,'f(t t, ) ——,
'—f(—tz t—3)—2f(t,—t2)]exp[ ,'g(—t, t„t2,t—3)—g(t,t„t„tz)——g(t, , tz, t2, t3)],

(4.7)

where the functions f and g are defined by the expressions

2

f(t t„)= g—,
'

[e ' " +y, (t t„)—1], .—
i =0, & 7&

2

g(t, t„,t, t )= —g [e ' —e '"][e '' —e ''].
t =O, r Vi

(4.8)

The two following products,

X+(t t3 t3 t3 )=exp[ ,' [f(t t, )+f(tz ——t—3)—g(—t t] t3 t3 )]] (4.9)

appear also in the complete expression of the averaged density-matrix element (pg„' (r, t ) ), which can now be writtengA2
into the form
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(pg„' (r, t))=, g g g (&2}tc,)'(d e, )(d e,')
J ~~P~& J =~~P)& J =&~0)&

X(d e,')f dt, f dt, f dt, [E,e ' ' ' +c.c. I

Xe

+N (t, t, , t2, t3)exp[( i—coz I—' „„)(t2 t, )—]]

X IE'e ' ' ' +c.cI [Ej-e ' ' ' +c.c. I

('"
2

)(' ' ) r {' ' )

(2e ' ' ' ' [N+(t, t„t2, t3)exp[(ico2 —I ~„g„)(t2 t3)—]

(2io)o—I ~ ~ )(tl —t2)
+e ' ' M(t, t„t2, t3)exp[(ico2 I g„— s„)(t 2 t3)]) .— (4.10)

PI"(r, t)=g[P'„"(co„)e' " ' ""+c.c.], (4.11)

where all the combinations

N~ —
Q)J COJ i COJ»=+ .+ .,+

(4.12)

are present, and the indices j, j', and j" range over a, p,
and v, the optical field indices. Depending on the
geometry of the experiment under investigation, a partic-

In the same way, one can establish the expression of
& p',",(r, t)).

Finally, the nonlinear response of the system is ob-
tained by inserting Eq. (4.10) into Eq. (4.1). As is done in
the linear regime, we introduce the formal development
of the polarization in terms of its Fourier components

ular combination must be selected. As an example, if we
consider the combination k„=k +k&+ k, with
~„=co +co&+cu„, we obtain the expression

P'„'(co„)=g' '(co„,co, co&,'co„):e E e&E&eg, , (4.13)

where the third-order optical susceptibility takes the
form

( co„;co~, cop, co„)

= g R' '(co +cop+co,„co +cop, co )ddcatded .
perm

(4.14)

The symbol g „stands for the sum over all the 3! per-
mutations of the fields, because any ordering involving
three different fields participates only once. The final re-
sult reads

g
—

4 E 1 '2 tm (t —tl ) ECo~(t —E2) Em (t—t3)R' '(co +cott+co„co +co&, co )=—3(&2po) dt, dt2 dt3e ' ' e ~ ' e
fi CO OG GC

,—r,„,„)(t—t, ) [.( —,+ )—r„„~](t —t, )

X([2e 2 2 e i 2 i 2 i

Xe ' ' ' ' ' ' [N+(t, t), t2, t3)exp[(ico2 I s„s„—)(tq —t3)]

+N (t tJ tp t3 )exp[( ico& I ~z sz )(—t2 —t3—)] I

{ 2
V & & )(t tl ) [ ( 2 g ) g g g g ]

+Ie —e

(2i 0
—I ~ ~ )(t

1

—t2 )

X [e ' ' M(t, t, , t2, t3)exp[(ico2 I sz gz
—)(tz t3)]] c c ). (4. 15—). .—

Performing the series expansion for the exponential functions in Eq. (4.15) and then the time integrations, the third-
order optical response R'3'(co +co&+co„,co +co&,co ) can be written into the form

6
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where, for the sake of simplicity, we have introduced the
notation JV—:((m, n, p, q, r, s, m', n', p', r', s') for the set of
summation indices. The various contributions are given
in Appendix A. At this stage, we have all the informa-
tion required to discuss the nonlinear response of the di-
mer. Because of the complexity of these previous results,
this discussion will be done better from the numerical
simulations of R' '(cp +co&+co„,co +cot), co ).

ized to unity to compare their respective linewidths. We
observe that the intersite correlations broaden the ab-
sorption spectrum to a sizable extent.

In the particular case of identical correlation times,

yp
'=y, ', the full width at half maximum (FWHM) in-

creases by 60% compared to the noncorrelated case for
the numerical values chosen in the simulation. This in-
crease arises from terms of the type

V. NUMERICAL CALCULATIONS AND DISCUSSIONS

In the present section, we first investigate the infiuence
of the intersite correlations existing between the Quctua-
tions on different sites on the optical-absorption line
shapes of a dimer. Next, the nonlinear optical response
and more precisely the third-order hyperpolarizability
will be studied.

It has to be mentioned that usually the amplitude
modulation 60 is larger than the amplitude of the inter-
site correlation function 6&, and the same is true for the
correlation times, so that yo

' & y&
'. All along, we have

chosen V= —1000 cm ' and coo=20000 cm '. Also,
the relaxation parameters stemming from the radiative
lifetime are of the order of the nanosecond time scale,
and correspond to 10 cm '. In fact, they are negligi-
ble compared to the stochastic parameters.

We first consider, in the vicinity of the monoexcitonic
resonance co2=coo+ V, the frequency dependence of the
imaginary part of R"'(co) given by Eq. (3.21), and noted
Im(R'"(co) j. In Fig. 3 we have drawn these variations
with and without intersite correlations. The values of the
parameters 60 and yo are taken from the work of Nibber-
ing et al. [43] on molecules of resorufin dissolved in
dimethyl sulfoxide at room temperature. However, be-
cause these values correspond to fluctuations in the inter-
mediate regime, they will be useful to analyze the
influence of the correlated fluctuations on dimers as well.
In this picture, the peak heights of the curves are normal-

(
e,(t)+e2(t)

2

2 apl t
hoe

2
' +b, ,e (5.1)

involved in the second-order cumulant expansion. In our
model, frequency modulations and intersite correlation
effects are always additive.

Notice that the absorption spectrum of the dimer can
exhibit two different peaks in the case where 5,. is compa-
rable to the coupling V. In that case, the state

~ A, ) bor-
rows some oscillator strength frotn the state

~ Az ). This
process is not negligible when b, ; = V. In our calculation,
because we have b, ; (& V, we observe only one peak.

In Fig 4, .the FWHM of ~lmtR"'(co)}~ is plotted
versus 60, for different values of y& for the case y&

~ yo.
With yo being held fixed at 144 cm ', the one-site fluc-
tuation corresponds to the intermediate regime for the
range of values of b,o. In addition, the amplitude of the
intersite correlation function 6& is chosen to be equal to
80 cm ' because it must be equivalent or smaller than
b,o. As expected, the FWHM is an increasing function of

Besides, we note that for small values of 50 the
infiuence of y& is more pronounced. This is due to the
fact that for large values of b,o, the one-site modulation
governs the dynamical evolution. However, in the fast
modulation limit, the frequency modulation becomes
dominant and the influence of y, is negligible. Next, in

600
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FICx. 3. We represent the variations of the absorption spectra
iim(R"'(cp) i ~

as a function of (cp —cpz). The peak heights are
normalized. The cases of correlated and noncorrelated fluctua-
tions are pictured. The values of the parameters are 50=218
cm ', y0=144 cm ', and y, =144 cm

FIG. 4. Dependence of the FW'HM of the absorption spectra
on the amplitude h0, in the intermediate modulation regime.
The cases of various correlation times y&

' are sketched. The
values of the parameters are 6& =80 cm ' and y0= 144 cm
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FIG. 5. We represent the FWHM of the absorption spectrum
"'( ) I ~

s b, for different correlation times y, '. The pa-
rameters of the fluctuations are 60=218 cm an y0—

—1cm

FIG. 6. We represent the freque y pnc de endence of
co co —co), ~

for diff'erent values of (60'+g). The
calculation has been done for y0=y& = cm
cm ' As in Fig. 3, the peak heights are normalized.

Fig. 5, we stu y in e in
' '

modu-d
'

the intermediate regime of the modu-
lation frequency t e in uth

'
fluence of the intersite corre a ion

FWHM of the absorptionparamete r 6 on the
ave been doneban s ape.d h . The numerical simulations ave een

for different y&. We observe that the influence o y,
'

more pronounce on ed th FWHM of the line shape ab-
sorption for large values of 6&.

theWe now come ot the discussion concerning t e
influence of the intersite correlations on the nonlinear op-
tical response o ef th dimer. To do so, a simple

'
in ex eriment will be con-degenerate-four-wave mixing p

sidered. The quantity of interest will be y co;co, co, —co .
To simplify, we omi e e't th tensorial notation and reduce its
expression to

' ' co'co co —co)=R' '(co, O, co)+R' '(co, O,
—co)t I

b about the same relativeth absorption is broadened by ae
amount as the linear response. Obvious y,

'
usl because o t e

u lin, these local and intersite effects are
dd' '

was the case for the linear a sorp ion.additive, as was
js short-tice t at w enn h the intersite correlation time y &

' the additive effect will be weaker.
tween fast and slowIn the intermediate regime between as

es are no longer of the Lorentzi-modulation, t e
'

p
t pe' however, their exact s p ya esma be to i cu o

determine and distinguish experimentally. IfIf this is t e
en we are left with the full width at half maximum

as the main feature to reproduce rom a e
ms out that the situation where there is

no intersite corre a ion1 tion cannot be differentiated rom any
other, an anyd experimental fit reduces to a w-
parameter theory only.

+R ( co, 2co, cd ), (5.2)

because on y t ese1 h three different terms contribute.
icalIn the following, i wi't 'll be convenient for the numerica

simulations to consi er ed the particular case of identica
Notice that it is advanta-

eous to go back to expression (4.15) rather than use t e

n the ri ht-hand side of Eq. (5.2) is made o
the six contributions listed in Appen ix
onl R2 ' and R3 ' contribute noticeably for a near reso-

the ri ht-hand side of Eq. (5.2) is neg igi e ecau
H for the series expansion tostr g yon 1 nonresonant. ere,

and 5 cannot exceed a fewconverge reasonably fast, o an, ca
2

Vo
In Fig. 6, we represent ~ImIy (co;co, co, —co co —co))

~
versus

=co—cu with yo and 50 beingth detuning paameterr h~ =~—
2 yoe e

n in from the limit
~ ~

n at alj. to the fully
ld fixed. The various situations ranging

w ere eh th re is no intersite correlation a
var from 0 tolated case are obtained by letting, v ycorre ate case

he nonlinear part ofWe note that by increasing 6&, t-e non
'

p

VI. CONCLUSION

k e have investigated the linear and non-In this wor, we ave
'

cou linlinear optica a sorp ionI b tion of a dimer whose static coup
'

g
is stron er than the stochastic nondiagonal coup ing.

1 f the intersite correlation. Wehave analyzed the ro e o e in
that both linear and nonlinear regimes ex i-have shown t at o

additive effects with respect to their correspita iivee
th strong-coupling case.sorptions, gas ion as we are in e

in to consider the caseIt ill be interesting in the following to con
'

wi

This, in turn, implies a comp e eaccount rigorously. This, in
redefinition o ef th cumulant expansion, w ic is n

longer valid in this case.

APPENDIX A

ave introduced the notation JV= I m, n,p, q, r,
I

indices. The third-order optica sus
form
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6

~ p
m!n!p!q!r!s!m'!n'!p'!q'!r'!s'!„

(Al)

In the following, the notation ijkl has been adopted for (i +j +k +l). The various functions of Eq. (Al) are given by
—12 2

(3) 50
R, (JV;co,co&,co„)=C&(A)'g rl i—(rico@+co )+I'zz + + +mnPyp+m'n'P'y,

v]= +1 270 2V1

Q2 Q2
X i(—2ricop+co +co&)+I sz +2 +2 +mnqryp+m'n'q'r'y,

VO V1

b,p b, ,
X i(r—ico, +co +co&+co,)+I's„+ + +mrsy p+m'r's'y,

30 Yl

2 2
(3) 50

R& (JV;co, co&, co„)=2C&(JV)g'ri ' i(r—lco3+co )+I's& + + +mnpyp+m'n'p'y~
n =+1 2/0 2f 1

X i(c—o +co&)+I z z +npqryp+n'p'q'r'y
&

Q2 g2
X i(rico&+—co +co&+co„)+Is„+ + +nqsy p+n'q's'y,

2&0 2P 1

2 2
(3) 5p

R 3 (JV; co, co&,co„)=2C3 (JV} g ri i (rico& co ) +—I s„+ + +mnp y p+ m 'n 'p 'y
&

2/0 2P 1

X[ i(co +—cos)+I'q q +npqryp+n'p'q'r'y, ]

50
X i(rico—&+co +co&+co„)+Izz + + +nqsyp+n'q's'y&

70 V1

R4 (JV;co~,cop, co„)

Q2 Q2= —C, (A) g ri i(rico—&+co )+I „+ + +mnpyp+m'n'p'y,
g= jl 2VQ 2l 1

Q2 g2
X i(2ricop+—co +co&)+I'sz +2 +2 +mnqryp+m'n'q'r'y,

'VQ 'V1

bp hf
X i(q~, q~, ~.—~, ~,)+r»+ + +mrsyp+m rsy,

2/0 2f 1

R ~s '(A);co, co&,co, )

Q2 Q2= —Cz(%) g ri i(rico3+co, )+—I' z + + +mnpyp+m'n'p'y&
g=+1 ~0 Vl

—1
X i(co +co&)—+I'„„+npqryp+n'p'q'r'y,

X i (rico' rico~ co co—
i3
—co,—)+I'—q s + + +nqsy p+ n'q's'y,

2$ 2p

2 2
(3) 50(~ co cop co ) C3(~) g g i( @cop co )+I,„+ + +mnpy, +m'n'p'y,

g=+1
—1

X i(co +co&—)+r» +npqryp+n'p'q'r'y,

X i(rico& rico' co —
co& c—o )+—I „~—+ + +nqsyp+n'q's'y,

Xo

(A2)
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where C, , C2, and C3 are defined by

mnqr

C3(Ã) =

mnrs
0

2/0
' mpqs

0

2/0

Q2
C (JV')=

1 22/0

g2

2V1

2j ]

Q2

2/1

m'n'q'r' Q2

2/0

~o

2/0

Q2

2/0

ps Q2
1

2f 1

nr Q2
1

2~1

pq
1

2/1

p s

pq

(

n'r'

(A3)

Notice that the decay constants have been shortened to

~ijij =~ij ~ t+j ~ ~iiii =~ii (A4)
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