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A correlation experiment together with previous experimental information supports the existence
of a very disordered state in a high-Fresnel-number dye laser that was studied. All the experimental
evidence points out that the disordered state can be identified with weak turbulence, allowing for the
description of real turbulence (not only chaos) in a real laser device. The experimental results are
analyzed on the basis of a discrete model derived from the Maxwell-Bloch laser equations. The model
explains the parameter-independent frequency locking, the power-law dependence of the averaged
energy fluctuations on the averaging region, the local decorrelation, and the chaos found in the
experiments. Other characteristics of the model equations are also reported.

PACS number(s): 42.50.Lc, 42.60.Mi, 03.20.+i, 42.65.—k

I. INTRODUCTION

The study of the behavior of complex spatially ex-
tended systems has become one of the most active fields
of research in recent years. Some important examples of
these systems are fluids [1] and lasers [2, 3] in physics,
population dynamics and difFerentiation of structures in
higher organisms [4] in biology, and coupling betweeri re-
active cells in chemistry [5,6]. Generally the solution of a
system of evolution equations for one or various spatially
extended interacting magnitudes has to be dealt with.

If the functions involved in the description of the sys-
tem are continuously dependent on both space and time,
the problem may be expressed as a system of partial dif-
ferential equations. If the dependence on spare is dis-
crete, then the set of equations may be expressed as a
system of coupled difI'erential equations. Finally, if the
time variable is discrete, we can express the problem by
means of coupled maps [7]. In the simpler case when
the function has only a Rnite set of possible values, the
system is called a cellular automaton [7]. The level at
which a particular problem must be considered depends
on its physical nature and the information we are inter-
ested in. A complexity reduction by appropriate simplifi-
cations while retaining essential aspects of the dynamics
is sometimes possible.

In laser physics, the basic equations for a two-level
medium in interaction with a quasiresonant radiation
field are a complicated set of nonlinear partial differential
equations (PDE) for the electric field F, the matter po-
larization P, and the population inversion D. The latter
are known as Maxwell-Bloch equations (MBE) [8] and
will be explicitly described later. The level of complex-
ity of these equations is of the same order of magnitude
as the Navier-Stokes equations for fiuid dynamics. Some
connections between both systems of PDE's have been

recently discovered [9]. For a realistic treatment the very
complicated boundary conditions (i.e. , the partially re-
Hecting mirrors in the longitudinal direction or the trans-
verse boundary conditions [10], which are usually ideal-
ized) must also be specified. The direct analysis of the
time evolution of the three-dimensional space-dependent
functions governing the dynamics of the laser system is
far from being an easily tractable problem, even with the
most powerful computers available today. Due to this
high degree of complexity, many approximations are usu-
ally made, retaining some important aspects of the dy-
namics but eliminating others. The simpler, plane-wave
approach [ll, 12] is that in which only the temporal evo-
l~ltion of the global laser output is considered and the
transverse profile is assumed to be homogeneous. The
main conclusion of these studies has historically been to
indicate the possibility of chaotic motion similar to that
occurring in the I orenz model of turbulence for a Quid
flow [13].Due to their simplicity, plane-wave models have
been widely used to explain certain behaviors found in
experimental systems, mainly to analyze the global laser
dynamics [14, 15], though some conjectures have been
made concerning their possible relevance in the descrip-
tion of local phenomena [16].

However, laser devices show not only rich temporal
behaviors, but also many complex spatial features which
may not be properly addressed in the framework of plane-
wave or similar theories. A more refined treatment is
needed for the problems of spatial symmetry breaking
[17,18, pattern formation [19],and spatiotemporal chaos
[20 -22, . The most common approach to these prob-
Ielns uses a series expansion of 6ekI, polarization, and
population inversion on the basis of empty-cavity modes
adapted to the considered geometry, thus reducing the
3+1 PDE system to a set, of coupled ordinary difI'erential
equations for the mode amplitudes [23]. When applica-
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ble, this approach is widely used and leads to very good
results; mainly in traveling wave lasers with a low Fres-
nel number in the near-threshold regime [19, 24]. It is

important to point out that these conditions ensure that
the number of excited modes is small. In this &amework,
the transverse correlation lengths are of the order of the
transverse section of the laser system under study [25].

Recently much attention has been paid to the so-

called "defect mediated turbulence" which was theoret-
ically predicted [26] and experimentally found in pho-
torefractive oscillators by Arecchi and co-workers [27].
In numerical simulations of the laser equations it seems
to be also present [28] and seems to be the mechanism
through which the laser goes into a disordered state from
the threshold in some cases (it must be noted that there
are no experimental results supporting this aKrmation in
the laser case). Here an increasing number of topological
defects appear in the system when a control parameter is
varied (usually the Fresnel number) first leading to chaos
and finally to turbulence when the number of defects is
great enough. The lack of experimental results limits the
interest of these studies.

At this point of the exposition it is interesting to point
out that there are no results proving the existence of laser
turbulence. In fact, most studies of transverse laser in-
stabilities have concentrated on multimode behavior [29]
and those analyzing more complex behavior have been re-
stricted either to the near-threshold region or to purely
theoretical studies. The purpose of this paper is to study
phenomena in which the transverse correlation is very
low, leading to strongly local phenomena which can be
properly called turbulence and may not be properly de-
scribed by any globally oriented model such as modal
expansions. Also a theoretical model based in the as-
sumption of weak turbulentlike behavior is analyzed in
detail, together with its comparison to the experiment.

Many experimental observations in this field [21, 30,
31] remain unexplained. For the sake of completion we
will briefly summarize here the main features of these
phenomena. Their essential characteristic is that when
measuring the intensity output in small regions of the
laser spot, a chaotic oscillation is found. But when the
areas measured become larger the chaotic oscillation re-
duces its amplitude until the output is smooth, following
very simple laws such as those obtained &om rate equa-
tions for lasers. So, unless the measurements are done
registering small areas of the spot (e.g. , using small di-
aphragms before the photodetectors) the existence and
richness of these phenomena may be ignored. These facts
indicate the existence of a local chaotic dynamic with a
low transverse correlation. Another interesting feature
of the dynamics is that, even though the local intensity
output is chaotic, there is a (fast) predominant frequency
which does not depend on the geometrical characteristics
of the resonator, nor on the pumping or the losses, so that
it seems to be fixed by the dynamics. In the dye laser of
Ref. [30] its value is around 50 MHz. The existence of a
predominant &equency has been also found in the CO2
laser in Ref. [32] and others as will be discussed later.

Our plan is as follows. Section II presents some exper-
imental results and a reanalysis of other previous ones.

Section III presents a qualitative theoretical model and
some important mathematical properties. In Sec. IV an
analysis of the dynamical characteristics of our model
equations and its comparison with the experimental re-
sults is made. We also discuss local chaos, transverse
correlations, frequency locking, spatially averaged energy
fluctuations, statistics of fluctuations, and global behav-
ior. Finally Sec. V summarizes the overall conclusions.

II. EXPERIMENTAL FEATURES
OF THE DYNAMICS

OF A HIGH-FRESNEL-NUMBER)
HIGH-GAIN LASER

A. Local spatiotemporal dynamics
of a high-Fresnel-number dye laser

To introduce the present experimental results and to
ease the comparison with the theoretical model to be
presented later we analyze here the main features of the
dynamics of a high-Fresnel-number, high-gain dye laser.
Some of these results were reported in [30] and are in-
cluded here for the sake of completeness.

The dynamics of the dye laser under study shows a
very striking peculiarity. In an indirect near-6eld trans-
verse correlation experiment the intensity fluctuations
observed through different diameter pinholes were ana-
lyzed.

When the pinhole selected a sufFiciently large area
() 0.2 mm2) of the laser beam cross section, no Huctua-
tions were observed, and a smooth temporal profile was
registered. A reduction in the selected laser beam area
permitted irregular fluctuations modulating the tempo-
ral intensity pro6le to be registered. When the obser-
vation area was reduced, the fluctuation amplitude rose
steadily up to the 40 pm diameter pinhole, which was
the smallest aperture used. Figure 1 shows the depen-
dence of the relative energy fluctuations on the diam-
eter (P) of the external diaphragm. A power law gP
with an exponent o. = 0.84 is found to adjust the re-
sults well. As A P2 the scaling law for the Huctu-
ations as a function of the area of the diaphragm is:
Huctuations P s4 A 42. The inHuence of the co-
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FIG. 1. Experimental dependence of the relative ampli-
tude of the irregular Huctuations on the diaphragm diameter
(which determines the region of the laser spot detected). The
solid line indicates the best 6t by a power function.
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herence changes caused by the propagation outside the
resonator was minimized by measuring only 5 cm away
from the output mirror so that the power-law exponent
is a real reHection of the behavior of the field inside the
cavity.

An interesting result arising in the statistical analysis
of the Huctuations found in a speckle pattern [33] is that
the noise to signal ratio when averaging through an aper-

1
ture a set of incoherent noisy speckles decays as M
M being the number of speckles. Since the number of
speckles is proportional to the area, the prediction for
the exponent value of the power-law fitting for the area-
averaged Huctuations in an incoherent or fully disordered
system is P = 0.5. The anomalous exponent value found
in our experiment (P =

2 0.42) is a reHection of the
existence of some kind of order in the spatiotemporal dy-
namics.

An important feature of the dynamics studied. in Ref.
[30] is that the spectrum of the local intensity time series
is relatively broadband and not reproduced from shot to
shot, but when promediating many shots a very well de-
fined frequency appears around 50 MHz. This frequency
was found to be invariant when the physical parameters
of the resonator were changed, and also when the pump-
ing intensity was varied. The transmittivity of the semi-
transparent mirror was changed in order to modify the
losses, but the value of the frequency remained invariant.
No explanation was found for this phenomenon on the
basis of modal analysis and other standard theories.

In order to get a deeper insight into the nature of the
irregular oscillations a statistical analysis of the intensity
fluctuations was carried out. We joined di8'erent pulses
to get a good statistic and the result is shown in Fig.
2. As can be seen, it has a clear non-Gaussian nature.
This eliminates the possibility of a purely Gaussian noise
process as the origin of the fluctuations. In the case of
a speckle pattern, where the intensity is the sum of un-

correlated speckles with reasonable characteristics [33],
the distribution of intensity fluctuations should be a y-.
This distribution has a clear nonsymmetrical shape and

cannot be related to our experimental results, which are
approximately symmetrical around the mean. This fact
again supports the evidence for a not . fully disordered
behavior of the intensity field.

B. A near-Beld cross-correlation experiment

The averaging behavior observed could perhaps be in-
terpreted as the superposition of many transverse orthog-
onal modes. This superposition would exactly cancel the
local beating when the whole cross section (8 1.8 cm )
is measured. Nevertheless, in the experiment the cancel-
lation is produced when the observation area is two orders
of magnitude below the whole beam cross section. On the
other hand, the interpretations of the local intensity fluc-
tuations as a local beating of transverse modes predict a
high cross correlation between the fluctuations measured
on difFerent finite regions on the laser spot and the main
frequency of Huctuations should be of the order of the
transverse mode beating frequency. To completely clar-
ify this point and to provide more experimental results
for the comparison with the alternative explanation to
be discussed later we have performed a cross-correlation
experiment.

As in the early measurements [21, 30] we have worked
with a coaxial flash-lamp pumped dye laser with a 15
mm near-field cross section diameter and a 500 ns pulse
width. With the typical resonator lengths used the Fres-
nel number was around F 100 which greatly exceeds
the theoretical prediction of Staliunas [34] for the onset of
turbulence in the context of Maxwell-Bloch (and derived)
models, which is I" 10. The device is likely to provide
turbulent phenomena. The high pumping achieved de-
termines the kind of dominant instability, which should
be of self-focusing type [34].

An internal rotatable Brewster window sets the po-
larization to 45' from the vertical plane. The output
coupler is a 70% transmission dielectric mirror. A po-
larizing corner cube beam splitter divides the laser beam
into two equally intense orthogonally polarized beams
(Fig. 3). Each of the beams runs across a pinhole to fall
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FIG. 2. Statistical analysis of the energy Huctuations.
Continuous line: Probability distribution of the irregular in-
tensity 8uctuations obtained by joining different shots (4000
experimental points). The greatest 8uctuation is arbitrarily
assigned the value f=500 and the least one f=0 The dashed.
line is the fit with a Gaussian having the same mean and
dispersion as that of the experimental distribution.
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FIG. 3. Experimental setup for measuring correlations.
He-Ne: He-Ne alignment laser; I .M. : laser mirror; B.W. :
Brewster window; L.H. : laser head; P.B.S.: polarizing beam
splitter; P.H. : pinhole; D: silicon detector; O.F.: optical fiber;
D.T.R: digitizing transient recorder; P.C.: personal computer.
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on the coupling window of an optical fiber cable. Both
pinholes are adjustable in diameter and in their spatial
location on the laser beam cross section by micrometric
screws. Inside a Faraday cage the optical fiber cables are
coupled to 1 ns rise time silicon photodiodes, linked to a
500 MHz real time bandwidth digital transient analyzer
by a 50 0 matched coaxial line. The laser radiokequency
strong Geld noise is shielded by the Faraday cage.

The two pinholes and laser mirrors are aligned by
means of an auxiliary He-Ne laser. The system allows
the pinholes to be placed within a circle of 0.5 mm of di-
ameter around a point in the laser beam cross section. A
more precise alignment method even allowed placement
of the pinholes in a region of about 100 pm around a given
point. The system is synchronized to simultaneously reg-
ister the signals detected in both photodiodes. After-
wards they are subjected to a processing as described in
[30] to take off the irregular Huctuations from the aver-
age behavior. Both fluctuation registers are then self-
and cross-correlated in a personal computer. An exten-
sive search was carried out over the laser spot and only
very loxv transverse correlations were found (with the ex-
ception of some very near registers). This result persists
even with 70 pm pinhole diameters registering areas sep-
arated by less than 100 pm (Fig. 4). These results point
to the existence of a highly local decorrelation and the
inexistence of appreciable global correlations, eliminat-
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ing the question of mode beating as the origin of the
local irregular fluctuations and leading to the interpreta-
tion presented in this paper. Thus when the detection is
done over large areas the observed lack of correlation be-
tween the intensity at the difFerent points of the pinhole
area results in the cancellation of fluctuations. On the
other hand, the resonator mirrors being flat, the trans-
verse empty-cavity modes are all of the same &equency.
Gain inhomogeneities could perhaps produce a breaking
of this degeneracy, but the transverse mode beating could
never reach the 50 MHz experimental value found for the
Huctuation frequency.

In conclusion, the present analysis of the experimen-
tal results of [30] together with the present experimental
results allow us to make the following statements.

(1) The low correlation found in the dynamics of the
dye laser supports the affirmation that it is not of multi-
mode type and cannot be described by a globally-oriented
model such as transverse empty-cavity mode expansions.

(2) The anomalous scaling found in the power-law fit-
ting of the intensity fluctuations, together with the non-
Gaussian nature of the statistics and the "simplicity" of
the averaged spectra eliminate the possibility of a fully
turbulent behavior.

All the evidence then points to the characterization of
the dynamics as "weak turbulence" which is usually con-
nected with the "existence" (perhaps in a wider sense) of
local structures, their interaction giving rise to the com-
plex behavior observed. In this dynamical regime low
correlations exist but also some order remains that could
explain both the anomalous scaling law and the existence
of a characteristic dynamical frequency. The theoretical
results to be presented in the following sections will sup-
port this afBrmation.

III. THE MODEL EQUATIONS
AND SOME PROPERTIES
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In this section we will derive a xnodel which will later be
compared with the experiments. The starting point for
our analysis is the Maxwell-Bloch equations for a polar-
ized two-level laser in the rotating wave and slowly vary-
ing amplitude approximations [35]. Under the uniform
field limit and single-longitudinal mode approxixnations
the equations are [36]
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FIG. 4. Experimental cross correlations. (a) One of the
better correlations found between the intensity Buctuations
using 70 p,m diameter diaphragms before the photodetectors.
(b) Correlation when moving one of the detectors around 30
pm away from the case (a) situation. The delay is expressed
in an arbitrary scale.

where r
& &, Do is the population inversion per atom

induced by the pumping, o. the small signal gain, and
R = QRxR2 the reffectivity coefficient. Thus r is a
rescaled pumping. 4 = ' is the p~ rescaled detuning
between the fast oscillation of the field and the atomic
resonance, 0. is a measure of the losses, including mirror
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P;, = —(1+id)P;, +F,,D.. . . (5)

+ +~p'~ + F
2

(6)

i, j =1,2, ..., N

where u = o.—,.
From now on these equations will be referred to as dis-

crete Maxwell-Bloch equations (DMBE). The set of laser
oscillators is described by the local fields (F;~, P,~, D,~}
and they are coupled by a term simulating the nearest
neighbor di8racted field, the g coefficient being the cou-
pling constant. We do not use the discretization as a trick
to enable an easier analysis of the nondiscretized set (1)—
(3) but try to give a meaning to the structures presented
here as will be discussed later. The coupling coefficient

coupling this term being of the order of lnB, internal
transmission losses, aperture diffraction, etc. , p =

YJ
is the ratio between the depolarization time of the ra-
diation induced material dipoles (pz ) and the lifetime
of the population inversion

(p~~ ), v = &, and A is a
'Yl

characteristic length, which is usually the resonator opti-
Q2

cal length. T =
&A is related to the Fresnel number by

X = vrF (b is the transverse radius of the mirrors). This
number measures the number of Gauss-Laguerre modes
which fit on the mirror apertures, so that it measures
the maximum number of modes that will oscillate in the
resonator. Though it is sometimes also called the Fres-
nel number we will call it "maximum mode number" to
avoid confusion.

The domain of the transverse rescaled variables y =
&, q = sb is [0, 1] (for a square geometry) no matter what
size the transverse section is. Some elementary algebraic
transformations [16]have been done on the standard form
of the Maxwell-Bloch equations to write them in the form

(1)—(3), so that they are more practical for our purposes.
In principle, the factor ~ is a complex number (optical
dielectric permittivity) including the internal absorption
which takes other physical processes in the medium into
account as described in Ref. [16]. From now on this
will be considered a real quantity. Finally s = p~t is
a rescaled time variable. The restriction made to the
consideration of polarized fields is not important for the
phenomena we want to analyze here and corresponds to
the experimental setup used in the cross-correlation ex-
periment. In a general case the consideration of arbitrary,
nonfixed, polarizations may give rise to new phenornenol-

ogy [37].
The theoretical approach proposed in this paper con-

sists of the consideration of a finite bidimensional array
of adjacent lasing structures or filaments coupled by the
nearest neighboring diffracted field. For the sake of sim-

plicity we take a square lattice with spatial period h as
the bidimensional distribution of lasing structures. The
model equations are then the following discrete version
of (1)—(3):

+v = &(Pv Fv )+i&(F'+~~-+F* ~) +F'~ ~+F'~+~ 4F'~)-
(4)

may be taken proportional to g 4&,~, h, being a dis-
tance between the laser oscillators, but many other effects
can be taken into account in the coupling constant g.
For example, the formation of solvatation shells around
the dye molecules may act as a screening of the interac-
tion between filamentary structures, etc. What is clear
is that, as the continuous limit of the discrete coupling
term is the Laplacian term, if the transverse dimension
6 is held constant, the value of g in that limit can be
inferred to he

v%2
lim g(N) =

N —+oo 4+ (7)

but this is true only in the continuous limit where the
structures have no sense anymore. For example, when
the size h of the structures is given a physical meaning
(is fixed) an increase in N leads to an increase of the total
transverse size b. The discrete model is thus independent
of the continuous limit and g can be taken freely.

Similar approaches to complex problems have been fol-

lowed in many physical problems, e.g. , the analysis of
Rayleigh-Bernard turbulence [38], in the original Turing
analysis of spatial instabilities [5], in reaction-diffusion
equation-based models [7] and in the analysis of the
Ginzburg-Landau equation [39]. In these cases, the sim-

plification is usually physically meaningful when the dy-
namical system has a "coarse grained" dynamics, i.e.,
finite size coherent structures exist with any kind of mu-
tual interaction giving rise to complex behavior. In our
case, candidates for these structures have been experi-
mentally detected [40] and theoretically proposed on the
basis of the DMBE's; these are the filamentary or con-
densate structures analyzed in Refs. [41, 42]. In fact,
the adiabatically reduced Maxwell-Bloch equation [18],
which is expected to retain many essential aspects of the
dynamics of the whole set of MBE's (though probably
not all [43—45)), has a term that behaves as focusing and
can dynamically compensate the diffraction in order to
give rise to characteristic scale structures. In an inter-
esting work, Emelyanov and Yukalov [46] explained the
formation of these filamentary structures on the basis of
the global energy reduction in the filamented state as
compared with that of the homogeneous state. Despite
the very crude approximations made, they calculated the
laser domain sizes, their dependence on the resonator
length, and the inHuence of the Fresnel number on the
filamentary domain formation. Their results are in quali-
tative (and sometimes even quantitative) agreement with
some experimental results, as was pointed out in [16].

Aside from the origin of these structures, two facts are
clear: (1) experimental evidence supports its existence
(perhaps even multimode and other types of ordered pat-
terns might be described as arrays of "filamented struc-
tures") and (2) in the regime where these structures are
present, the local dynamics should almost be determined
by the plane-wave equations plus an interaction with
nearby structures with negligible influence of boundary
conditions. This affirmation is supported by the results
in Ref. [30]. Thus Eqs. (4)—(6) are a reasonable model
for the dynamics of a system with such structures. It
is expected that the model will work better in the weak
coupling regimes.
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Thermal effects will not be considered here, but an
inBuence of the temperature has been found in some cases
[30], though it is probably due to the enhancement of the
noise unavoidably present in the system and to the effect
on the nonradiative transitions of the dye molecules.

The g coeKcient depends on the maximum mode num-
ber through & . Since diffraction is known to increase the
coherence [47], the decrease in the Fresnel number leads
to strongly coupled and probably coherent structures,
thus favoring homogeneous and/or coherent spots, while
the increase in the Fresnel number (due to an increase in
the transverse size) leads to greater independence of the
dynamics so that the formation of ordered coherent pat-
terns will probably be unfavored. The stability analysis
will support this aKrmation.

It must be noted that this model is not supposed to
be a good one, except when in the turbulent regime in
which the assumptions made in its establishment have
any sense. Of course it will not give any information
on the ordered patterns arising near the threshold in
moderate-Fresnel-number lasers. In those systems the
boundaries play an essential role [48], which is not so
here. To do an analysis of these systems multimode ex-
pansions or direct numerical simulations of the Maxwell-
Bloch equations are likely to be the better approaches.

%e insist that we interpret the model not just as a
way to integrate numerically the Maxwell-Bloch equa-
tions (for this purpose a finite-difference approach [49]
would be preferable) but as a system of coupled struc-

turess

that may have sense as the theoretical and exp er-
imental evidence points out. The model here developed
can be applied to analyze any system of diffractively cou-
pled lasers, as it happens in semiconductor laser arrays
[50, 51] or in coupled CO2 cavities [52]. As our equa-
tions exactly represent a bidimensional array of coupled
single-longitudinal mode lasers and this is sometimes the
experimental setup, the agreement of our model with the
experiment is expected to be very good in some cases.
The particular value of g can be obtained from the phys-
ical mechanism providing the interaction and thus the
comparison between theory and experiment should be
simple. More details on this application of the model
will be given later. Preliminary theoretical studies in
this direction were done by Otsuka [53] in the context of
linear arrays of coupled waveguide lasers.

At this point we will proceed from the DMBE's and
justify their validity by the physical relevance of the re-
sults. The system is furthermore interesting from a math-
ematical viewpoint, because of some curious dynamical
features of the DMBE's to be discussed later.

From now on the set of Fields (F;~, P;~, D;z) will be
called "oscillator" or "filament. " In the statement of
the coupling term in (4) we have chosen a square lat-
tice. Other more complicated symmetries (or even a ran-
dom distribution) are also possible, but probably equiv-
alent, provided we are restricted to only qualitative re-
sults. The independence of g with both the point and
direction in the lattice guarantees the homogeneity and
isotropy properties, which are to be expected.

From now on, and for the sake of simplicity, we will as-
sume transverse periodic boundary conditions. However,

no qualitative differences were found in the dynamical
behavior of the DMBE's in the disordered region using
zero boundary conditions and Gaussian pumping (these
results will be presented in Sec. IV).

Some important properties of the model will now be
presented. The change in variables

&ij = ~Y+ij ) yij = +pPij, and ziq = r —Dij

y;; = —(1+i,b, )y;; + z;, (r —z;,),
~ /zij = —'Yzi~ + —(zij yij + Xi~ yV )2 ' (10)

There evidently exist infinite homogeneous solutions of
the form

x.
~

= X, y z
——Y, z,

z
——Z, Vi j = 1, ..., 1V

(X,Y; Z) being any solution of the CLE's.
Before going on in the analysis of the DMBE's we

will summarize some dynamical features of the complex
Lorenz equations [12]. The main result is the existence
of an exact periodic (limit cycle) solution for field and
polarization while the population inversion remains at a
constant value

A 2
X = Ae', Y = A 1 +i — e', Z=, 11

CT

where
] A ~= gp(r —ri), ri ——1 +

~

Under an increase in the pumping over a critical value rq
(representing the laser threshold), the stationary (non-
lasing) solution X = Y = 0 becomes unstable and the
limit cycle becomes the stable (lasing) solution. Only if
both o. & p + 1 and r & r2, r2 being the well-known
"second threshold, " does the limit cycle solution become
unstable, in which case chaos may appear. An important
characteristic of the DMBE's is that their solutions are
bounded, as is proven in Appendix A.

Following the notation of [55] and using the results in
Appendix A, it is clear now that the DMBE system has
an absorbing set. The proof is very simple because any
ball B(0,p) with a radius p ) pp centered at the origin
is already an absorbing set. Let 80 be a bounded set in
H and B(0,R) a ball with a radius R ) pp containing it,
then S(~)Bp C B(0,p) for T ) r(Bp) being

] Q2 p2
7.(Bp) = —ln

2l p —po

and S(r) the action of the flow on the ball.
Additionally the balls with a radius greater than po

are positively invariant, in the sense that S(v)B(0,p) C
B(0,p), VT )' Tp. It may be proven that the dynamical

is useful so that the model equations are in an equiva-
lent form to the standard form of the complex Lorenz
equations (CLE) [12] with the difFerence of the coupling
term.

*V = o (yV *V-)+»(*'+»+** »+-*V i+-*V+i 4*V-)
(8)
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system has a bounded maximal attractor in the sense of
[55].

Another interesting property is that the CLE's are in-
variant under the change

F m Fe'~ P + Pe'~ D —+ D .

region o. 0.1 —0.3 4 0.1 —0.5. The pumping r may
achieve very high values in the pulsed lasers of Refs. [30,
31] from the threshold r 1 up to r 80. The p pa-
rameter varies from p 0.1 —1.0 for the dye laser of Ref.
[30] to p 0.001 for the pulsed CO2 case of Ref. [31].

The existence of a zero eigenvalue in the coefBcient ma-
trix of the linearized system is essentially linked to this
property of symmetry, which may be explicitly used to
reduce the order of the dynamical system. Let us define
the new variables x = ae'~, y = be'~, z = t-. After some
straightforward algebra, it is found that

a = o b cos(P) —era,

b = b+—accos(P),

a b l
p = —4 —sin(p)

i
(r —c) —+ o —

~

E

c = p [
—c + ab cos(P)]

(14)

due to the decoupling. %hen the coupling is introduced
the local phase invariance is broken and only the global
phase changes F;~ —+ F,~e'~ P,~ ~ P,~

e'~ D,~ ~ D,~
re-

main as a valid symmetry. The coupling instantaneously
increases the total eBective number of degrees of freedom
by N —1 due to the lost symmetries.

Once the pumping reaches a critical value the lasing
state is established. What that lasing state is and what
its parameter region of stability is will be discussed in
Appendix B because it is not essential for the results
presented here. The reason is that the first lasing state
appears in the low pumping and low-Fresnel-number re-
gion in which the model is of no physical applicability.

where P = g —y. The dynamical system has been for-

mally reduced from fifth to fourth order. Thus, in the
special case g = 0, the DMBE may be reduced from 5N
to 4N order. This is due to the local invariance under
the phase change

F,~ m F,~e'~'& P;~ m P,~e'~'& D,~ + D;~

B. Overview of the local chaotic dynamics
and correlations

The DMBE's present a very rich dynamical behavior
in the different parameter regions. In typical cases a local
chaotic dynamics exists [Figs. 5(a) and 5(b)], but pattern
formation and other coherent behaviors have been found
for concrete parameter values. Even in these cases a long
irregularly oscillating transient is found before an ordered
pattern arises. The regions in which the simulations were
more exhaustive are described in Sec. IVA. We per-
formed some numerical simulations to see the effect of
the diH'erent types of instabilities on the behavior of the
system. The first exploration was for case I (pulsed CO2
lasers) with o = 0.1, b. = 0.3, r = 40, g = 0.1, p = 0.001.
For a number of domains (K = 6) below the critical value
for type I instability (see Appendix B for details) all the
inodes lie in the type II instability region [see Fig. I.6(a)
in Appendix B] and the behavior is chaotic with a fast
predominant frequency as will be discussed in Sec. IVD.
When we increase the number of domains (X = 9), some

(a,

!—']50
0 200 400 600 800 ']000

IV. COMPARISON
OF THE DY'NAMICAL DMBE BEHAVIOR

VV'ITH THE EXPERIMENTAL RESULTS
Re(x) -P/

i

A. Numerical simulation details —'] 5.0
0 200 400 600 800 1000

Now to be reported and discussed are the results of
the numerical integrations of the DMBE's. The integra-
tions were carried out on a VAX9000, a DEC-AI PHA, a
Convex C-210, and various i486-type computers using a
fourth-order Runge-Kutta method. The accuracy of the
solutions was checked using di8'erent time steps.

The variables from which the dynamical information is
extracted are the local fields (I"i,i, Pyi, Di,i)I, the local en-

ergy (or intensity) Ii,i =] Fi, i !,and the global intensities
iiv = Pi, i Ii,&, k, I E N, W being any subset of the full
set of osciilators. These global intensities are the ones we
measure in experiments using wide-area detectors.

Although wide regions of the parameter space were in-
tegrated, our attention will focus on the more physical
regions. The parameters for the usual lasers are in the

0.4-

0.

—n~-I

0 4
0 200 400 600 800

Delay

FIG. 5. (a) and (b) Local chaotic dynamics for neighbor
oscillators and (c) the field correlation functions for a random-
initial-conditions (RIC) case (see text) and parameter values
o = O.l, A = 0.3, g = 0.1,p = 0.001,r = 40.0.
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f ~ dT. B „(a) is the ball with a radius a centered

on an arbitrary oscillator mn. The particular election of
mn was found to be unessential because of the mean in-
dependence of the dynamics on the concrete point on the
lattice and the long time average. K~(o) is the number
of oscillators in the ball B (a). The distance is taken in
the sense of "interaction" so that d(kl, ij) = ]A:—i~+ ~/

—j~
(this is the natural metric for the lattice).

A very interesting result is shown in Fig. 9. The de-
cay of the spatially averaged fluctuations for parameter
values in the dye region is well adjusted by a power law,
bE(A) A~, A being the area registered (measured by
the number of oscillators) with an exponent P 0.41 for
parameter values 0. = 0.2, r = 80, 6 = 0.3, g = 0.1,p =
0.1. The value of this exponent is not a consequence of
a fortunate election of the parameters. For example, for
parameter values p = 0.2, o = 0.2, 6 = 0.3, r = 40 and
p = 0.5, 0 = 0.1, 6 = 0.3, r = 40 the exponents found
when averaging the energy fluctuations for three shots
were P = 0.40 + 0.02 and P = 0.40 + 0.01, respectively.

This dependence is characteristic [56] of the so-called
weak turbulence or spatiotemporal chaos, which corre-
sponds to the evolution of coherent structures having the
size of the correlation length. This is a more ordered
state than the fully developed turbulence, which implies
an exponent P = 0.5.

This result is in good quantitative agreement with the
previously described experimental results and provides
additional evidence for the existence of something like
coherent structures in the real behavior of the dye laser.

D. Dynamical frequency locking

Another important characteristic of the dynamics is
that the averaged Fourier spectrum of the time series of
the local intensities shows a peak in a frequency value
(and sometimes in its harmonics) which is almost invari-
ant under parameter changes in the physical region. Fig-
ures 10(a)—10(d) show the independence of this frequency
under some parameter variations. The figures were ob-

~08

0',

Q. O
Q 5 IG

Number of oscillator s

FIC. 9. Numerical simulations of the dependence of the
amplitude of the intensity Huctuations on the averaging re-

gion; parameter values are a = 0.2, r = 80, A = 0.3, g
0.1, p = 0.1. The solid line indicates the best 6t by a power
function.

tained computing the maximum of the average power
spectrum of different shots (typically three or four) for
each value of the parameters. Our search region included
p E [0.001, 1.0],r 6 [10,100],a F [0.01,2.0],g E [0.0, 1.0].
This frequency has nothing to do with modal separa-
tions etc. , and is the result of a curious dynamical fre-
quency locking. This locking appears both in the pa-
rameter regions where the system is ordered and in the
chaotic regimes (though here the spectrum is more com-
plex). This frequency grows linearly with the coupling
constant g for small values of this parameter in a way to
be discussed later. For larger g values, the monotonously
increasing behavior ends and an independence of the dy-
namical frequency value on the coupling parameter. is
found [Fig. 10(e)].

It is remarkable that the locking frequency cannot be
related to any of the other system parameters in the pa-
rameter region studied. A semiphenomenological expla-
nation will be given in Sec. IVE, but it is far from be-
ing complete. The phase-locking and frequency-locking
behavior of collectivities of coupled nonlinear oscillators
seems to be well established [57], but the locking fre-

quency is usually a characteristic (natural) frequency of
the oscillators or some kind of mean when they have the
same natural frequencies. The interest of' the coupling
found here lies in the fact that the common frequency is
independent, not only of the natural frequencies of the
oscillators but also of the parameter values in a wide re-
gion of the parameter space.

As the time variable in our model equations is scaled by

p~, the physical value of the frequency (v,„~,) is obtained
from the numerical one (v„„)by the transformation

I expt = +nu.m fZ . (17)

Considering that for the dye laser p~ 10 s, it is
found that the value of the frequency, in physical units,
is around 10 MHz. This is then of the same order of the
frequency found in the experimental local intensity time
series as discussed in Sec. II. This fact provides more
evidence that the discrete model retains some essential
features of the dynamics.

The CO2 laser of Ref. [32] also presents the existence
of a dynamical frequency which has no clear origin hav-

ing a value of around 500 kHz. Because the values of the
relaxation constants are different from those for the dye,
the difference between the numerical values might be ex-

plained. Perhaps that system is also showing another
case of this kind of frequency locking. More experimen-
tal information should be necessary to make a concrete
comparison.

In semiconductor coupled laser arrays chaotic dynam-
ics is also found, as is discussed, for example, in Ref. [50].
There the number of elements seemed not to be large
enough to get a complete frequency locking, at least it
is not clear in the global intensity shown in Figs. 1—5 in

[50], but local measurements for each laser field may clar-

ify it. However, the order of magnitude of the dynamical
frequency arising there is one or two orders of magnitude
larger than the one found in our laser, which again ap-
proximately matches with the differences in the p~ value
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FIG. 10. Dependence of the "fundamental" dynamical frequency on the system parameters (a) r = 40, p = 0.5, g = 0.1,o =
0.3, & C [0.01,0.4], (b) r = 40, p E [0.01,0.4],g = 0.1, A = 0.3, o = 0.3, (c) p = 0.5, g = 0.1, b. = 0.3, a = 0.3, r E [10,90], (d)
r = 40, g = 0.1, o = 0.3, E = 0.3, O' E [0.05, 1.25], (e) r = 40, p = 0.5, E = 0.3, cr = 0.3, g C [0 004, 0 63].
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and may be the larger g value because of stronger cou-
pling that is likely to be there.

2.5
(a)

E. Dynamics in the dye laser parameter region

We will concentrate now on the dynamics in the dye
laser parameter region in which some special features ap-
pear, allowing a more complete explanation of some of
the observed phenomena.

When near-homogeneous initial conditions are used, a
long transient is found before the complex behavior ap-
pears; this is due to the fact that only type I instabil-
ity with very small positive indexes is present and a few
modes lie inside the instability region so that it needs
time to develop.

The numerical simulations show the striking fact that
the local dynamics takes place (very approximately but
not exactly) on the codimension 2 hypersurface defined
by the equations

2.0—

i

'].5—

P —Pl '! .0—

05-

0.0
0.0
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+gkl —ie v'ai —i 4gA&e&v a& )e &v'i i—(20)

A typical case is shown in Fig. 11. In the unperturbed
case (g = 0) the dynamics takes place on a line inside
these surfaces (the limit cycle). In the coupled case (g g
0) the dynamics becomes very complex but the trajectory
lies very approximately inside this set which we think is
not trivial. Let us remember that when p is small the
dynamics is far different in the sense that the trajectory
does not lie on a simple surface.

Figure 12 shows some typical features of the dynamics
in this parameter region. The amplitudes ai, i = IFgil and
bi, i = IPgil perform oscillations around the value corre-
sponding to the unstable limit cycle agi = t/r —ri, while
the phase &pI, ~ has a very fast evolution with the charac-
teristic &equency discussed above so that aI, ~yA, ~ )& ap~.
The polarization follows the same behavior and is more-
over slaved by the field, allowing even the crudest adia-
batic elimination (zero order) to be applied with a very
high degree of approximation.

Taking into account these facts, and concentrating in
the small g and 4 ) 0 region, where the fluctuations
around the stationary values are small, a deeper under-
standing of the frequency locking can be given. The
model equations in the approximation discussed before
are
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FIG. &&. (a) Phase portrait showing lFq~l /(r —ri) vs
D/rx. As can be seen, the points lie spreading a bit around
the curve y = 1/z. (b) Phase portrait showing lP&&
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vs DI, &. The points lie near the curve y = z.
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The numerical simulations show that when g is very
small, the population inversion remains near the thresh-

FIG. 12. Local time series of the intensity and phase for
an oscillator in the lattice. The phase p is shown in the
lower part and is a rapidly changing function (we have ar-
tificially restricted it to the interval [0,2n]) while the am-

plitude is shown in the upper part. Parameter values are
cr = 0.3, A = 0.3, r = 40, p = 0.5, g = 0.1.
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old (Ds~ 1+ D2) and the amplitude Huctuations are

very small. Also, in our rough approximation we will

substitute 1+4 1. Taking this fact into account, the
equations reduce to a simpler form. Defining new phase
and time variables by

gkl pkl 2~+0& i (22)

tC =g7 (»)
where vo —— 2+, the form of the equation is found to
be

= cos(%+it —'Ai) + cos(A —u —At)
+ cos(gl &+i —gsi) + c»(QI i i ——4's&) (24)

Numerical simulations of phase equation (24) are
shown in Fig. 13. It is clear that Q evolves slowly as
compared to y, which includes a monotonously increas-
ing component. The analytical prediction matches with
the numerical results on the very low g limit. For ex-
ample, for a particular case, and using the v values
found for g = 0.004 and g = 0.008, the adjustment
was vo ——0.014+ 0.58g, which is very near the predicted
vo ——0.018 + 0.64y.

In the parameter region in which the approximations
are valid, o 0.1,6 O. l, g 0.1, the g component
of ~0 dominates when g is not too small. Taking into
account that the physical values of 0 and 6 are small,
the locking &equency is likely to be almost independent
of them. This result points to the fact that the lock-
ing of the laser oscillators has to do with the phase of
the fields and the phenomena analyzed here (despite the
complexity of the system) have their origin in the phase
locking.

However, the saturation behavior for larger g values
cannot be so simply explained out of the region of validity
of the approximations made here.

F. Statistics of the intensity Quctuations

In the dye laser parameter region the statistics of the
intensity Buctuations around the mean were analyzed to
compare with the experimental results discussed in Sec.
II A. Two numerically simulated time series of the inten-
sity for parameter values in the dye region were subjected
to the same processing as the experimental registers and

a similar number of points was taken to build a statistic
of energy Buctuations. The results are shown in Fig. 14
and again a very good match between theory and exper-
iment is found. The best agreement concerns the shape
(non-Gaussian) of the distribution and the position of
the maximum of the distribution. The comments made
in Sec. IIA concerning the comparison with the speckle
distribution are applicable here.

G. Global relaxation oscillations
Another interesting feature of the simulations is that

for many parameter values the global intensity (corre-
sponding to the detection of the full laser spot) shows an
oscillating relaxation behavior towards a stationary state
as is observed under certain experimental conditions.

The global intensity I(t) for r = 10,p = 0.001, 0' =
0.1,6 = 0.3, g = O. l is shown in Fig. 15 for two different
kinds of initial conditions. The 6rst ones were a constant
value plus a small amplitude Gaussian centered on the
middle of the lattice [Gaussian initial condition (GIC)]
and are shown in Fig. 15(a). The second ones were a
constant value plus a small amplitude white noise [Fig.
15 (b)]. It is not surprising that in the case of a more
uncorrelated (random) initial condition (RIC), the decay
to the stationary state is faster than in the correlated
one.

It should be pointed out that the frequency of these
"relaxation oscillations" in case I coincides with the &e-

quency of the relaxation oscillations in class B lasers
(because the parameter values are in that range) u =
/20'(r —1). It is interesting how our discrete theory
reproduces this behavior, even when the local dynamics
is so complicated.

On the other hand, as the intensity of each element on
the lattice oscillates around its equilibriuin value (now
unstable) the total intensity is just N2 times the equi-
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FIG. 13. Numerical simulations of the phase evolution
obtained with the reduced phase equation showing that @at
evolves slowly as compared to y.

FIG. 14. Statistical analysis of the energy Huctuations.
Continuous line: Probability distribution of the irregular in-
tensity Suctuations obtained using 3500 points for two dif-
ferent cases. The greatest Buctuation is arbitrarily assigned
the value f=500 and the least one f=O The dashed l.ine is
the 6t with a Gaussian having the same mean and dispersion
as that of the numerically obtained distribution. Parameter
values for the simulations were p = 0.5, D = 0.3, r = 40, g =
O. l, cr = 0.3.
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be hidden for many years and it is probable that they are
present in many laser systems.

These results are somewhat striking, because despite
the decorrelation of the dynamics at a local level, a highly
regular oscillation arises in the global profile of the in-
tensity. This may be concisely expressed as "disorder +
disorder = order. " It is also important to note that this
order is not a consequence of random statistical behav-
ior, because there are clear deterministic oscillations in
the global intensity profile for much longer times than
the local field correlation times, indicating that there is
some kind of global organization. From the viewpoint of
stability it may be hypothesized that the oscillation of
the unstable linear modes promediates with an approx-
imately constant mean, while the stable ones perform a
regular relaxation oscillation. In the con6guration space
it should give the apparent subtle connection shown in

Fig. 15.
When the parameter values used are those of the dye

laser, p = 0.5, o = 0.3, 6 = 0.3, r = 40, g = 0.1, there
persists a very fast relaxation oscillation with frequency
v 3 which, taking a p~ value around 10 s, gives
a period around 1 ns which is typical of the relaxation
frequency in dye lasers [58].

It is interesting to point out how in [50] a very similar
behavior was found for the array of coupled semiconduc-
tor lasers. There the global intensity was more Huctuat-
ing because of the smaller number of laser oscillators (2
x 10), but the switching rharacteristics are the same.

0 2do 4ho '6do '8do '1o'ooi V. CONCLUSIONS

FIG. 15. Global dynamics for parameter values o.

0.1,4 = 0.3, r = 10,p = 0.001,g = 0.1. (a) corresponds to
random initial conditions, (b) corresponds to smooth (Gaus-
sian) initial conditions, and (c) is the result of an integration
with g = 0.0 which is included for comparison.

librium value for each oscillator once the transient has
died [Iioi —& N x (r —ri)]. At first sight, there seems
to be only a slight change in the global dynamics when
the coupling is introduced. In fact, the comparison of the
curves in Figs. 15(a) and 15(b) with the time evolution
obtained with g = 0.0 and GIC conditions [Fig. 15(c)]
shows only slight differences, the main one being that the
coupled system output is slightly noisy [see, for example,
the tails of I(t) in Fig. 15] because of small noncompen-
sations of the deviations from the mean values of local
intensity oscillations, which is not so for the uncoupled
system. There, each oscillator performs a relaxation os-
cillation so that all the oscillators contribute exactly with
the same intensity value to the total intensity. The pump-
ing eKect on global dynamics is a reduction in the decay
time of the oscillations so that using r & 40 and GIC,
only one or two oscillations can be distinguished.

Due to the similarity between the coupled and uncou-
pled global dynamics, a few changes should be expected
in the local behavior. However, this is not the case, as we
have seen in the previous sections. In fact, the promedia-
tion of the complex local dynamics to seemingly smooth
outputs has permitted these experimental phenomena to

The most important conclusion is the experimental ev-
idence for turbulent behavior in the laser together with
the statement of a model which presents a dynamics
closely resembling that observed in the experiments. Our
analysis of the experimental results allows us to state
that the turbulence is probably weak. The physical rel-
evance of the assumptions held in the statement of the
model equations must not be underestimated. In partic-
ular, the feasible existence of filamentary structures as
dynamical units in these laser systems should be clari-
Ged from an analysis based on the full set of partial dif-
ferential equations. However, both the previous results
on Glamentary structures and the agreement between the
present results and the experiment are cumulative indica-
tions that such structures {or something similar to them)
exist. The good matching between the dynamical be-
havior of the model and the experiment (concerning, for
example, the frequency locking) indicates that the weak
turbulent description is appropriate for the experimental
system under study.

To apply the results reported here to concrete laser
systems and to be able to predict the appearance of local
chaotic behavior, a deeper insight into the mechanism
generating the domains is necessary. Once they are clar-
i6ed, implying some predictive power on the value of the
coupling constant g and on the number of domains %,
the DMBE's would be a useful tool for studying such
systems.

Further experimental work would be useful. For ex-
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ample, an analysis of the local dynamics of difFerent laser
systems with different lasing substances (such as different
dyes in dye lasers) would probably provide an experimen-
tal variation of the g value.

From the mathematical viewpoint, one interesting re-
sult is the special kind of frequency locking found here.
Locking is a very common phenomenon although a com-
plete explanation of the phenomenon has not been found
(though studies clarifying some points have been made
[57]). Usually a set of oscillators with different natural
frequencies lock to a common frequency, often related
to those in existence. The interesting aspect of the fre-
quency locking reported here is the fact that the lock-
ing frequency is apparently independent of the natural
frequencies of the oscillators. Further investigations are
necessary to clarify the stabilization mechanism for the
frequency at its actual values.
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2
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a being any real number satisfying 2 ( p. The temporal
variation of the norm verifies

2—
~

u ~2 +2l
~

u ~2& (r +—o)' N
dt

(A4)

with l = min(1, o, p —o. ) ) 0.
Then, the following upper bound is valid for all time:

N2p
I u(t) I'& lu(0)l" "'+ 2l, (r+ o)'(I —e "')

(A5)

and obviously

hm sup
I u(t) I+ p& p& =

as we wanted to prove.

Np(r + cr)

ny 2l
(A6)

APPENDIX B

—x;q (x.+q + x- q. + 2:.
q + z. -~q —4x .))

vanishes, because it contains all the terms x;~x,*.

+z - twice
and with opposite signs.

We will make use now of the inequality

APPENDIX A

To prove that the solutions of the 0MBE's are
bounded, let us make a new change in variables: z ~
x, y ~ y, z i-+ z —r —0, the equations then being in the
form

*v = &(yv —~v) + «( &'+~~ + &* ~~ + &v-~
++ij+1 4&ij )

Our first task will be to determine what the lasing
solution of (4)—(6) will be and to analyze its stability. We
will be mainly interested in the homogeneous solution for
physical reasons we will point out later, however, for the
sake of generality we will consider the following family of
transverse traveling wave solutions (TTWS) with wave
number (s, t):

P tSPSt 8( iii + iiI" ) Si8' t PStmn= 0 e mn

gSt (ii8i + pf ) SIS t D DSt
0 mn= 0-

y;, = —(1+id)y;, —x;,z;, —oz;, ,

z' = —&" + —(2."iy*, +~', yV) —'Y("+tr).
2 U

(Al)

The periodic boundary conditions require the k values
to be of the form k = z's, k„= vrt, with s, t integers,
which has already been used in the previous formulas.
Inserting (Bl) in the evolution equations, the values of
F0,P0, 80, and u' are axed. The value for the &e-
quency will be used later and is

Let H be the phase space of the system with the Eu-
clidean norm and let u p H. Thus the following equality
is straightforward:

04+ o.'

0+1 (B2)

I'+). (o I *V I'+
I yV I'+~z.', )

= —) p(r + o)z;, (A2)

To obtain this result it is essential that

where cx,t ——4g [sin (~) + sin (~)j.
Using the same procedure as Jacobsen et al. in

Ref. [45] it is found that the traveling wave (stj(F',P",D' ) with the lower threshold is that mini-
mizing Q

(B3)
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g - at & gpat 27ri(km+in)/N

k, l=O, N —X

g
-at + g at 2vri(km+in}/N

)

k, l=O, N —X

g~at 27ri(km+in)/N
&kl~

k, l=O, N —1

the linearized equations become decoupled, their form
being

bQt ——c bg&'t —(o. + i~)6Q',

2 (7ckl . 2 f~l't—4tg»n'
I

—
I

+»n'
I

—
I ~(kl,

i,N) (85)

provided the detuning 4 is greater than zero. If 4 ) 0
then the homogeneous solution is the more favored one.
If g is moderately high and/or the detuning is very small,
as is expected in dye lasers, the lower threshold solution
will be the homogeneous one s = t = 0. In Ref. [45] it
was shown for the continuous equation that the solution
with the lower threshold also has the greater gain so that
its stability in the first lasing state is to be expected.

Depending on the values of the parameters 6 and g
one or the other solution will be favored. We have ob-
served (numerically) stable traveling wave solutions in
some cases. However, despite being true laser solutions
of our lattice with periodic boundary conditions the in-
terest of the TTWS is very limited for many reasons. In
the first place, under more physical boundary conditions
such as zero boundary conditions with inhomogeneous
pumping profile, the TTWS are not solutions and only
the inhomogeneous solution which "follows" the pump-
ing makes sense. This solution is an extension of the
homogeneous one to space-dependent gain (just change
r by rU. in the homogeneous solution) and has nothing
to do with traveling waves. Additionally, in the cases of
physical interest there is never a perfect symmetry and
the traveling waves are generically very unstable with
respect to symmetry changes (in [48] a case is studied
for traveling waves in a cylindrically symmetric laser).
As it takes little eKort to analyze the stability of the
TTWS together with that of the homogeneous state, we

will maintain for a while the more general case. The sta-
bility of the homogeneous state has also been studied in
the one-dimensional continuous case in Ref. [18].

Let us consider the family of solutions (Bl). If we

write the linearized equations around any of these so-

lutions, carrying out the change of variables bI'"'t„
zat et~" t PPst cyst et~" t post gzst the eqmn mn mn mn mn

tions adopt an autonomous form. Changing to new vari-

ables in Fourier space (b(&I, 6q&tt, hatt) defined as

~Qi = —»Qt + — A' *
I

1 —'
I ~Gt

1 .,„ (
2 q cr)

+A*bgkl + H.c. (B7)

where a = 1+i'. In the following the Fourier space vari-
ables will be called linear normal modes although they
have nothing to do (in general) with the usual empty-
cavity modes. Note that the only diH'erence between two
normal modes for a given plane wave (s, t) is the coeK-
cient

. , fvrk)t . , (ml)
ctkl 4g»n'

I

—
I
+ sin'

i&r. (BS)

The modes with the same value of nt, t (i.e. , those with
k = ii, t = i2 and k = i2, I = ii, ii g i2) are degenerate
from the viewpoint of stability so that there is a maxi-
mum of 2 diBerent values of o.kl. The coefBcientN(N-i)

matrix of the linearized equation for each mode, whose
eigenvalues determine its stability, is (omitting the s, t
index)

I'
—(oT + tctgt) 0'

P —I
0 0
0 —A

0
0

0 (crT' —iut, t—) o 0
0 P* —I.* —A'

2
-'A' 'AT -'-A —p )2 2

(B9)

0(o.'kl & 1 —— (B10)

where T = 1+i , I = ct +in P =—r
I

A
I

/p. —
From now on, we will concentrate on the homogeneous

solution for the reasons previously explained (the same
analysis will be applicable for the more general case with
somewhat more algebra). The characteristic polynomial
has degree five so that we cannot explicitly find the roots.
For the mode with A: = 0, t = 0 it is easy to find that there
is one zero eigenvalue, the characteristic equation being
of fourth order and explicitly solvable. The other two
eigenvalues are complex, their real parts being negative
(at least for o reasonably small). The reason is that this
case is equivalent to the uncoupled CLE, and thus the
results of [54] are valid for the stability of this mode. This
zero eigenvalue exists as a consequence of a symmetry not
broken by the coupling (the global phase changes), as was
stated previously.

An essential property in the analysis of the stability is
that the modes with akl satisfying

I
A" I'l

~it', t
= —(~+ i~")~et",t + Kt".t I

r—
)

are unstable. This result is similar to that obtained in
Ref. [45] for the one-dimensional continuous equation.

The proof of this proposition can be obtained from the
characteristic polynomial in A, which is
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4(d+)2(++1)+P)A + l(++1) +6 — +P(r —ri)+2P(o'+1)+ ait+2ar&w) A

+ p+ 2 o.'&&+ 2ngiu +go o —1 +pp 1+3o. + pQ 5 —o.
o+].

+(2p[/r(r —l)(o. + 1) + o/b] + n/. &po/[4+ (r —r) )] + o„,[p(r —rj) + 2p+ r, ])A
+ (cxyi+r + 2(r —ry)cxgi'old) = 0 (B11)

We will first prove the lower bound, i.e., that for a & 0
the mode is unstable no matter how small a is. In doing
so, we assume there to be an analytic dependence of the
polynomial roots on the coupling constant g. For small g
values the only root which may have a positive real part
is the real one, since it is zero in the case g = 0 assuming
there is a smooth dependence on g. Let us call the two
complex conjugate roots Ai and A2 and the real root A5.
We will use a Taylor expansion of the root A5 around its
value with g = 0.

x, = xi" + ~xi'i+ o(n') .

For the destabilization of the periodic solution, it is
sufBcient that one of the modes be unstable. Given a
g value, the values for the c/), i are given by Eq. (B8).
The separation of the coupling constants a of adjacent
modes (in the sense of coupling) depends on the number
of oscillators N. The existence of a region of positive
eigenvalues in the range nw,, i C [0, go] [from (B10)]ensures
that the system is unstable if the number of oscillators
exceeds a certain critical value, which will be given by
the criterion for instability of the I|; = 1, l = 0 mode
(remember that the k = 0, I = 0 mode will usually be
stable).

Putting this form of the solution into the characteristic

polynomial and using the fact that As(
i ——0 is a solution

of the g = 0 case we obtain the following relation for the
first-order coefficient:

2(r —rg)po/+ Asi i2p ((r —1)(o'+ l)o'+ Ao/) = 0 .

(B12)

And then

A5
(i) o A(r —rg)

) r&ry.
(o + 1) ((r —1)(o + 1)o + 6a/) '

(B13)

Thus As ) 0 unless (r —l)(o + l)o + b,o/ & 0 but this
inequality is equivalent to
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(r —l)(o. + 1)' & 6' (B14)

and so, in order for A5 to be positive, the following
expression must be verified:

Q2r)1+( )2
r1

This in fact happens, and thus for small values of the
coupling constant the modes are unstable.

We shall look for the upper bound. The two coxnplex
solutions A& and A2 and the real one A5 satisfy

0.7
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l&il'l&21'&s = —(~/, i~r + 2(r rl) ~kl Y~)— (B16) 0.0 '
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t

ni, ir + 2o/(r —rz) & 0 .

We then find the bound

2oA ri
O'It ( 1 ——= goo+1 r

(B17)

(B18)

so that in order for A5 to be positive the following must
hold.

FIG. 16. Stability analysis for some particular cases. (a)
/r = O. l, p = O.ppl, b, = 0.3. (b) o = 0.3, ~ = 0.1,~ =
0.3. The regions marked with I are those in which the real
eigenvalue is positive. The regions marked with II are those
in which one of the complex eigenvalues has a positive real
part. III means that both the real eigenvalue and one of the
complex ones have positive real parts. Finally IV indicates
that aH eigenvalues have negative real parts (stable states).
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This being the more unstable mode (the others having a
higher threshold) a number of oscillators below the criti-
cal value N, will imply the stability of the homogeneous
state. If the Fresnel number is small the g will take a
large value and thus the critical number of oscillators
will be quite high. On the contrary, a high Fresnel num-
ber will lead to a low coupling constant, and thus to the
destabilization of the homogeneous state even when only
a few oscillators are present.

Note that the critical number X, is also dependent on
r, so that higher r values increase the instability region,
which could be very small near the threshold.

Note that if

(820)

then the k = 1, / = 0 mode is unstable no matter what
the number of domains is.

Let us introduce some notation. We will call the region
of the parameter space where only the real eigenvalue
has positive real part "instability region I," the parame-
ter space region in which only a complex eigenvalue has
positive real part "instability region II," and the parame-
ter space region in which both a complex eigenvalue and

the real one have positive real parts "instability region
III." We will say that a mode has "type I instability" if
its real eigenvalue is positive, "type II instability" if one
of its complex eigenvalues has a positive real part, and
"type III instability" if both the real part of one of its
complex eigenvalues and its real eigenvalue are positive.

Figure 16 summarizes the stability analysis for some
particular parameter values. As stated before, there is
always a region for small g values such that positive eigen-
values exist. The equation for the instability frontier be-
tween the type I region and the other ones on the g, r
plane is given by Eq. (B10), which can be seen in the
lower part of the figure. Also included in the figure are
other stability and instability regions.

The inHuence of the number of oscillators is clear from
the figures, and the critical number of oscillators can be
easily found by inspection. For example, in case (b) a
small number of oscillators should imply that only a few
n values would stand on the interval [0, 0.4] and thus
the first nonzero value of o, should be over the region of
type I instability, all the modes then being stable (and
consequently the limit cycle). An increase in the number
of oscillators or a decrease in the value of g would move
the lower nonzero value of o. towards smaller values, so
that it may come into the instability region.
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