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Spectral analysis of the degenerate optical parametric oscillator as a noiseless amplifier
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We consider a degenerate optical parametric oscillator driven by a stationary field of frequency 2Q
and by a modulated field of frequency Q with a small modulation (signal) of frequency co' ((Q. By using

the eigenvectors of an appropriate matrix we identify the conditions to obtain maximum amplification

when a single quadrature component is modulated; the amplification coefficient is calculated analytically

as a function of the frequency cu' and of the parameters. Using a method of quantum Langevin equa-

tions, we express in analytic form the noise spectrum for a generic quadrature component of the field of
frequency Q. By combining the results concerning amplification and noise we compare the signal-to-

noise ratio in the output with that in the input, and determine the range of parameters in which the per-
formance of the system is better than that of the phase-insensitive linear amplifier. In particular we iden-

tify the cases in which noiseless arnplification is possible. The approach developed in this paper can be

applied to a generic cavity-based phase-sensitive amplifier.

PACS number(s): 42.50.Dv, 42.50.Lc, 42.65.Ky

I. INTRODUCTION

It is well known that phase independent linear
amplifiers introduce unavoidably at least 3 dB of noise in
the output, whereas phase-sensitive amplification can be
noiseless, in the sense that the signal-to-noise ratio in the
output is equal to that in the input [1—8]. Experiments
which approach the noiseless amplification performance
have been reported recently [9,10].

In this paper, we provide a theoretical description of
noiseless amplification considering both the frequency
dependence of the signal amplification, and the full spec-
tral composition of the noise in the output as it is mea-

sured, for examp1e, in any squeezing experiment. Thus,
we are able to study the fu11 frequency dependence of the
signal-to-noise ratio in the output compared with that in
the input. Precisely, we focus on the case of degenerate
parametric oscillators. A nonlinear y' ' medium, which
converts the frequency 2Q into the frequency 0 and vice
versa, is contained in an optical one-ended cavity, close
to resonance with both frequencies 20 and Q. The sys-
tem is driven by two coherent fields with frequencies 20
and 0, respectively. The first driving field is stationary,
whereas the second is composed by a stationary part and
by a contribution modulated with a frequency co", the
second term corresponds to the signal, which carries the
information.

We describe this system using the quantum model of
[11], [12]. First, we analyze the semiclassical model in
absence of modulation; our calculation of the stationary
solution of the system generalizes the results of [11—13].

Permanent address: Lebedev Physics Institute, Leninsky
prospect 53, 117924, Moscow, Russia.

Second, still in the semiclassical model we compare the
intensity of the modulated part of the output with that of
the input. By using the eigenvalues of an appropriately
defined matrix [M] which governs the amplification of
the signal, we determine the conditions for best
amplification. This step, once added to the request that
the modulation in the input occurs in a single quadrature
component, identifies the input quadrature component
that must be modulated to achieve optimum
amplification, and ensures that the modulation in the out-
put occurs in the same quadrature component. The two
conditions of best amplification and single quadrature
component modulation can be simultaneously satisfied
only in three well-defined cases, which are analyzed in de-
tails in the following. In each of these cases, the
amplification coefficient of the small signal is calculated
analytically for all values of frequency co'.

Next we consider the fully quantum-mechanical ver-
sion of the model linearized around a stationary solution.
For each of the three cases the spectrum of squeezing in
the output field is calculated analytically for an arbitrary
quadrature component, and the squeezing properties of
the quantum fluctuations in the output field are described
as a function of the parameters. Finally, in order to ana-
lyze the signal-to-noise ratio with the best amplification
of the signal, we focus on the modulated quadrature com-
ponent. The quantum noise in this quadrature also
displays, of course, amplification, or "antisqueezing, " i.e.,
the contrary to the squeezing. We compare the signal-
to-noise ratio at the output and at the input for all values
of co'. In this way, we are able to determine the values of
the system parameters, which a11ow to preserve best the
signal-to-noise ratio.

In Sec. II we analyze the stationary solution of the
nonlinear semiclassical equations over the parameter
space of the system and, in particular, we identify the
cases in which the system exhibits a bistable response. In
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this section, we restrict our investigation to the case
Ap= —h„where Ap and 6& are the detuning parameters
for the two fields with frequencies 20 and 0, respective-
ly; this limitation no longer applies to the following part
of the paper. Section III is devoted to the analysis of the
amplification of a weak monochromatic signal in the
mode of frequency 0; we identify the three cases in which
optimum amplification and single quadrature modulation
are simultaneously possible. In Sec. IV we calculate the
noise spectrum in the three cases and, on this basis, we
analyze in Sec. V the transfer coefFicient between input
and output signal-to-noise ratios. The results for the op-
tical parametric oscillator are systematically compared
with the performance of the linear phase-insensitive
amplifier. Section VI summarizes the main results of the
paper.

governed by the model formulated in [11]:

a11= —yo(i Do+1)ao —(g/2)a2+2yo a(')'"',

a, = —y, (i6, + 1)ai+gai ao+2y,' a", "',
where the differentiation is made with respect to dimen-
sionless time

r:t —/(2' ),
and ~„is the round trip time of the cavity. The parame-
ters yj denote the transmission coefficients of mirror 1

(Fig. 1) for the intensity of the field j=0,1; g is the cou-
pling constant of the two-photon process (1) multiplied
by 2~&, and finally

2rR(QR —Q, )

II. THE DYNAMICAL EQUATIONS
AND THE STATIONARY SOLUTIONS

A. The dynamical model

The cavity-based parametric amplifier that we study is
presented in Fig. 1. The y nonlinear medium located in-
side the signal-ended cavity causes the parametric down-
conversion and second-harmonic generation processes:

Qp —+0&+Q&=Op and 0&+Q&~Op,

where Qz is the frequency of the cavity mode closest to
Q/. The factor 2 in the last term of Eqs. (5), (6) arises
from the fact that, the cavity is one ended.

In order to simplify Eqs. (5), (6) we introduce the nor-
malized variables:

Ao =«o/y i A
1

=—gai/(2yoyi)'"

and normalized parameters

respectively, between the quasimonochromatic fields @,,
j=0,1 of optical frequencies 0'

{in)

F1 Vp

(i )

7 —X&~Yp .
7170

(10)

8,""'=Re[a""'exp( —i Q, t )],
g'""=Re[a'""exp( iQ t)] . —

J J J

(3)

%e assume that Qp =2Q
&

and the slowly varying en-

velope approximation:

~a /a
~
&&Q

The time evolution of the amplitudes a -, j=0,1 is

6', =Re[a exp( —iQ t)],
where a is the slowly varying amplitude. The intracavi-
ty fields (2) originate from the input fields 8""', and pro-
duce the output fields 8,"""

(j=0,1):

e = ~e~exp(i1p), E &0 . (13)

B. The stationary solutions

Now we analyze the stationary solutions of Eqs. {11),
(12) by setting A, =O:

Then, Eqs. (5), (6) become

yo 'Ao=E —(1+iso)Ao —A, ,

y, 'A, =e —(1+id 1)A 1
—A

1 Ao .

Equations (11), (12) are the same as in [13], apart from
the term e describing the input for field 1. %e can safely
assume, that the input field F for the field 0 is reai and
non-negative, while e is in general complex:

{I)Q, CX

1

CL, C
I 0

O=E —(iso+ 1)Ao —A, ,

O=e (ia, +1)—A, +A,*A, .

{out,j {oug)

CLi, 0

FIG. 1. Scheme of parametric amplifier with single-ended
cavity. Mirror 2 is assumed to be completely reAecting.

A,:—[(1+6,){1+i)o)]' A, ,

Ao—:(1+6,)'/ exp[ i (P, —Po)/2]Ao, —
—

( 1 +g2)3/4( 1 +g2)1/4

Xexp[ i(P, —Po)/—2]e Xexp(iver),

E=[(l+b, )(1+5, )]'/ E

(16)

In order to reduce the number of parameters in Eqs. (14),
(15) one can introduce the notations:
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where e is real and positive and

cosP, =(1+5,) ', sing, =b,,(1+6,, ) ', (20)

so that Eqs. (14), (15) become

solve Eq. (34}with respect to e 2:

I[(1+Ii)i—E ~]2
e (I, )=

(1+Ii ) +E +2E(1+I,}cos(2y)
(35)

O=Z —e'&A, —A 2j,

O=e exp(iq&) e—'~A, + A *, Ao,

(21)

(22)

Some typical curves I, (e ) in Figs. 2(a), 2(b) show that
there is coexistence of three stationary solutions in the re-
gion

where () [e (t)]2 (e 2 ( [e (b)]2 (36)

y—= (-,' }(do+Pi } .

There are four real parameters in the set (21), (22): p, E,
e, and y. In order to reduce the difhculty of analyzing
the stationary solutions in the parameter space, we as-

sume in the following, that Po
= —P„i.e.,

In correspondence with the boundary values [e ( t) ]—:e (I'i") and [e ' '] =e (I'i ') (turning points of

=0,
which is true when

(24)

ho= —h, =b, ,

so that Eqs. (16)—(19) reduce to

A =(1+a'}'"A, A, =(1—is)A, ,

E=(1+6, )E, e =(1+6, )' (1 ib, )e exp—(ip)

and Eqs. (14), (15) become

O=E —Ao —A i,
O=e exp(ig) —A, + A ", A o .

From (27) we have

AO=E —A ),
so that, introducing the notation

/A, /'=I, ,

we have from (28)

0=e exp(itp) —A i (1+Ii)+ A i E,
O=e exp( ig) A—i (1+—Ii )+ A, E .

(25)

(26)

(27)

(29)

(30)

(31)

(32)

10

J ~2
25

The analysis of the cases q=O, m. was already done in
[14]; in the following we consider general value for g. By
solving (31), (32) with respect to A, we find

exp(iqr)( 1+I, )+exp( ig)E-
A)=e

(1+I, ) E—(33)

F(I,):—I,[(1+I,) E] —e [(1+Ii
—)

+E +2E(1+Ii )cos(2y)]=0 . (34)

from which, taking the square modulus of both sides, we
obtain the equation for I& ..

o

Ii /
I

r
lp

/
/p ~

c) ~/,

0 5 10 15

l

20 30
g2

Equation (34} is of fifth order, so it may have up to five
diferent real roots. Let us find the regions in the parame-
ter space (e,E,qr },where there is more than one real and
positive root. The simplest procedure to perform this
analysis is to fix two of the parameters and to vary the
third. If we fix, for example, E and y, it is convenient to

FIG. 2. Stationary intensity I& in the output as a function of
the input intensity e of 6eld 1. Unstable segements for y=1
and 50= —5& —=6=0.2 are indicated by broken lines. (a)

y=~/4. Curves 1, 2, 3, and 4 correspond to E=3.5, 2.5, 1.5,
0.5, respectively.
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steady-state curve) one has

(37)

Another example is obtained by fixing e and E. By
solving Eq. (34) with respect to cos(2y) we have

(I1/e )[(1+I,) F. —]'—(1+I, )2 —E 2

cos(2g) =
2E(1+I, )

B cos(2!p)

BI,
(39)

(38)

Figure 3 shows some steady-state curves as a function of
Also, for this case we find a boundary value

g ' '—=g(I I '), which corresponds to the turning point of
the steady-state curve, identified by the equation

I S!!

If

I ! I ! } ! I I ! I ! ! ! I ( ! ! l I e2

The curve p(I1) presents a peculiarity at I, =I',",
g =n/2, where the derivative does not exist. To under-
stand what happens in this case one can consider the
curve I, (e ) for!p close to 4r/2 (Fig. 4). When g~~/2
two branches of the curve approach each other and
coalesce for!p =4r/2. This feature is a consequence of the
limitation (25), and disappears for!4!,OW

As one can see from Figs. 2, 3, and 4, in the case (25)
that we consider here there is at most coexistence of three
stationary solutions. One can find [15] the boundary of
the domain of coexistence in the space of the parameters
y, e,E and the corresponding values I '&" and I ', ', by cou-
pling Eq. (34) with the equation

2 3

FIG. 4. Stationary dependence of I,{e'), when y is close to
~/2: E=1.3, p=0.49m(1), 0.499~(2), 0.4999m{3). Unstable seg-
ments for y=1 and 5=0 are indicated by broken lines.

In terms of the variable

(41)

5x —4x —6P)x +2P~x +P3 —0, (43)

Eqs. (34), (40) read

x' x4 2P, x'—+P,—x'+P, x —[3P21 P, P, ]=—0, (42)

i3F

aI1
(40) where

P, =:F. , P2:2E —e, P—
3
=E 2E e c—os(2p—) .

(44)

By multiplying Eq. (43) by x and subtracting Eq. (42)
from the result we obtain

4x —3x —4P x +P x +3P —P]P2

=(x P1)(4x —3x ——3P, +P2) =0 (45)

which, using Eq. (41), gives the non-negative solutions

(46)

I (b( —!
I
[2J1/2+( 1+4J)1/2]2/3

(47)

I ! } ! I ! 1 ! } ~ ! ! I ! 1 . I

!
!
+!!!!!

I

!
I

!.'.35 Q. 38 0.4Q Q. 42 Q. 44 O. ~~ -(b) Q. 50

FIG. 3. Stationary value of Il as a function of g for (1)
E= 1.5, e=0.5; (2) E= 1.5, e= 1; (3) E= 1.5, e= 1.5; (4) E=2,
e= 1. Unstable portions for y=-1 and 6=0 are indicated by
broken lines.

J——2+E 2 (48)

[e(t}] =e (I ',")=0 (49)

By inserting the expressions (46) and (47) into Eqs. (42)
and (41), we can find the boundary in the parameter
space. More straightforwardly, we substitute Eq. (46)
into (35}, which is equivalent to Eq. (42} and obtain the
first boundary
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for arbitrary E, y. Similarly, the second boundar
tion is convenie

oun ary equa-

Eq. (38):
'ently obtained by introducin E (47' '

ing q. ~ into

I', '/e )[(1+I' i) —E ] —(1+I'i ') E-
2E(, +I 'b

C)
I I ) I I I I

I
I I I I j

I I I )
I I I I

(51)

where I, is the functionction

(SO)

and (48). Because I &0 b defi
ction of e and E defined by E s. (47)y qs.

y efinition, we see from Eq.
, t at a necessar con

'
y dition to have coexistence of

multiple stationary solutions is that

E&1.

-{b).-
Ig

C&

CO

lI

I

I

I

On the other hand, the expressio f I ' '' no, givenb E.
(47) is always positive for E& 1. The do main of coe

f d
0

ownin i . 5i
or ifferent values of E.

'g. in the plane of variables ( )y, e

To complete the analysis of the stationar s

q. (33), and obtain
1 using

, )exp(iy)+E p( ig—)(1+I
[(1+Ii) +E +2E(1+I, )cos(2$)]'

(52)

where I, is the solution of Eq. (34); the si n "+"
g

0(I1 &E—I res ectivelpec ive y, as it follows from Eq. (33).
p ence to the turning point I 1

' inere ore, in corres ond
ig. 2 the two coalescin branchei . '

g rane es have the same intensi-

not o
ut p ases different in m. As a m tt f f

p ssible to pass from one to the h
a ero act, itis

o e ot er branch by

y g n y the intensity e of the input Geld in
obtain the transition it is

'
pu e;inorderto

nsi ion it is necessary to control also the

C)
I

-0.2

I
I
I

I la I l I I I I

I

I I . I I

D. ~ -(b)0.0
(

O. 2

FII&. . Steady-state amplitude A as
cases @=0 ( o

' '
i u e i as a function of e for the

positive F) and p=~ (negative F).
and 5 are assumed such the suc t at the entire positive-slo eP P

e are sta e, E=1.5.

plane y. This is seen clearly by considerin g

1 of A

e such that
es o 1 are real. Introoducing the variable

(53)

T

e for y=0e= —e for y=w,
one obtains the plot of A f, as a unction of e sho
Fig. 6 (see also [14]). Clearl trearly, transitions can be obtained

y y c anging the sign of e, as indicated by the ar-

Essential is to control the linear stabilit
ary solutions. For

a i i y of the station-
s. or some particular cases we ca

phcit expressions for the four ei eneig alues A, of the set of
inearized around the steady state:

1
A, = —1+ Io —4 I—

I20 —8IO I + +4I h2
1/2 ' 1/2

(54)

for yll=yi, b,o= —IS, =—6; I;(i=01 are=o, ) the stationary
or 6=0 and

tain
y —y, /yo arbitrary we ob-

I » I I I

C) 2

I I I I I I

3
e

FIG. 5. D. Domains of coexistence of three sta
'

.4(4), 2.6(5). Coexistence occurs in the re io
on the left of the curv ( j.e curve tp(e J.

n e region located

X= —1+—[1—1/y+I'
2 0

+[(1—1/y+Ii ) —8I /0
— iy ]. (55)

The four eigenvalues A, are obtained b tak
combinations of + and—an —signs in Eqs. (S4) (55 .

rry out t e stability analysis numerical-
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ly using the Routh-Hurwitz criterion [16]. The regions of
instability are indicated by broken lines in Figs. 2 —4, and
6 and in the figures below. The branch I, &I', ' of the
stationary solution is always unstable.

I. '(youp co )+yolao+ga iai=0

[ i (ypAp+ct)')+yp]ao +ga,*,a„=0
where we introduce the notations

(63)

(64)

III. AMPLIFICATION OF A WEAK
MONOCHROMATIC SIGNAL IN THE MODE 1

A. Linearized equations for a weak signal

—iin) — iin)(a
1

—{X~1 a iin) — (in)u
( (65)

and similar definitions also for a and c7 „a""",and
a",""

(j=0,1). We find from Eqs. (63), (64), that

We assume in this section that the amplitude a", "' in
the input mode 1 consists of the following contributions.
The first term a,","' is constant, and the remaining ones
represent a monochromatic "signal" of frequency co', pre-
cisely,

a(in) a(in)+ [a(in)(CO~)e ice 7—+a'iin)( ')ei~'7] (56)

g a 1 F1
ceo ico' —yo( 1+iAp)

i co' y—p(1 i b,o
—
)

Upon substitution into Eqs. (61), (62) we obtain

(66)

(67)

~' «QO, Q1, (57)

The notation a,',"'(co') is used for the amplitude of the sig-
nal -e ' ', and the notation a,"i"'(—co')—for the ampli-
tude of the signal -e' ', as it is customary for Fourier
components. On the other hand, the amplitude of mode
0 is assumed to be constant: ao'"'=—a",O'. Consistently
with Eq (7) w. e normalize all frequencies to (2ri, ) ', e.g. ,

0' = (2ra)Q— (j =0, 1) .

We assume that the signal varies slowly with respect to
the optical frequencies, i.e.,

R(co')a, —ga„a,„=2y'"a","',
Z „(co')a,„—ga,',a, =2y'"a ""'

(68)

(69)

where

R, (co')—:R *(—co') . (71)

It is convenient now to introduce two-component vectors
(in) a (out)

1 ~

8 (co'):— i co'+—y, (1+ib, ))+, , (70)
i co'+y—p(1+i bt p)

and that the signal amplitudes a,',"' (+co') are so small,
that they are amplified linearly. Hence the amplitudes a,
and a". "" (j=0,1) of the fields in the cavity and of the
output fields, respectively, have the form

a, =a, +[a„(co')e ' '+a„(—co')e' '] (j=0, 1 ),
(58)

(in) p
—(in). a (in) ~

a(out) ) —(out). a (out)
)

a, =(a„.a„),
and to write the set (68), (69) in matrix form

[M] 2y) /2 iin)

(72)

(73)

(74)

(75)

(Otlt) — ioUt)+ i (OUt)( I
)

—ICd 7
cj L sj

+aiout)(

~)etch'

7] (J 0 'I) (59)

The amplitudes a, are stationary solutions of Eqs. (5),
(6). The amplitudes a"""are related to a""', a as it fol-
lows:

where [M] is the 2 X 2 complex matrix:

R (co') —ga, i)

[M]= —ga,'o R „(co') (76)

The relations (60) give the expression for a~i'"" through
a", "' and a1.

(out ) 1/2 (in)
J J J J (60) (out ) 1/2 (in) (77)

as imposed the boundary conditions at the partially
transparent mirror of the single-ended cavity (see, e.g. ,

[17])in the high refiectivity limit.
Let us now calculate the amplification coefficient for

the small input signal of frequency co'.

In order to obtain the equations for a, (+co') we sub-

stitute Eqs. (56},(58}into the set of Eqs. (5), (6), we linear-
ize Eqs. (5), (6) with respect to a, (+co') and equate sepa-
rately the terms -e ' '. The result of this procedure is

[i (y)&) co )+yi]ai ga iao ga oa)*=2yi a","',
(61)

I. i(y)t5)+co )+y)]a)* « i o ga.oai
1 /2 —( in ) (62)Y1 + 1+

Thus, the output amplitudes of the signal field can be
found from Eqs. (72)—(77).

B. General conditions for maximum amplification
coe%cient with minimum noise

i. Maximum amplification coe+cient

Let us select the parameters of the input signal so that
we achieve maximum amplification in the output of mode
1. For that we use the fact that any arbitrary input vec-
tor (72) can be represented as a linear combination of the
eigenvectors of [M]. Thus, for given parameters of the
amplifier, maximum amplification occurs in the case,
when the input vector (72) coincides with the eigenvector
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of the matrix [M], which corresponds to appropriate ei-
genvalue. Precisely, we assume

and

t '"":—Re[a,"""exp(—i Q', r)] (86)

[M] (in) g (in) (78)

a, =(2y'~'/}&, )a '"'

and, by using Eq. (77),

a(out) (2y /g 1)a(in)

(79)

where A, is the eigenvalue which depends on co'. Hence
we obtain from Eqs. (75), (78)

&n,')""——12y t /1, —11ReI [ I a i'"'I exp( i—co'a+i {p, )

+ la 'i',"'lexp(i cow i y—, )]

Xexp( —i Q', r+i 5)],
which gives

C,()""=12y, u —11

X [( la", "'I+ la",,"'1}cos(co'r y, )—

(87)

Let us now define the phases y+ and y& as follows:

2y &/~ —I=—12y, /X —I l exp(iq»),

a ""'=la ""'Iexp(i p.),
a '"'=

I
a '"'I exp( t p t—)

'

(81)

(82)

xcos( —Qir+5)+(Ia i'"'I —la i'."'I)

X sin(co'~ —
(p, )sin( —Q', ~+5) ] .

Similarly, we obtain tn(i'"' using Eq. (56)

g(in) g(in)+ g(in)
1 cl sl

(88)

(89)
then we can represent the signal part of the output field
amplitude (59) in the form

{out)( &) ttn T+ (ollt)( &) ICit T
~sl

=12y i /~ —11[I a 'i'"'I exp( leo'r+—i {p, )

+ la ),
"' lexp(i co'~ ip, )—] exp(i5), (83)

where

to,"i"' —=Re [a,"i"'exp( i Q', r }—]
and

@'"'=—( I
a'i'"'

I + I a",,"'1)cos(co'~—y""' )

(90)

with the notations

PCd 0 Cd PC'd P Cd

2 2
+a~ (84)

Xcos( Ql'r+ '5) + ( I
a","'

I I
a",,"'

I )

X sin(co'r —
q&,'"')sin( —Q')v+5);

here the phase y,""' is

(91)

g(out) g(out)+ g(out)
T el sl

where

(85)

Now let us calculate the total output and input fields
tn()o"" and tn()'") for the mode 1. To find 8(;""we substi-
tute Eq. (83) into expression (59) for the output field am-
plitude, and we insert the result in Eq. (3). Thus, we ob-
tain

(jII) %Cd t Cd

fs (92)

By sending the output field (85) or the input field (89) into
a photodetector and making the resulting photocurrent
pass through a spectrum analyzer one can measure the
intensities I,'i'""(co') and I,'i"'(co'} of the signal com-
ponents in the input and in the output fields. They are

I'""(~')—= (@"u")'=12y i/~ —11'(-,' )[( I
a i'"'I+

I a 'i". I
)'cos'(~'~ —q, }+(la i'"'I —

I
a 'i'."'I )'sin'(~'r —

m, ) ]

I&'")(co')—= (g'")) =(—')[( la '")I+ la &'"'I } cos (co'v —qo'"))+( la &'")I —la '")I } sin (co'r —qo('") )]

(93)

(94)

Here, the bar indicates an average over fast oscillations
with optical frequency Ql.

One can see that expressions (93) and (93) are different
from each other by an immaterial phase factor (when A. is
not real, p, Atp,'")), and by the multiplier

r, (~'}—= 12y i/~ —11' (95)

r, (co') &1 if Re(A, ) &y), (96)

and that I,(co') &1 is maximum for the eigenvalue A,

which is the amplification coe%cient for the intensity of
the weak signal of frequency co' in the mode 1. This ex-
pression is the essential result of this section.

The analysis of Eq. (95) shows that

which has the minimum modulus.
The expressions (88) and (91} show, that, in general,

one modulates in a different way simultaneously two
quadrature components of the electric field.

2. Minimum noise

In the general case, when in Eq. (88) I
a 'i'"'I + la 'i',"'I, we

have modulation in two quadrature components. For
practical purposes it is not convenient to carry the infor-
mation in both components. The advantage of modulat-
ing a single quadrature is that by applying the homodyne
detection scheme one can reduce the output noise by cut-
ting away the unmodulated quadrature components.

As one can see from Eq. (91), the single quadrature
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condition can be fulfilled when the eigenvector of the ma-
trix [M] is such that let", "'l = la I',"'l, i.e., the ratio

=l~f !l/~( )l (97)

[M]a, =
a11 a12

a21 a22 ~1,

a1 :—Aa1 . (98)

By extracting the phases of the components of a1 as in

Eq. (82), we obtain the two equations:

(a» —
A, )exp(i((p„)l&(l+a,2exp( iy —

) l(T, „I=0,

a2, exp(i(p,„)la, + (a 22
—t(, )exp( iq—

(99)

Assuming that la„l&0we can write these equations in

terms of t, and 5, defined by Eqs. (97) and (84):

is equal to one. From Eq. (88) we see that also in the out-
put a single quadrature component (in fact, the same
component as in the input) is modulated. The modulated
quadrature component is identified by the value of 5
given by Eq. (84); note that this value does not depend on
the arbitrary phase factor y,'"' which affects the eigenvec-
tor of [M].

By the following procedure we indicate how the pa-
rameters of the amplifier must be selected in order to
fulfill the condition t1= 1.

Let us consider a general matrix [M]:

R(co') =y,R (co),

where

R (co)—:1+8(co) i —[co b—, , +(h, o
—yco)8(co)],

with

(107)

(108)

2lw, l'
8(co ):—

1+(b,o
—yco)2

where we used Eq. (9).
As before, we define

R, (co) =R *(—co).

(109)

(110)

where yo is the phase of A 0.

Ao =
l Aolexp(i(Ioo) (112)

As one can verify, one can find a solution of Eq. (111)
with respect to 5 only if the two following conditions are
satisfied together:

Re[R „(co)—R (co)]=0,
', R „(co)—R (co)

l

~ 2l &01 .

(113)

(114)

By inserting Eq. (107) into (105) and using Eq. (9), we
have

R (co) —R„( co)=2—il Aolsin(c((0 —25),

(a„—A, )t, +a,2e
' =0,

ai, t, +(a2z —
A, )e

' =0 .

(101)

(102)

The first condition, Eq. (113), with the explicit expres-
sions (108), (109), and (110) becomes

By eliminating A, and assuming a2(WO one arrives at the

following equation for t, :

t, —[(ai, —a22)/a2, ]e ' t, —(a(i/a~()e ' =0 .

(103)

8( —co) —8(co)=2l 3, l I [I+(bo+yco) ]

—[I+(Ao—yco) ] '] =0,
(115)

which is true if any one of the following conditions is
satisfied:

We want at least one root of Eq. (103) be equal to 1. The
requirement t, =1 gives the following conditions for
coefficients a; and the phase 5:

a e 216 a e
—2l5 a —a21 12 11 22

l~, '=0,
O=O

N=O .

(116)

(117)

(118)

C. Minimum noise and maximum amplification coefBcient
for parametric amplifier

1. Criteria for minimum noise

Let us apply the criterion (104) to the matrix (76).
With the matrix elements of (76), condition (104) becomes

(ga, oe
' —ga,*oe ' )=R(co') —R (co') . (105)

The formula (104) provides the criterion, which guaran-
tees that (T","'l =

l
a I',"' .

Note that the case (116) is verified, when a(,',"'=0 and, in
addition to the absence of the input field 8,',"', the para-
metric amplifier is below threshold, i.e.,

F. ((1+6,)(l+b()), (119)

or, equivalently [13],

l w, l'& I+a,'. (120)

Now let us examine the condition (114) for each of the
cases (116), (117), and (118). Using Eq. (108), in case
(116),R (co) becomes

It is convenient to introduce the normalized frequency

(106)

R (co):—R "'(co)=1 i

co+iso,

—

so that the condition (114) reduces to

(121)

(122)

and represent R (co') as follows: In the case (117) we have



50 SPECTRAL ANALYSIS OF THE DEGENERATE OPTICAL. . . 1635

R ((o)=R' )(o))

=1+8' )((0)+i[5) o—)[1—yp' )(cg)]], (123)

To obtain the amplification coefficient I
&

we substitute
the expression of A,2, which has a smaller absolute value
than A) into Eq. (95) and obtain

where

()(2)(~)—
1+(y(0)

(124)

r( )=

One has then

2

1 —
(

~ A() ~
b, (—)'/ ico—

(131}

so that condition (114) is again given by Eq. (122).
In the last case (118)we obtain

R ((0)=R() =—1+8()+i [b, (
—bo8o],

with

8,—= 2~ A, ~'/(1+a,'),

(125)

(126)

4(
~
A ~2 —t((2)'/2

( A 2 g2))/2]2+~2

As one can see from Eqs. (131), (132), r')"(to) & 1 when
condition (122} is true, and r')"((o)=1 for ~b, )~=(AO(,
hence Eq. (122) ensures amplification of the weak signal.
Maximum amplification

hence the restriction (114) now becomes
r(,"(~)=1+4/~2 (133)

I AOI . (127)

In conclusion, one can keep the signal in a single quadra-
ture, when one of the two conditions (116} or (117) is
satisfied together with (122), or when (118) is satisfied to-
gether with (127).

occurs for
~ Ao~ =b, )+1, which corresponds to the

threshold of the parametric amplifier in absence of the
field 8'") [13]

The phase 5 of the modulated quadrature can be found
from Eq. (102) with t, =1. The result is

2. Maximum amplification coeQcient 5=——arctan, +(po2 g2)1/2 (134)

Now let us calculate the amplification coefficient r, ((o}
and the phase 5 of the amplified quadrature for each of
the cases (116), (117),and (118).

First, consider the case (116). The two eigenvalues of
the matrix [M] are given by

where ((()o is defined by Eq. (112). Note that for 6(=0 one
has 5 =(po/'2.

Now we consider the case (117). The eigenvalues are
given by )(,» ——y)/I, +'((o), with

X)=y, X(+))(o)),
X2=y, X()"(CO),

where

A,(P((o)—:1 i(o+(—
~
A z ~

—b 1
)'

(128)

(129)

(130)

g(2)((o) —1+()(2)((o)+(
~
A ~2 g2)1/2

iso[1 ——yp"' '((o)] (135)

where 8' )((o) is given by Eq. (124). The amplification
coefBcient is

4[(~ A, ~' —a2)'"—8(2)(~)]
r, (~)= r(,"(~)=1+

+ p(2'(~) —(I A (2 g2)l/2]2+~2[1 yp(2)(~)]2 (136)

We have I () )(co) & 1 in the region

i A i & [O~( )((o)) +6
I'& ' reaches its maximum value

(137)

I

amplification coefBcient for co=0 is

4 t [ I
A 0 1'—(~1—~o8o)']'"—80]r, (0)=1+

[1+8 —[[A ['—(~ —~ 8 )']'"]' (140)

r(,"(~)=1+ 4
(138)

[1—y8' '(c))]

for
~ Ao~ =[1+8' '((o}] +5, . In the case of Eq. (138)

I 1
)(o))~~ not only with c)~0 but also for

y8' )(co}~1.The value of 5 is given by Eq. (134}also in
this case.

In the last case (118) the eigenvalues are A, ) 2—=y)A, +',
where

Ag' —=1+80+[iAoi —(b, )
—b, 8 ) ]' (139)

and are real, due to the condition (127). The

and is larger than 1 if

i Aoi &(b, )
—b,o80) +8() (141)

r)(0)~0() if
~ Ao~ approaches the value (b, )

—iI)08o)2
+(1+0~ ) .

The phase 5 of the amplified quadrature now reads

~i —~oeo5=——arctan +So '.
[~A ~2 (g g p }2]1/2

(142}
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IV. NOISE SPECTRUM IN THE SIGNAL
OUTPUT QUADRATURE

OF THE PARAMETRIC AMPLIFIER

A. The Hamiltonian and the equations for operators

+ i% (a—()
—a ())(a, —a, ) + V, + V() . (143)

Here a0 and a
&

are Bose operators; the first two terms in

Eq. (143) describe the free oscillation of the field modes 1

and 0 involved in the parametric amplification, the third
term describes the parametric biphoton interaction be-
tween modes 1 and 0, the last two terms are responsible
for the exit of photons in the cavity and for input field
through the partially transparent mirror. We suppose
that there are two monochromatic input fields of frequen-
cies 0, and 00, which are close to the cavity modes AR

„

QR0, and in exact biphotonic resonance, i.e.,

The Harniltonian for the field inside the single-ended
cavity of the parametric amplifier shown in Fig. 1 is the
following:

H =A'Q))pa pap+AQit)a )a,

2+R

«
[a, , V, ]=—y, a, +2y) "a('"), j=0, 1 . (151)

It can be verified [18] that with the choice (151) also the
third condition is satisfied provided a""', j=0,1 are Bose
operators.

Next we linearize Eqs. (148), (149), by expressing aj,
a,""', and a,". ""as sums of average and of quantum noise
parts:

(148), (149) by following a method essentially identified to
the quantum Langevin equations method developed in
[18,19].

Here, we are interested in the output field, and restrict
ourselves to the linearized analysis of quantum noise. In
this case, the explicit form for the commutators in (148),
(149) can be found from the following conditions.

(1) The expressions for [a, V". "'] must be linear with
respect to the field operators.

(2) After quantum averaging these expressions one
must obtain the correct terms in the semiclassical Eqs.
(5), (6).

(3) The output field operators must obey the Bose com-
mutation relations.

The two first conditions are satisfied, if one sets

Q) QR ) 00 QR0 00=20) (144)

The terms V, j=0,1 depend, on the Bose operators a ""'
of the input fields, and on the cavity field operators. The
equations of motion for the cavity mode operators a0, a,
are

a, =(a, )+a, ,

(in) —( (in) ) + —(in)
j
tout) (a(out) ) +a (out)
J J

The linearized equations read

(152)

(153)

(154)

ih =RQ)tpQp t A' (Q) i'X )) +[Qp Vp],
0 . g g 2

dt 2

da )
=&Qa)a) 1'&g(ap ——Q 0)(a) —a 1)+[a),V, ] .

dt

(145)

(146)

) 0 pap g+ la) 70ap+2Y0 a 0

a, = —«'y
j A&a, +gee, 0a ~

+ga,*,a0 —y, a, +2y,'"a","' (156)

Now we transform to slowly varying amplitude opera-
tors:

a =a exp( i Q t); a 1""—'=a""'exp( i Q,t);—
a """=a"""exp(—i Q, t); j =0, 1;

(147)

introducing the dimensionless time (7) one can obtain the
set of equations for the slowly varying amplitude opera-
tors a:

and will be used below for the calculations of the noise

spectrum of the parametric amplifier.

B. Equations for Fourier-component operators

Let us calculate the noise power spectrum in the out-
put quadrature of mode 1, for each of the cases con-
sidered in Sec. III.

We introduce Fourier-component operators for the
quantum electromagnetic field (c =adjoint of c):

g 27R
a() = i ypb, pap

———a, + [a(), V() ],
2

(148) c (cp'), c+ (cp') =c (
—cp'), (157)

27 R
Q) = ll')6)a) gapQ)+ . [Q), V)]

«A

where

(149)

which are obtained for time-dependent field operators c,
c by the relations

J c (0)')e '" 'dct)',

(158)

and 5, is defined by Eq. (8). The output field operators
are expressed through intracavity and input field opera-
tors by the same relation (60), which is valid for classical
mean values.

We find the explicit form of the commutators in Eqs.

+ oc' I

c ' — — c+(0) )e dc'
&2~

It is meant in Eqs. (157) and (158) that c is one of the
operators: [a ""', a """,a I, and c(ct)') is one of the
operators [ a (tp'), a""'(co'),a"""(co')]. The commutation
relations for the Fourier-component operators
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[ (in)( i) a(in)( ii)] 0

[ai~'"'(co'), a,'+'(co")]=(—,
' )5,,5(co'+co"), i,j =0, 1,

(159)
other; in particular, for a)(co), a)+ (co) we have

[i(b) —co)+1]a,(co) —Aoai+(co)=2yi '/ ai'"'(co),

follow from Bose commutation relations for the time-
dependent operators:

[a (in)(&) a (i n)(&i }]

[a,""'(r),a", "'
( ')]=(—,')5,,5(r—r'), i,j =0, 1 .

(159')

The same relations hold for the output field Fourier-
component operators a"""(co'}and a,'+""(co'). Note that
the factor ( —,

'
) in Eqs. (159), (159'), as well as the factor 2

in Eq. (170) appear because the time variable has been
normalized to 2~+ instead of ~z.

By substitution of Eq. (158}for a and a ""' into Eqs.
(155), (156) one obtains the following set of algebraic
equations for aj ( co' }:

[i (y)b 1
—co')+yi]a)(co') —ga,')ao(co'}—ga, oa)+(co')

—2yI/2a(in)( ) (160)

['(yahoo co )+yo]ao{co )+ga, )a)(co')

(165}

[ i (b—)+co)+1]a,+(co)—Aoa, (co)=2y, ' a'1'+'(co),

(166)

which gives, using notations (121),

R',"(co}a","'(co)+ A()a", +'(co)

R "'(co}R',"(co)—A()

and, with the help of Eq. (164),

R ',"(co)a","'(co)+A, a",+'(co)

(168)

In order to calculate the noise in the signal quadrature,
we introduce the output quadrature operator:

—(out) ——(out) —i5 ~ —(out)f i5a» ——a& e +a& e (169)

In terms of the normalized quantities (9}, (106} these
equations become

[i (b, ) co)+1]a)(co)——(2/y))/2A ')ao(co)

—A()a, +(co)=2y, '/ a", "'(co), (162)

[i(bo —yco)+1]a()(co)+(2y)' A, a, (co)

=2y ' 'a'0'"'(co) . (163)

The equations for a +(co) can be found from (162), (163)
using the second of relations (157). From Eq. (60) the ex-
pressions for a"""(co)are

a (out)( ) y
1/2a ( ) a (in)(

(164)
a (out)

(CO) yl/2a (CO) a (in)
(CO)j+ j j+ j+

Thus, a"""(co) can be expressed in terms of the input
Fourier-component operators a""'(co) by using Eqs. (162},
(163).

C. Noise spectrum of the parametric ampli6er below threshold

Let us calculate the noise spectrum for the case (116}.
For A)=0 Eqs. (162), (163) become independent of each

I

where 5 is the phase of the quadrature (the same that we
used previously in the paper).

Here we restrict ourselves to the case of perfect homo-
dyne photodetection, i.e., the quantum efficiency of the
photodetector is 1 and the losses in the detected beam are
negligibly small. The signal-to-noise ratio for the phase-
insensitive linear amplifier in the case of imperfect detec-
tion of the signal has been discussed in [20], [21].

For the sake of convenience in the following calcula-
tions we represent the formula for the noise spectrum
N ()sc)o(see, for example, [22], [23]) in the form

N()s)co=2 J dv'e'"'(a '""(0)a '""(r') ) (170)

where r'=ry), r is defined by Eq. (7). Because Eq.
(170),with a 'is"" given by Eq. (169), incorporates only
Bose operators, we do not demand in Eq. (170) the time
ordering [19]. Since we include in Eq. (170) the shot
noise contribution, we do not demand the normal order-
ing of Bose operators either.

The following standard procedure is applied for the
calculation of N)s( ). coWe substitute Eq. (169) into Eq.
(170):

N)S(CO) =2f dr'e '[(a (out)(())a (out)( ) )e
—2(5~ (a (out)(0)a (out)t(& ) )

+ (a (out)t(0)a (out)( i) ) + (a (out)1'(0)a (out)'f( i) ) 2ts] (171}

and we express the operators in terms of their Fourier components, for example,

( —(out)(0) —(out)( g

) ) d t d &t ltd 7' ( a (oUt) (~t )a (ou't) (~&& ) )a,
277 00

(172)
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(co )a)+
(in) ~ (in) (~~~ ) )a)+(in) ~

) (in)(~ )]+g t (~ )g

([ (in)(
) a( )(~ )])

E . (168) and calculate the» 8Next, we substitute Eq-
of coherent inputunt that in the case o ctaking into accoun

rators give zerofield normal products of fluctuation oper
contributions, e.g. ,

(in) i (in)( ~~) )(a~ is obtained by selectingMaximum squeezing is o a

exp( —2i5, )

1+co +
I
A

I
b, , +—2ib,

(180)

=5 ( co + co ) .

sin E . (168),Proceeding ~n ithis way we obtain, u
'

g q.

(n """(0)~I'""(~') )

1 +
~s —ice"r 2Acl co e p

2TT

tl 2X [2R',"(co")—Q'(co")]/IQ co

(173)

(174)

which gives

lsq
(t)

where

(0)=R "'(co)R (,"(co)—AOI (175)

Similar calculations give
' —(out)t —(out)t( i

) )(a, a&

co e leo 7 2g '4t

2 TT

X [2R "'(co") —Q(co" ) ]/I Q (co"

(
—(out)(0) —(out)t(~i

) )(a, a&

(176)

lN 7
co e

277

X
I [2R ' "(co")—Q(co" )]/Q (co" )

I

(b)

—(out)1'(0)g (out)( ~

) )

j " ' 'I2A /Q(co )I
2 TT

(174) (176)—(178) into Eq.. (171) and ob-We insert Eqs.
tain finally

N ( (s)c—:oNIs'(co)

2 2i6(co)R' ' (co)+
I col +2&.e

R ',"(co)R"'(co)—
I
A j2

or best squeezed quadrature1. Noise spectrum for es sq

tsre ort-result with the previous resu t p
db th thod 1 t l-][ ]

(179) the phase 5tq( co 0culate from Eq.
ctrum in this quad-re and the noise spec rq

rature. %At
'

h the explicit expression
has

ol

s ectrurn 1V'&,'~ cu) in the quadrature oof max-
as a function of the sta ionirnum squeezing a

6, =0; 5, =3 I'b).
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4)A, /

2i Ao i+ [(1 b—, , + [ Aoi +co ) +46 i]'

(182)

Using the expression (132) for the amplification
coefficient I',"(co) and the definitions (130) of the eigen-
values one can represent Eq. (183) in the compact form:

In the special case co=0 this coincides with the result of
[13],whereas for co%0 it is difFerent, because [13] is con-
sidered the quadrature of maximum squeezing for co=0,
while Eq. (181) gives the phase of the best squeezed quad-
rature for arbitrary frequency. Some examples of
N",,' (co) are presented in Figs. 7(a) and 7(b). Ideal squeez-

ing N'„"(co)=0 is approached at threshold
~ Ao~ =1+5,

of parametric generation. With b, ,%0 there may be max-
imum squeezing at some frequency co/0 for some value
«

I Apl —»g 7(»

2. ¹ise spectrum in the modulated quadrature

To obtain the noise spectrum for the modulated quad-
rature component we must take in Eq. (179) the phase 5
defined by Eq. (134}. The result is

4(~A ~i —g ))~
N &,

))(~)=1+
[1 ( ~

A ~2 g2)1/2]2+ 2

NI', )(~)=rI"(~)+5N")(~),
where

165)
5N"'(co) —=

~) '"(~g, 'i)(~) ~'
(184)

D. Noise spectrum for the cases 60——0 and co=0

is the extra noise, that the parametric amplifier operating
below threshold adds to the output of the mode 1. For
the case b, , =0, it follows from Eq. (184) that 5N'" =0, so
that parametric amplifier is noiseless: it does not add any
extra noise in the output of mode 1, but just amplifies the
input noise as well as the input signal. Note that in the
case b, =0, 5 coincides with 5, +n/2.

166)+-
(1+6, —~A ~

—co ) +4co
(183)

Next, we consider the case identified by the conditions
(117) and {122). By proceeding as in the first case, one
arises at the formula

Nis(co) =NPs'(co)

~2R '(co) R' (co)R— '(co)+~AO~ +2Aoe '
~

+40"' (co)~Aoe ' +R' '(co)~
(185)

where 8' '(co) is given by Eq. (124), and the phase 5 of
the signal quadrature is defined by Eq. (134).

In the case 6,=0 we obtain from Eq. (134} that
5=go/2, where po is the phase of Ao. It follows from
(185) and Eq. (123) that for the quadrature 5=tpo/2, the
spectrum N, s(co} displays maximum noise, i.e., there is
perfect antisqueezing:

41 A, l

N, s(co) =1+
[1+O(2)( ) ~

A
~

]2+ 2[1—yP(2)(~)]2

(186)
On the other hand, the quadrature 5 =(go+~)/2 corre-
sponds to maximum squeezing with a noise spectrum
given by

Nis(co)

—=N Pq(co)

[1+8~ '(co)+
i
A i] +co [1—yO"' '(co)]

(187)
Some examples of N'„'{co)are presented in Fig. 8 for
diferent values of the parameters.

More in general, by some tedious algebra the spectrum
(185) can be written in the form:

166,[1+8' '(co)] 4O~»(~)

A.+ (co)A. (co)) ~A, (co)

(188)
where A, +) and A,

' ', are given by Eq. (135), I P'(co) is
given by Eq. (136), and 8' '(co) is defined by Eq. (124).

The two last terms in Eq. (188) describe the extra noise
in the output signal. By setting 5& =0 one can approach
the case of noiseless amplification in the limit
I p'&)4O' )/~A, ' '~ . By using Eqs. (135), (136) one can
verify that the last condition is the same as

21 A, I'
O" (co)—: «

f Aoi (189)
1+(yco)

One can satisfy condition (189) for co%0, for example, by
selecting a suSciently large y, provided yen&&1, and
keeping

~ Ao ~
near unity. In this way one can make the

amplifier almost noiseless, but with a quite high
amplification coefficient, because, according to Eq. (136),
I P'(co) becomes large for b, ) =0, co close to zero and
O"'(~) «

1 Ao~ =1.
Finally, let us focus on the ease (118) assuming that

also inequality (127) is true. By following the same pro-
cedure as in the previous cases one obtains the noise at
6)—0'
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(c)

=6 =0 =0. The hase 6, of thisN' '(cu) in the best squeezed quadrature for the resonant case: sq= 0 (b) = = 1 ( ) h
' fdrature is the same for all co. The parameters are —,y ==10 =1 (a), E=10,y=, = . , y=

ters which are unstable we set XI'„'(co) =O. The quantity I, is defined as
~
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N)s(0}=
[2(A e ' +R ) —/R [+)A

/ ) +48 [A e ' +R
(/R [

—/A [ )
(190)

where Rp is given by Eq. (125), 80 is defined by Eq.
(126), and the phase 5 of the signal quadrature is given by
(142). With some algebra X,s(0) can be written in the
form:

X„(0)=r, (0)

(in)(p)) —f d& ei~Y(a (in)(0}(2 (in)(& ) )

On the other hand, by definition,

S(in) ( )

S(ont)(~) I' (o))

(197)

(198)

1+Q" 4Q"

i 0 0 (p) (p) 2 (p) 2
(A, +A, ) (A, )

(191) where I,(o)) is amplification coefficient of the signal,
given by Eq. (95). Hence we obtain

where I,(0) is defined by Eq. (140), and the eigenvalues
}(,(+), A,

( ' [which are real because of condition (127)] are
given by Eq. (139}.

As in the previous case, there are two terms of extra
noise introduced by the amplifier. The first term can be
eliminated by taking 5& =50=0, or by setting

h, =b,080 . (192)

80—= , «IAol1+b, ()

(193)

The second extra noise term is negligible, if
I'i(0) »480/(A( '), which with help of Eqs. (139), (140)
can be recast in the form

E)s(o))
TsN(o)} lio) (199)

Because any linear amplifier cannot inject more informa-
tion into the signal, but can add more noise, so that the
input signal-to-noise ratio cannot be improved [2], it
must be TsN(o)) &1. In the case TsN(o))=1, the amplifier
is noiseless, i.e., it preserves the input signal-to-noise ra-
tio.

For the case defined by Eqs. (116), (122),
TsN(o)) =—TsN(p)) can be calculated by substitution of the
noise spectrum (183) and of the amplification coefficient
(132) into Eq. (199):

Thus, in this section, we have calculated the noise spec-
trum in the signal output quadrature of the parametric
amplifier for all of the cases considered in Sec. III.

V. TRANSFER COEFP1CIKNT SET%KEN INPUT
AND OUTPUT SIGNAL-TO-NOISE RATIOS

TsN (o) }=1+
166,

I [1+(~
A ~2 g2)1/2]2+ 2] 2

166—= 1+
~X(+"(o)}~'

' (200)

To characterize quantitatively the amount of extra
noise added by the parametric amplifier into the output
signal, it is convenient to introduce the transfer
coefficient TsN(o)} between input and output signal-to-
noise ratios.

We define input and output signal-to-noise ratios
Rs('N)(o)) and RsN" (p)), respectively:

s"")(~) s'""(~)
R sN (o) }= . , R sN" (o)):—,(194)~(in)() ' Q (}

TSN(~} RSN (~)/RSN (~} ~ (195)

By taking the input quadrature operator similar to Eq.
(169)

—(in) ——(in) —i 5 i —(in)g i 5a]$ —=a] e +a/ e (196)

and taking into account that a","' is a Bose operator with
zero average in a coherent state, one has

where S ")(co), (i=0,1), and S ""(co)are the signal inten-
sities in the input and in the output, i.e., the coefficients
of the cos term in Eqs. (93) and (94), respectively; all the
quantities refer to the same quadrature component. We
define TsN(o)) as the ratio between the input and the out-
put signal-to-noise ratios:

where A(+)(co) is given by Eq. (130). The dependence of
TsN on I'," obtained by eliminating

~ Ap~ between Eqs.
(200) and (132) is presented in Fig. 9 for diff'erent values
of 6) and p). For comparison there is also the quantity
TsN for the case of the phase-insensitive linear amplifier
(calculated in the Appendix) indicated in dots. If b, )%0,
for given I &", TsN decreases with the increase of co, be-
cause when o)~ oo we have [TsN —1]-p), while, ac-
cording to Eq. (132), the amplification coefficient
[I (I) 1] ~—2

For the case, defined by Eqs. (117}and (122), we find
TsN(o))=—TsN(o)) by inserting into Eq. (199) the expres-
sions (188) and (95) with A, given by Eq. (135):

16k,,[1+8( )(co)] 48(2)(~)
T(sN (0) )=1+ +

~A,"'(m)[2 —A.'"(M)][' ~2
—

A, '"(~)[' '

(201)

Figure 10 shows the behavior of TsN as a function of
I ', ' at some fixed values of the parameters F., y =—y i/yp,
co of parametric amplifier (see Sec. I), while 60=6,=0



50I. E. PROTSENKO, L. A. LUGIATO, AND C. FABRE

I l I fi l
)

I I

! i ! t ! i l

I

I!}
10 12 14 16

20
~(2)

30 cC} 50 60

FIG. 9. Dependence of the signal-to-noise ratio transfer
coeScient » on ern

' T"' the amplification coefticient I &" in t e case
(&)~

A ) )
=0 [see Eqs. (116), (122)]. The parameters are [b, )

= ]
[6)=0.25, co=0.5] (2), [6)=0.5, co=0.5] (3), [b.) =0.5, co=0]
(4). The dependence of T» on I for the phase-insensitive linear
amplifier is shown in dots.

4Q„(p)

(2 g(Q) )2
(202)

Some plots of TsN(0) as a function of I,(0), obtained by
ting

~
A i ~

between Eqs. (202) and (140}and taking
into account Eqs. (126), (29), and (26), are shown in Fig.

and y=0. Figure 10 is obtained by eliminating
~
A ) ~

be-
tween Eqs. (201) and (136), [using the expressions (124),

parametrized by the input carrier field amplitude e of
field 1. The signal frequencies considered in Fig. 10 have
been chosen numerically to provide the minimum possi-
ble TsN for the given set of parameters. One can clearly
see, that there can be a substantial decrease in TsN wit
respect to the case of linear phase-insensitive amplifier
when the amplification coefficient is large enough. By
comparison of line 1 with line 2 in Fig. 10, one can find
that in accordance with the condition 8 ( &

~

p

(see Sec. IVD), the quantity TsN decreases rapidly with
the increase of the amplification coefficient I ' ' for lar eg
y. The behavior of TsN~ and I'& ' in the plane of parame-
ters Ii —= 2, ~, a) is presented in Figs. 11(a)—11(c). Fig-
ures 11(a), and 11(b) refer to the case where there is bista-
bility in the stationary solution, Fig. 11(c)—where there
is no bistability. The stationary solution is unstable in
the lower part of the figures separated by dotted/dashed
line.

In the last case, defined by Eqs. (118) and (12 ), we n7 we find
TsN(0) from Eqs. (199), (191), (95), and (139):

1+Op8(0) 2TsN(0) = 1+16(b )
—b,o8

FIG. 10. Dependence of TsN on I', ' for the resonant case:

of the graph in solid line corresponds to a stable stationary so lu-

tion, the part in broken line to an unstable one. The solid dot
indicates the va ues o» anh 1 f T' ' and I' ' in correspondence to the
point Il =I'&"' (see Fig. 2). The dependence of TsN on I for the

{line 2).

12 in comparison with the result valid for the linear
phase-insensitive amplifier.

One can represent Eqs. (200)—(202) by one simple ex-
pression

A, +(co)+A, ' (co)
TsN(co)=1+8P(h„b )

where P (Q Q ) =Q for the cases (116), (117), and
theP 5 b, )=(b.)

—6080) for the case (118); A. +(co) are t e
1& 0

respective eigenvalues normalized to y).

VI. CONCLUSION

We have analyzed the optical parametric oscillator
with two inpu e s

'
t fi ld in its semiclassical and quantum as-

pects. We have considered both linear and nonlinear re-

gimes, including pump depletion in our description.
ed that this cavity-based phase-sensitive

amplifier is noiseless for all frequencies w en e o
nditions are simultaneously satisfied:ing con i

field with fre-(1) The stationary part of the driving field w

quency 0 vanishes.
rivin field of fre-(2) The intensity of the stationary driving fie o re-

quency 20 is suc, ah th t the parametric oscillator is below
threshold.

eld of fre uen-(3) The cavity is on resonance with the field o requen-

cy B.
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When the input intensities are increased with respect to
the conditions defined by (l) and (2), the performance of
the system is degraded, but still there are extended ranges
of the control parameters, in which the behavior with
respect to the signal-to-noise ratio remains definitely
better than in the phase-insensitive linear amplifier. Two
especially interesting cases are

(i) when the input field of frequency 2Q is resonant with

the cavity',

(ii) when the modulation frequency co' is much smaller
than all relaxation rates of the system.

We finish the paper with two remarks.
(a) There are situations in which the signal modulation

is a pure amplitude modulation; for example, when con-
ditions (l) and (3) are satisfied, but (2) is not, and the cavi-
ty is in resonance also with the field of frequency 20. In
this case, it is not necessary to use a homodyne detection
and one can consider the total intensity of the modulated
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FIG. 11. Lines of constant I
&

' (solid lines) and constant TzN (dashed lines) in the lane ofFIG. 11. ' ' n sN as e ines in t e plane of parazneters {I„~}for the resonant case:
wi y=, or = .5, y=5 (a); E=2.5, @=10(b); E=0.75, y=I (c). For the solid lines I' '=1

or e as e ines T»=1.05 (line 1), 1.1 (line 2), 1.2 (line 3), 1.4 (line 4) 1.6 (line 5 1.
6), 2 (line 7). The unstable regions (if any) are located below the dashed/dotted line
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+ST
(o) a small signal [as the one given by Eq. (56) with a,'&"'=0].

The optical frequency of the input field is in exact reso-
nance with the cavity mode.

The amplification coefficient I is given, for example,
by the formula (4.11) of Ref. [20]. For the case of the
single-ended cavity and in terms of the frequency co' nor-
malized to the double round-trip time 2v.z this formula
can be represented as

(co') +y (1+C) 4y C
(co') +y (1—C) (to') +y (1—C)

(Al)

FIG. 12. Dependence of TsN on I for zero frequency under
condition (127). The values of the parameters are y=0, y =1;
6p= 6& =0 E=c.1 (curve 1), E=0.4 (curve 2), E=0.6 (curve 3),
E=1.2 (curve 4), b,p= —6&=0.4. E=1.2 (curve 5). The depen-
dence of TsN on I for the phase-insensitive linear amplifier is
shown by the dotted line, the value TsN =1 is indicated by the
broken line.

5u(r) = —y(1 —C)5a(r)+2y(C)' g(r), (A2)

where the correlation functions for the Langevin force
g(r) are

(A3)

where y is the field intensity transitivity coefficient of the
semitransparent mirror, C is the normalized pump pa-
rameter.

Now we calculate the noise in an output quadrature on
the basis of Ref. [25]. Let 5a be the fluctuation of the in-
tracavity mode caused by quantum noise; the Langevin
equation for 5a is

signal and the noise in the total ir. tensity of the field A.
(b) The approach that we devised in this paper, by

defining the maximum amplification, minimum noise con-
ditions, is general and can be applied to other cavity-
based phase-sensitive amplifiers different from the optical
parametric oscillator. This will be done in subsequent
work.

5as(r)=5a(r)e' s+5a*( r)e (A4)

The noise spectrum E(to') for the quadrature of the out-
put field is given by the formula

and the factor 2 in the last term in Eq. (A2) refiects the
fact that the cavity is single ended. The fluctuation 5as
of the field quadrature is given by
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APPENDIX: THE FUNCTION T (I )
FOR THE LINEAR PHASE-INSENSITIVE AMPLIFIER

where unity is the shot noise contribution and

S(co') = I dr e'"'(5a (0)5a (r) ) . (A6)

We calculate the Fourier components of 5a(r) from Eq.
(A2), substitute the Fourier decomposition of 5a(r) in
Eqs. (A4), (A6) taking into account the relations (A3); the
result is

S( ')= 8 C
(to') +y (1—C)

By combining Eqs. (A5), (A7), (Al), and (199) we finally
obtain TsN(I ) for the linear phase-insensitive amplifier

As an example of linear phase-insensitive amplifie we
consider the single-ended cavity laser operated below
threshold. We suppose that the input field contains only The relation (A8) is true for any frequency.
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