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Selective reflection from a vapor of three-level atoms
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We study internal selective reAection from a dielectric-vapor interface, where three levels of the vapor
atoms in a A configuration are connected by two light frequencies. The reflectivity contains then both a
sub-Doppler structure due to spatial dispersion in the boundary layer and the dark resonance arising
from coherent population trapping. We derive analytical expressions for the reflectivity of either one of
the two light beams. The contributions from atoms approaching or leaving the interface are strongly
different, whereas they are identical for the case of two-state atoms.

PACS number(s): 32.80.—t, 42.50.—p, 34.90.+q

I. INTRODUCTION

Selective reflection of light from the interface between
a transparent dielectric and a dilute vapor is caused by
the atoms in a thin layer of a few wavelengths near the
boundary. When an atom collides with the surface, its
internal state is modified and it is generally assumed that
it is completely deexcited. The transient behavior of
atoms leaving the surface after a collision gives rise to a
sub-Doppler structure in the frequency-dependent
reflection coefficient [1—3]. For the special case of two-
state atoms, this structure has been described theoretical-
ly both at low intensity [4] and in the presence of satura-
tion [5,6]. Also the reflection of a weak probe signal in
the presence of a stronger pump beam has been studied
with various angles of incidence, both experimentally [7]
and theoretically [8]. Then Doppler-free structures arise,
which are a combination of the effects of the transient
behavior of atoms leaving the surface and of nonlinear
spectroscopic effects. This Doppler-free technique of
selective reflection can be applied to study the atom-wall
interactions [9,10].

Situations in which more than two atomic transitions
are excited offer an attractive extension of previous work,
since they bring in new independent time scales. For a
A-type transition, the additional time scales are deter-
mined by the rate of optical pumping and by the relaxa-
tion rate of the lower states. Recently, selective reflection
was studied theoretically in the case of a three-state atom
with cascade-type excitation [11]. Dark resonances, aris-
ing from destructive interference between two excitations
have also been observed in selective reflection [12]. In
this work, the resonances appeared against a Doppler-
broadened background at incidence angles of about 16'.
The effect of the transient behavior is not very pro-
nounced at these angles.

The present paper is a theoretical study of reflection by
a vapor of three-state atoms, driven by two light beams in
a A configuration. The atomic model and the beam
geometry are sketched in Fig. 1. We evaluate the

reflection of the light beams. The effect of the transient
regime is combined with the effects of coherent popula-
tion trapping. In particular, we compare the contribu-
tion to the reflection coe%cient from the atoms with posi-
tive and negative values of the velocity component nor-
mal to the surface. In the special case of two-state atoms
and in the absence of saturation, these contributions are
known to be identical [6,13]. Reflection studies of the
dark resonances have the advantage that they can be per-
formed also in optically dense systems.

II. GENERAL EXPRESSIONS FOR REFLECTIVITY

For later use and in order to fix the notation, we sum-
marize some general expressions for the reflectivity of a
light beam normally incident on the interface between a
dielectric and a vapor. The dilute atomic vapor fills the
half space z)0 and the opposite half space with z(0
consists of a dielectric with refractive index n. A light
beam with frequency co, incident on the interface, is
reflected back into the dielectric. We do not make any
restrictive assumptions as to the number of atomic levels
and we allow for the presence of other light fields driving
atomic transitions. The reflectivity of the light beam un-
der consideration is determined by the dielectric polariza-
tion P that the transmitted light beam induces in the va-

vapor

dielectric

FIG. 1. Geometry of the dielectric and the vapor with two

light beams at normal incidence. Also shown is the level

scheme of the vapor atoms, driven by the two transmitted
beams.
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P(z, t ) =2 ReP, (z}e'"' (2.1)

with P& a z-dependent amplitude. This dielectric polar-
ization is induced by the transmitted electric field, which
for z & 0 takes the form

E(z t ) =2 ReE e'"' (2.2)

This transmitted field arises from an incident field in the
dielectric, described by the amplitude

E;=(n+1)E,/2n . (2.3)

por. At normal incidence, P is independent of x and y,
and we may write

that an atom has time to reach its internal steady state in
between two velocity-changing collisions. Then the
atoms with negative velocity, which are approaching the
surface, will be in their internal steady state, so that their
optical coherences are independent of z. The correspond-
ing contribution to p&(z, v) is thus equal to p, (v ). In con-
trast, the atoms with a positive velocity v have just left
the surface and they need a transient time before reach-
ing their steady state. When the internal density matrix
immediately after leaving the surface at z=0 is known,
the value of p, (z, v) is determined by the optical Bloch
equations valid for the specific atomic model.

The Laplace transform is denoted as

The reflected field back into the dielectric has the ampli-
tude [6]

p, (s, v}=f dze "p,(z, v} .
0

(2.9)

n 1 1 )k Then Eq. (2.5}can be expressed as
(2.4)

The first term on the right-hand side of (2.4) represents
the reflected field in the absence of the vapor and the
second term gives the contribution to the reflection due
to the dielectric polarization. We may assume that the
polarization P, is parallel to the field E&. Then, slightly
generalizing the treatment in Ref. [6], we can express the
integral in (2.4) as

I',k
P& z:TE]

co
(2.5)

where the dimensionless quantity T determines the con-
tribution of the vapor to the reflectivity. Notice that in
the intensity region where the response of the vapor to
the field E, is linear, T does not depend on the intensity.
With (2.3) and (2.5) the reflected field (2.4) may be put in
the form

n —1
(2.6)

n —1

n+1 1+
z

ReT
n —1

(2.7)

It is useful to note that 1 —T has the physical significance
of the complex refractive index of the vapor [6,8].

For a dilute vapor, the dielectric polarization is ex-
pressed in terms of the dipole moment of the individual
atoms in the vapor. These atomic dipole moments de-
pend on the velocity component v of the atoms in the z
direction and on the distance z to the surface. Hence we
write

The intensity reflection coefficient R = ~E„~ /~E; ~
to first

order in the vapor density is equal to

III. ATOMIC MODEL SYSTEM

We consider the model system sketched in Fig. 1. The
active atoms have a single upper state ~0 ), which is cou-
pled by two monochromatic light fields to the lower
states ~1) and ~2). The light beams at frequencies co, and

~z are incident normally to the interface at z =0 between
the dielectric and the vapor. The two fields give the two
Rabi frequencies 0& and Qz, which may be assumed to be
real. We introduce the density matrix p(z, v, t), which
describes both the distribution over the internal states,
over the z component v of the velocity, and over the posi-
tion. For instance, poo(z, v, t )dv is the density of atoms in

the excited state ~0), with velocity between v and v+dv,
at a distance z from the interface. The standard transfor-
mation to a rotating frame is performed if we introduce
the density matrix o. by

lk&Z le&t
P01 ~01e

lk2Z l ~2t
Poz=o oze 7

1 2 1 2i(k —k )z—i(co —co )t

(3.1)

TE&= v 8 —v p, v
2co

+e(v)( 2ik—)p, ( —2ik, v )], (2.10)

where e denotes the Heaviside step function. This result
generalizes an expression derived before for two-state
atoms [6]. Hence the explicit evaluation of the reflection
coeScient requires only the Laplace transform of the
density matrix for positive velocities and the steady-state
density matrix of the atoms at negative velocities.

P, (z) =N fdvp, (z, v }, (2.8) The two Doppler-shifted detunings from resonance are
introduced by

where N is the density of active atoms and Np&(z, v )dv is
the contribution to P, (z) from the atoms with velocity be-
tween v and v+dv. We assume that the rate of velocity-
changing collisions is small compared with the Doppler
width and with the internal relaxation rate. This implies

6]=5] k/U, kz=kz kzU (3.2}

with hi=~i ~oi and 4z=~z uoz. Then the equations
of motion for the populations are given by
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Do = —I a +—Q, (o, —o, )+——(cr —o ), atoms leave the surface with only the two lower states
populated, so that for U )0 one may take

Doll =I lapp+
2

Ql(apl alp) —'f (all a22» (3.3) cr»(O, U)=n, W(u), ozz(O, v)=nzW(u), (3.10)

Da =I o+. Q—(a o—)+ ,'f(o—„—o ),
the other matrix elements being zero. Normalization re-
quires that

and the coherences obey the equations n)+n2 —1 (3.1 1)

Dcrll, = —(yl —ill)alll+ —Q, (o „—crpp)+ —Qzoz, ,
Then &(s,v) is determined by the set of algebraic equa-
tions

l
a02 (y2 ~2)apz+ Q2(a22 app)+ Qla12 r

2 2

Do 2, =i (b, ,
—bz)az, +—(Qzo0, —Q, o 20)

—f 'o
2, .

(3.4)

us& = —r& +—Q, (&„—&„)+—Q,(&„—&„),l E

us& „un 1
W(u—) = I 1&00+—Ql(&111

—& 10)
l

—zf(&11—&zz»
Here D denotes the total derivative

8D= —+U
Bt c)z

and

I =r, +r,

(3.5)

(3.6)

l
Us&22 Unz W( U) =1 2&pp+ Qz(&pz &zp)

2

+ lf(&11—&22»

us &01 ( Y 1
—ih, )&0,+—Q, (&, 1

—&00)+—Qz&

(3.12)

is the total decay rate of the excited state to the two
lower states. The decay rates of the optical coherences
are y, and yz, and the rates f and f' describe the relaxa-
tion of the lower-state populations and coherences. Since
the evolution operator for a does not depend on time, 0.

approaches a constant value in the steady state.
The reAection of beam 1 is determined by the velocity-

dependent dipole density

pl(Z, V ) =plpapl(z, U ) (3.7)

with p the dipole vector operator. This dipole density
determines the quantity T, according to (2.10)—(2.12),
and thereby the reflectivity (2.7). Likewise, the
reAectivity of beam 2 is determined by the dipole density
pz(z, v), which obeys an equation similar to (3.7). Obvi-
ously, the states

~
1) and ~2) play a fully symmetric role

in the problem, so that it is suScient to discuss explicitly
the reAection of beam 1 only. Expressions pertaining to
beam 2 are obtained by simply interchanging the indices
1 and 2.

As explained in Sec. II, the dipole density p& for nega-
tive values of U is determined by the internal steady state.
This state is obtained by setting the right-hand side of
Eqs. (3.3) and (3.4) equal to zero. The resulting solution
o (u ) does not depend on the position z. It must be nor-
malized to the Maxwell distribution W(z), so that

us&02 ( Y2 ~2)&02+ 2(&22 &00) 1&12 '
2 2

e

&21 l(~1 ~2)&21+ (Q2&01 Ql&20) f &21
2

The equations for the matrix elements o', o, 0'2O, and o'&2

follow by taking the complex conjugate of the last three
equations of (3.12), for real values of s. Analytic con-
tinuation to complex values of s (with Res ~0) can be
performed in the final results.

IV. EVALUATION OF THE DENSITY MATRIX

A. Positive velocities

We want to extract from the set of equations (3.12) an
expression for the optical coherence &o&, which allows
direct numerical computation. The last three equations
of (3.12) and their complex conjugates can be used to ex-
press the coherences in terms of the populations, with the
result

&21 gQ1Q2Q+ ~P1 —(&11 &00)+P2+(&22 &00)1

(4. 1)

Tro = W(u) . (3.8)
&01=—Q1P1 —I(1—

4 QzQ+
2

The Laplace transform of the dipole density for posi-
tive velocity u follows from the equality

,'QzQ+ Pz+ (o zz
——o—00)j, (4.2)

p 1(s u ) =p 10&01(s u ) (3.9)
&20 Q2P2+ [(1 4Q1Q+P2+ )(&22 &00)

with o' the Laplace transform of the density matrix. The
equations determining o are obtained by taking the La-
place transform of Eqs. (3.3) and (3.4), while omitting the
time derivatives. We adopt the usual assumption that

—Q1Q+ P 1 —( &11 &00) I .

We introduced the quantities

P;+=(us+y, +id, , )
' for i=1,2, -

(4.3)

(4.4)
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Q~ = [vs+ f'+i(b )
—bz)+ —,'Q |P2~+ ,'Q—2P)p ]

(4.5}

+—,'Q|P, [1—
—,'Q2P, Q+ ],

Wz = ,'Q2P2~—[1 ,' Q (P—z+—Q+]

+—,
' Q2P2 [1 ,' Q,P—

2 —Q ],
U= —,', Q)Q2(P(+Pz Q +P) Pz+Q+ } .

(4.6)

(4.7}

(4.8)

Eliminating &pp by using the normalization leads to linear
equations for &» and &zz,

The other coherences follow from these expressions after
interchanging the labels 1 and 2. Note that at this inter-
change, Q+ changes into Q . A set of coupled equations
for populations only follow if we substitute (4.1)—(4.3)
into the second and third equations of (3.12},while intro-
ducing the abbreviations

W, =
—,'Q, P, + [1—

—,'Q2P)+Q ]

state
~

1 ). Then we obtain

&pi(s, v )= 1 i—Q, n, W(u) .
s(sv+y, i—b, &) 2

(4.14)

This result should give a reasonable approximation for
the contribution T+ of the atoms with positive velocity
to the reflectivity of beam 1, at moderate values of the in-

tensity. Then this contribution is basically the same as in
the case of two-state atoms [6]. Physically, this means
that the reflection occurs in a narrow region near the
boundary, where the atoms departing from the surface
have had no time to experience coupling between their
two lower states. We shall present a numerical test of
this approximation in Sec. V.

B. Negative velocities

Atoms at negative velocities, which are approaching
the surface, can be supposed to have reached their sta-
tionary internal state. Therefore, we may write

X)&||—Y)o 22=M), Xz&22 —Yz&||=M2, (4.9)
o(z, v)=o(u) (4.15)

with

X, =us+r;+2W, + ,' f U, ——
Y; = ,'f+2U I—';—W;,—

(4.10)

(4.11) o ( u ) = lims o (s, v ),
s&0

(4.16)

for v &0. This velocity-dependent density matrix can be
obtained by taking the formal limit of the Laplace trans-
form

M, = un;+ —(I';+ Wi
—U) W(u) .1

(4.12)

1 ~, z —z'
op, (z, u ) —=— dz'exp — (y, i 5,)—

U 0 U

Explicit expressions for the populations &pp, &», and o 22

follow immediately, which can be used to evaluate the
optical coherence &p& by (4.2}. Since the expression is a
bit lengthy, we do not write it out explicitly.

Equations (4.2) and (4.10)—(4.12) can be used directly
for a numerical evaluation of the reflectivity of beam 1.
One notices that if s would be real, the quantities W; and
U would be real as well, and so would be the Laplace-
transformed populations &» and &zz. However, we recall
that according to Eq. (2.10), the refiectivity depends on
the density matrix o (s) with s = 2ik At thi—s ima. ginary
value of s, o» and &22 are complex.

It is important to note that for large values of s, the La-
place transformed coherence o'0& can be approximated by
a very simple expression, which is based on the limiting
behavior of o.0, for small times after a collision with the
surface. When v/z is large compared with the rates of re-
laxation and of absorption in the state ~1), the value of
o p, (z, v ) is well approximated by

or it can be derived by setting the right-hand sides of (3.3)
equal to zero. The calculation is just a simplified version
of the evaluation of the Laplace transform o . The coher-
ences can be expressed in the populations in a way very
similar to Eqs. (4.1)—(4.3), the main difFerence being that
one has to substitute s=0. The quantities P;z and Q+
are then replaced by

p, +=(y, Rib; )
' for i =1,2,

q~ =[f'+i(E)—bz)+ —,'Qlpz~+ —,'Qzp)p ]

(4.17a)

(4.17b}

QIQ2(p 1+Pz 0 —+Pl P2+—0+)—2 2 (4.20)

in analogy to (4.6}—(4.8). In terms of these quantities, the
excited-state population in the steady state is

o pp(u) =—[—,
' f(w, +wz —2u }+w, wz —u ]W(u) (4.21)

Likewise, we introduce the simplified real quantities

w) = ~QIP)+ [1 ~Qzp)+g ]+~Qtp) [1 4Qzp) g+ ],

(4.18)

2 Q2P 2+ [ Q 1P2+ I + ]+ Q2P 2- [
—

—.
' Q jp 2- I- ]

(4.19}

X Q,n, W(v—},l
(4.13}

and the two population differences that determine the
coherence o.

0& are

since only the matrix element o»(0, v) serves as a source
for op, [see the first Equation of (3.4)]. This leads to a
good approximation of the Laplace transform op, (s, u)
when sv is large compared with the rate of depletion of

-„( ) ——
( )=—[-,'fr+r, +r, , ]w( ),

p„(u)—p (u)= —[,fr+r, u+r, w, ]W(u) .1

(4.22)

(4.23)
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We introduced the denominator

K =
—,
' f(2I +3w, +3w2 —6u )

+t,w2+I 2m, +I u+w, w2
—3u (4.24)

Finally, the optical coherence determining the reflection
of beam 1 by the atoms with negative velocity is

X W(v) . (4.25)

Both the excited-state population (4.21) and the optical
coherences vanish exactly at the Raman resonance condi-
tion b, , =A2, provided that the ground-state relaxation
rates f and f' are negligible. This is the well-known dark
resonance, which arises due to destructive interference of
the two excitation paths [14). The atom is then in a pure
state -Q2~1 }—Q, ~2 }.The occurrence of this dark reso-
nance is easily checked in (4.21) and (4.25) if one uses the
identities

q+ =[f' ~'(&, 5, )+—-4Q'y—,+ ]q+, (4.26)

w, =
[ —,'Qfp, + [f'+i(h& —b2)]q +c.c. I+Q, Q2 u,

(4.27)

w2=[ —,'Q/2+[f' —i(E, —b2)]q++c c ]+Q.2Q. ] u .

(4.28)

o o, (v) = Quv, [(1—
—,'Q@& q+ )( —,

' fI + I 2u+ I,w2)2K
—

—,
'

Q2p 2+ q+ ( —,
' fI'+ I,u + I 2w, ) ]

0.02
(a)

-0.02

-0.04—

In Fig. 2 we plot P+ as a function of the detuning
4&/kUo of beam 1 from resonance, for various values of
the Rabi frequencies 0,=02, and we compare the result
with the approximate result based on (4.14). The fre-

quency ~2 of the second field is on resonance. Only the
sub-Doppler structure near resonance is shown. It is no-
ticed that the approximation (4.14) is quite good for Rabi
frequencies that are not larger than the homogeneous
widths I ]=I 2. This means that the contribution from
the departing atoms to the reflection of beam 1 deviates
only slightly from the situation of a vapor of two-state
atoms. Only when co& is very close to resonance does a
discrepancy arise. This discrepancy displays the onset of
optical pumping in the boundary layer where the
reflection originates. When the Rabi frequencies are
larger than the decay rates I, and I 2, the deviation is ap-

Hence, when f ' is neglected, under the Raman condition
b, ,

= b,2 one finds that w, /u =u /w 2
=Q f /Q22. -0.5 0 0.5

V. NUMERICAL RESULTS

The reflectivity 8 is expressed in terms of the real part
of T by (2.7). By using Eqs. (3.7) and (3.9), we find from
(2.10) the result

0.1

1VRQ)ReT=-
2I )

(5.1)

with I, =2eo~E,
~

the intensity of the transmitted field.
The quantity

(5.2) -0.2

is the sum of the real dimensionless quantities P+ and

, defined by

/+ =Ref dv( 2ik)&o&( 2ik—, v ), —

=Ref dv cr»(v) . (5.3)

These integrated optical coherences represent the contri-
bution to the reflectivity from atoms with positive and
negative velocities. The behavior of P+ and P as a func-
tion of 6& are represented in Figs. 2 —4 in a few cases.
The decay rates I &=I 2 are taken to be equal to one-
tenth of the Doppler width kUO, so that the total
linewidths are dominated by Doppler broadening.

-03 ——————
-1 -0.5 0 0.5

FIG. 2. Plot of the quantity P+, as a function of b, , /kv„, for
various values of the two Rabi frequencies. This quantity deter-
mines the contribution of the atoms with positive velocity
(departing from the interface) to the reAectivity of beam 1. The
ground-state relaxation rates f and f' and the detuning b, 2 are
taken zero, and the decay rates I,= I &=0.1kuo. The solid lines

indicate the approximation (4.14) and the circles represent exact
calculations. The two Rabi frequencies 01=02 =0 are (a)

0=0. 1kU o and (b) A =0.5ku o.
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quency. The structure is richer in the case of red detun-

ing, where the fields are resonant for the atoms approach-
ing the interface. This frequency-dependent shape of the
dark resonance in selective re6ection has recently been
observed [15].

preciable within the Doppler width.
In Fig. 3 the e6'ect of the ground-state relaxation rates

f and f' for low intensities is demonstrated. The solid
lines represent the contribution P of the atoms with
negative velocity and the circles indicate the total P. The
complementary contribution P+ from the atoms with
positive velocity can be read o8' by taking the difference

resonance at the Raman condition h&=62, with a width
d termined by the Rabi frequencies. This dark resonancee erm'

is not visible in the complementary contribution q +.
very small value of the relaxation rates f and f' already
gives an appreciable broadening of the dark resonance.

Figure 4 displays the behavior of P and the total P for
large values of the detuning Az. Both for a strong blue
and a strong red detuning the contributions from the ar-
riving and the departing atoms are comparable in magni-
tude. But only the contribution P displays narrow
structures, which correspond to the dark resonance. e. The
shape of the resonance depends significantly on the fre-

VI. CONCLUSIQN

The general conclusion is that for these three-state
atoms there is a strong difference between the contribu-
tion from arriving and departing atoms to the reflection.
Nevertheless, these contributions have a similar magni-
tude in general. Recall that for two-state atoms and a
weak field these contributions are equal. For moderate
intensities, the reflectivity arising from the departing
atoms is the same as for two-state atoms, except at the
very center of the sub-Doppler structure. The dark reso-
nance, which occurs for b, , =62, is appreciably only in

0.08
00

0
(a)0

0
0
0 0

0
0
0
0
0
0

0.06-
-0.01

0.04
-0.02-

0.02
0
00-0.03-

0
0

0
000

-0.04—

I

-0.6
I

-0.8
I

1.2-1.4
I

0.005-0.005
-0.05

-0.01

-0.01

-0.01-
-0.02

-0.02-

0 O

-0.03-
0 0

0
0

0 0

-0.03-
00
0
0

-0.04

I

1.4
I

1.20.8
-0.04

0.04

5,/kvs

I

0.02
I

-0.02
-0.05 I

-0.04

FIG. 4. Plot of the quantity P and of P, as a function of
5&/kvp, for large detuning 62 and vanishing ground-state relax-
ation rates f and f'. The Rabi frequencies are 0& =0&=0.1kvo.
(a) Red detuning 62= —kup and (b) blue detuning 42= kUp ~ The
solid line gives P and the circles represent P.

FIG. 3. Plot of the quantity $0 and of P, as a function of
EI/kup, vnth or vrithout ground-state relaxation. The various
parameters are 62 =0, 0&=0.02kup, and 0,=0.04kvp. (a)
f=f'=0, and (b) f=f'=0.002kvo. The solid line gives P
and the circles represent P.

SELECTIVE REFLECTION FROM A VAPOR OF THREE-LEVEL ATOMS
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the contribution from the arriving atoms. Its strength is
very sensitive to the relaxation of the ground state, which
can arise both from transient e6'ects and from collisions.
Furthermore, the shape of the resonance in reflection de-
pends strongly on the frequency of the light fields.
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