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We consider radiation trapping in a plane-parallel slab with specularly reflecting boundaries. The
reflection coefficient of the walls can be different at the two sides of the slab, and may depend on the an-

gle and frequency of the radiation. We derive a closed-form Green s function, and give an efficient

method for its evaluation. We show that, in most cases, higher-order modes have practically no

influence on the temporal behavior of the emergent radiation when the reflection coefficients at both
walls are high, but that they are important when only one wall is highly reflecting. We also investigate

the difference between diffuse and specular reflection. For center-of-line opacities koL exceeding 0.5, the
difference in the lowest-order trapping factor is quite small (less than 3% for Doppler line shapes and

less than 6% for Lorentzian shapes). Trapping calculations can therefore be simplified by using the for-
mulas for specular instead of diffuse reflection.

PACS number(s): 32.50.+d

I. INTRODUCTION

Resonance radiation is emitted by excited atoms when
they radiatively decay to the ground state. In an atomic
vapor cell, these atoms are surrounded by atoms of the
same kind, so that the radiation can be absorbed and
reemitted many times before it reaches the boundaries of
the vapor cell. This effect is known as "imprisonment of
resonance radiation" or "radiation trapping" [1]. It leads
to an increase in the apparent lifetime of the excited
atoms and distorts the spectral line shape of the emergent
radiation. Analysis of radiation trapping is thus of im-
portance in chemical physics, spectroscopy [2], and
atomic line filters [3]. Mathematically, radiation trap-
ping is described by the Holstein equation [4], a rate
equation for the density of the excited-state atoms.

In the study of radiation trapping, the most important
geometry is the plane-parallel slab (also known as the
infinite slab), extending infinitely in the x and y directions
and from L /2 to L/—2 in the z direction. The slab often
is a good approximation for actual vapor cells [5] and the
geometry treated most frequently in the literature. Dur-
ing the past 30 years, there have been a number of papers
that considered trapping in a slab with partially reflecting
walls. The first such work was done by Weinstein [6],
who considered diffusely reflecting walls with the same
reflection coefficients at both walls. In 1964, Tkachuk [7]
gave the Holstein equation for a slab with specularly
reflecting walls, also with the same reflection coefficient
at both walls. However, this important contribution
remained largely unnoticed; later papers again assumed
diffusely reflecting walls, although they are of less practi-
cal importance. In Ref. [8,9], Weinstein's results were
evaluated numerically.

Recently, Colbert and Wexler [10] generalized
Weinstein's results and derived an equation for the case
that the (diffuse) reflection coefficients of the slab walls
are different (nonuniform). Their work stimulated us to

complete the picture by generalizing Tkachuk's results on
specularly reflecting walls to nonuniform wall
reflectivities, i.e., we give the Holstein equation for specu-
larly rejecting walls where the reflection coefficients at
the two walls are different, and can depend on angle and
frequency. We furthermore give a method for the
efficient evaluation of this Holstein equation and compare
the results for diffusely and specularly reflecting walls.

II. THEORY

Qn(z t) 1 1 t.rz
n(z, t)+—— n (z', t)G(z, z')dz',

Bt v. ~ —L /2

where n is the excited-state density, ~ is the natural life-
time of the excited-state atoms, and the Green's function
G(z, z') is the probability that a photon emitted at z' is
reabsorbed at z. Solutions of Eq. (1) are of the form

n(z, t)=pa. % (z)exp
1 gj7

(2)

where the f, are the eigenmode. s, g, the associated trap-

We will see below that the effective size of a cell with

reflecting walls (reflection coefficient R) is L/(1 —R). The con-
dition for the validity of (i) is thus L /(1 —R) &(~c.

For the derivation of the Holstein equation, we make
the following simplifying assumptions: (i} the flight time
of the photons is much shorter than the natural lifetime v.

of the excited-state atoms, (ii) complete frequency redis-
tribution is valid, (iii) the distribution of ground-state
atoms is homogeneous, (iv) no saturation effects occur, (v)

particle diffusion is negligible, and (vi} we have a two-
level atom. These assumptions are discussed in Refs. [5]
and [10]and are often fulfilled in laboratory situations. '

With these assumptions, the Holstein equation reads
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ping factors, and aj- the expansion coefficients of the ini-
tial distribution into the eigenmodes. Equation (2)
expresses the fact that an initial distribution of excited
atoms n (z, 0) can be expanded into eigenmodes that in-
dependently decay with individual exponential time con-
stants that are each eigenmode's trapping factor times the
natural lifetime of the excited state.

In the case of completely transparent boundaries of the
vapor cell, G(z, z') is [11]

G"'""(~z—z ~)

ko ~ ~ k (x)=C„exp —ko z —z' k x u

Xdx du,

where ko is the line-center absorption coefficient, k (x) is
the line shape, x is the normalized frequency, and
C„=l/ jk(x)dx. The angle integration is performed
over u, where u =1/~cos8~ and 8 is the angle between
the z axis and the photon Right direction. The problem
now lies in finding the Green's function for reAecting
boundaries.

We assume quite general boundary conditions: the
I

reflection coefficients R+ and R (at L/2 and L—/2,
respectively) can depend on angle and frequency,
R+ =R+(x, u) and R =R (x, u). We note that u is
not changed by a specular reflection. Photons that are
emitted at z' toward the right wall (i.e., the wall at
z =L /2), are reflected once, and are then reabsorbed at z
have to cover the distance

u(L/2 —z')+u(L/2 —z) .

The Green's function for these photons is

G'"'""(z,z')=C, ' f "f" R+(x, u)

X exp[ ko(L——z —z')k(x)u]dx du . (4)

Similar terms can be written for photons that are
reflected once at the left wall, for photons that are
reflected once at L/2 and once at L/2, t—wice at L/2
and once at L/2, a—nd so on. These Green's functions
are then all added up. If arranged appropriately, we get
four infinite series that can be summed up analytically.
We thus get

G"'"(z,z') =G"' ""(~z
—z'~ )

ko k (x) —ko k (x)(2L +z —z') u+C e dX dQ

1 —R+(x, u)R (x, u)e

0 ~ N k X

2 1

R+(x, u)R (x, u) —kok (x)(2L +z' —z)u

-2k, Lk(, )„e dx du
1 —R+(x, u)R (x, u)e

—
kok (x)(L —z —z')u

R+ (x, u)e

2 ) — u 0 "'"'"
1 —R+ x, uR x, ue

—kok(x)(L+z+z')u
R xue

—2koLk (x)u

Equation (5) gives, for the first time, the Careen s function in a slab with specularly reflecting walls with different
reflectivities of the two walls. The reflection coefficients may depend on angle and frequency.

For the numerical evaluation of Eq. (1), we divide the slab into S substripes and assume that n is constant within each
substripe. Mathematically, this means approximating n by a set of S orthogonal rectangular pulse functions with un-

known amplitudes. Equation (1) then reduces to a system of homogeneous algebraic equations,

S —1 z +6/2
nk(1 —1/g) —g n Ak =0 with 3k~ =f G""(zk,z')dz',

m=O m

when the z are the center coordinates of the substripes and 5 is the constant width. We found a particularly advanta-

geous formulation for the matrix elements 2 k
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I,.'=C k x 1 —Ei2 k0k x 6 2 x fori=0

C
k x Ei2 i —0.5 0 xh —Ei2 i+0.5 0 x~ x o

—koLk(x)u
C, „k(x) R+ (x, u)R (x, u)e ' kk—(x)(i —0.5)hu k—k(x)(i+0.5)hu

I; = [e ' —e ' ]dx du,
1 —R+(x, u)R (x, u)e

R+(x, u)oo oo X —kok (X)(i —0.5)b, u

„, , [e
u 1 —R+(x, u)R (x, u)e

R (x, u)

a b b C d
~km ~k —

m~
+ S+m —k+ S+k —m + 2S —m —k —1+ m+k+1

I; = x k(x)
„, , [e

—kok(x)(i —0.5)hu

1 —R+(x, u)R (x, u)e

—kok(x)(i +0.5)hu—e dx du

—k&k(x)(i +0.5)hu—e dx du

Here, Ei2 is the second exponential integral as defined by
Abramowitz and Stegun [12]. This formulation only re-
quires the evaluation of 7S double integrals instead of the
5S triple integrals that would be necessary if we simply
inserted Eq. (5) into Eq. (6), leading to large savings in
computer time.

III. RESULTS

Figure 1 shows the lowest-order trapping factor g0 for
a Doppler line shape and k0L=5. g0 increases most
when both walls are highly reflecting, but does not in-
crease much when one reflection coefficient is very high
and the other is low. Actually, a slab where one
reflection coefficient is 1 and the other is 0 can be re-
placed by a slab of width 2L [13]. A slab where both
walls have the reflectivity R roughly has an effective
length L/(1 —R). This can become very large for large
R, so that g0 can also become much larger than in the
case of only one reflecting wall (where the maximum
effective length is 2L).

In a slab with transparent walls and a Doppler line
shape, the trapping factors for the higher-order modes
are related to the trapping factor for the lowest-order
mode roughly by g =1+(g0—1)m0/m (the relation

gj /g0=m0/m is strictly valid in the limit of infinite g0),
where m0=1. 025, m) =2.4, and mz=3. 9 [14]. One
could now think that this relation would stay the same in
a slab with reflecting walls. Figure 2 shows the trapping
factors g0 and g& when R+=1 and R is varied; we
compare the results of this relation to our numerical re-
sults. We see that this relation breaks down completely
as R is increased; as a matter of fact, the higher-order
trapping factors are almost independent of the reflection
coefficient. This result is somewhat surprising at first
glance, but can, for low opacities, be explained by the fol-
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lowing physical picture: if we have low opacity and high
reflection coefficients, the excited-state distribution tends
to become practically uniform within a very short time.
This happens because the photons can fly through the va-

por for long distances (due to the low opacity), and will

be reflected several times before reabsorption. The point
of reabsorption is then almost independent of the point of
emission, and the points of reabsorption will be distribut-
ed uniformly throughout the slab. Even when the initial
distribution is sharply peaked at the center of the slab, we
will get a constant excited-state distribution (which has
roughly the shape of the lowest-order mode) within a
time that is determined by the decay time of the higher-
order modes for a slab of width k0L, independent of any
wall reflections. Thus, g~ must be practically indepen-
dent of R. The average number of reabsorptions (which
is approximately equal to g0) is determined by both the
vapor opacity and the wall reflection coefficient, so that

g0 strongly depends on wall reflections. Further simula-
tions have shown that, at high opacities also, the depen-
dence of gj on R is very weak, even when g is quite large.
For k0L =100, a Doppler line shape, and R+ =1, g, in-

creases only by 45% (from 90 to 130) when R is in-

creased from 0 to 0.98, while g0 increases by 1500%

Although a slab with R+ =1 and R =0 can be replaced by
an equivalent slab of width 2L, only the even modes of this
equivalent slab can exist. This means that g,- of the cell with the
one mirrored wall corresponds to g» in the equivalent slab.

FIG. 1. Lowest-order trapping factor go for specularly
reflecting walls as a function of R+, the reflection coefficient at
L/2, for a Doppler line shape with koL =5 for three different
values ofR, the reflection coefficient at z = —L /2.
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FIG. 2. Trapping factors go and g, as a function of R for
R+ =1, and a Doppler line shape with koL =1: go exact (solid),

g, exact (dotted), and g, by relation g &

= 1+(go —1)m 0/m 1

(dashed). (m& here corresponds to m, in van Trigt's notation;
see the text. )

(from 390 to 6200). It also turned out that, even at high
opacities, the shape of the lowest-order mode is practical-
ly uniform when both wall reflectivities are high.

%e note furthermore that the area of the higher-order
modes is almost zero in the case that both R+ and R
are very large (Fig. 3). This follows directly from the
orthogonality of the modes and the fact that the lowest-
order mode is almost uniform for large R. Now it can be
shown [5] that the number of photons leaving the slab

J(t) ~ g exp — J 4'&(z)dz . (8)
g)7 —L /2

Since the integral (i.e., the area of the mode) is very
small for higher-order modes, and the expansion
coefficients a cannot become much larger than ao [only
positive n(z) of Eq. (2) are physically meaningful], the
influence of these modes on J(t) is usually small. Excep-
tions are either when many higher-order modes are excit-
ed, or when g &(go and a =ao. In those cases, higher-
order modes can be important at early times.

If R+WR, the reliection coefficients can have a
larger influence on the higher-order modes. If one wall

reflects strongly (R+ =1) and the other rather weakly,
the higher-order trapping factors have about the same
values as for two highly reAecting walls (see Fig. 2).
However, go for only one highly reflecting wall is much
smaller (since the effective cell length is smaller), so that
the relative influence of the higher-order modes is larger.
If we have koL=1, R+ =1, and R =0, we calculate

gz = 1.18, while for R+ =R =0.995, we get

g2 =1.19—even though go in the first case is only 3.02,
while it is 149.2 in the latter case. Furthermore, the area
of the higher-order modes is now much larger than in the
case of two highly reflecting walls (see Fig. 4) so that the
higher-order modes can influence J(t) more easily [see
Eq. (8)].

Our result (5) permits the inclusion of frequency-
dependent reflection coefficients. However, the linewidth
of a resonance line usually is only several GHz, and the
optical properties of reflecting materials will rarely
change within such a small frequency range. If more
than one resonant transition is present, the excited-state
distributions can be computed by the method of either
[10] or [13];in both cases we combine results for the sin-

gle lines (either the Green's functions or the trapping fac-
tors and eigenmodes) and can assume R to be frequency
independent within each resonant line.

More important, the reflection coefFicient may depend
on the angle of incidence. If the reflecting material is a
metallic mirror, the reflection coefficient is almost in-

dependent of the angle of incidence. This can be used to
somewhat simplify the expressions for the Ak matrix
elements; in that case, I,'/R+ =I;"/R, so we have 2S
integrals less to compute. As will be shown, one can ap-
proximate these mirrors by diffusely reflecting walls with

tolerable error, but since our formalism allows us to com-
pute specular reflection faster than diffuse reflection,
there no longer is any reason for making such an approxi-
mation. The number of integrals that have to be evalu-

ated for diffusely reflecting walls is proportional to S,
while for specularly reflecting walls, it is proportional to
S. Especially for multilayer dielectric mirrors and for
metallic mirrors coated with dielectric layers, the
reflection coefficient can depend significantly on the angle
of incidence. Accurate results can be obtained by a full

evaluation of Eq. (7).
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FIG. 3. Eigenmodes 1((z) for R+ =R =0.99, and a Doppler
line shape with koL =1.

FIG. 4. Eigenmodes 1((z) for R+ =1, R =0, and a Doppler
line shape with koL =1.
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a Lorentzian line shape for the case of very low opacity
combined with high reflectivity (R )0.9) so that

go =1.5 —l. 8 (e.g., koL =0.003, R =0.99 and a Doppler
line shape). For koL )0.5, the error stays below 3%%uo for
a Doppler line shape and below 6% for a Lorentzian line
shape. These errors are usually tolerable, so that the
often-used method of approximating specularly reflecting
walls by diffusely reflecting walls [10,15] can now be
justified. One could even use specularly reflecting walls
in the rare cases when the walls are actually diffuse, since
we can now compute specularly reflecting walls faster.
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IV. SUMMARY AND CONCLUSION

FIG. 5. Relative difference between diffusely and specularly
reflecting walls in the lowest-order trapping factor for a
Doppler line shape as a function of R=R+ =R for three
different values of the center-of-line opacity kpL.

Finally, we can now compare the results for diffusely
and specularly reflecting walls. We do not expect the
difference between those two cases to be very large. At
very high opacities, the many absorption-reemission pro-
cesses difFuse the radiation, regardless of the kind of
reflection at the wall. At very low opacities, the trapping
factors cannot change by much anyway [10]. Figure 5
shows the difFerence in go as a function of
R (=R+ =R ) for low, intermediate, and high opaci-
ties for a Doppler line shape. The difFerence is largest in
the region of comparatively low opacities and becomes
significantly smaller at very high opacities. The
difference is rather small for the shown example; it is
below 3%%uo. Further computations show the maximum
difference to be 10% for a Doppler line shape and 8&o for

In summary, we have derived the Green's function for
radiation trapping in a slab with specularly reflecting
boundaries; the reflection coefficients can be different at
the two boundaries and can depend on angle and frequen-
cy. We also gave a method for its efficient evaluation.
Higher-order modes influence the temporal behavior of
the emergent radiation if only one wall of the slab is high-
ly reflecting, but not when both walls are highly
reflecting. The difference in the lowest-order trapping
factor between diffuse and specular reflection is rather
small. Specular reflection can now be computed consid-
erably faster than diffuse reflection. Hence, we suggest
using the present approach both for specular reflection
(where it is exact) and as an approximation for difFuse

reflection.
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