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Ionization of Rydberg atoms by an electric-field kick
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We provide a rigorous lower bound for the ionization probability of a Rydberg atom under the
perturbation by a time-dependent electric field in the form of an ultrashort pulse idealized as a Dirac
b function. This estimate is of the form 1 —O(Fp ) for large values of the electric field Fp. For the
hydrogen atom w'e also prove the scaling behavior I"o n, predicted recently by Reinhold et al.
[Phys. Rev. Lett. 70, 4026 (1993); J. Phys. B 26, L659 (1993)l, for the electric field required to
ionize a given percentage of states with principal quantum number n.
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Recently the ionization of Rydberg states of an atom
with "half-cycle" laser pulses (i.e. , the duration of the
pulse is of the order or shorter than the classical orbital
period of the electron in the atom) has been studied ex-
perimentally [1]. In this case the atom may be considered
to be subject to a strong homogeneous electric field con-
fined to a very short time interval. This suggests looking
at the time-dependent Stark effect in the idealized case
where the time dependence is given by the Dirac 8 func-
tion. Therefore we will call it the Stark kick. The Stark
kick was also used in [2) as a model of ionization in fast
ion-atom collisions.

More precisely we analyze the quantum Hamiltonian
of the form

H(t) = Hp+ V+ Fosse(t) = H+Fpzb(t), Fp ) 0, (1)

with Ho ———6 being the operator of the kinetic energy
on the Hilbert space I (R ). Thus we work in dimen-
sionless units where e = 5 = 2m = 1. The potential V is
supposed to be Kato small (see, e.g. , Ref. [3]), i.e. , there
are a ( 1 and 6 ( oo such that for all 4' in the domain
17(Hp) of Hp

IIV ~ll & allHp ~ll+ hll~ll.

the ionization probability in the case of large and of small
Fp. In fact, we show below (Theorem 1) that the ion-
ization probability goes like 1 —O(Fp ) for large Fp
Furthermore, if we specialize to the Coulomb potential
V = —1/Ixl, then we obtain a rigorous scaling estimate
of I"o for the ionization of the state 4 ~ of the form
Ep n ~ when n ~ oo (Theorem 2), in agreement
with. the prediction given by Reinhold et al. [5] for ul-

trashort laser pulses. Similar results are obtained for
Rydberg atoms under reasonable assumptions on the po-
tential (Corollary).

We now turn to the precise formulation and its proof.
Let U(t, t') describe the unitary time evolution for a suit-
able time dependent Hamiltonian H(t), i.e. , U(t, t') sat-
isfies

iB, U(t, t') = H(t) U(t, t'),
U(t, t') U(t', t") = U(t, t"),

U(t, t) = I.

For the case that H(t) is of the form (1), it is clear that
U(t, t') = exp( —i(t —t')H) for tt' ) 0. By approximation
with smooth H(t) and by the Trotter product formula
(see, e.g. , Ref. [3]) one also obtains

In particular, the potentials of atoms or molecules arising
from Coulomb pair potentials belong to this wide class.

Although analytic expressions for the ionization prob-
abilities under the Stark kick are known [2,4], they are
too cumbersome to provide reliable qualitative informa-
tion about the dependence of these probabilities on the
Geld strength I"0. One aim of the present paper is to
prove rigorously a simple and eKcient lower bound for
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U(t, t') = exp( —itH) U(Fp) exp{it'H) for t' & 0 & t

Here U(Fp) is the unitary operator given as multiplica-
tion operator in the configuration space representation,
i.e. , [U(Fp) 4](x) = exp iFpz 4(x). Note—that in the
momentum space representation U(Fp) is just the trans-
lation by Fp e„ i.e., [U(Fp) 4](p) = 4(p + Fp e, ), where

e, is the unit vector in the z direction and 4 is the Fourier
transform of O'. Thus the Stark kick causes a shift in mo-
mentum which implies high kinetic energy for large I"0.
Prom this follows that the total energy becomes far sep-
arated &om all eigenvalues of H.

In analogy with the scat tering theory for time-
independent Hamiltonians, we may de6ne the scattering
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matrix between the time evolutions with and without a
Stark kick as the weak limit

S = lim exp(itHj U(t, t') exp{—it'H),
t —+ oo

It m —oo

which by (3) for the present situation takes the sixnple
form g = U(Fp). For any normalized bound state @ we
define its ionization probability I(@,Fp) as

I(@,Fp) = Il(1 —P) ~@II' =1 —IIPU(Fo) @II'

where P is the orthogonal projection onto the subspace
spanned by the eigenvectors of H. Hamiltonians with
Kato bounded potentials (2) are bounded below and if
the (pair) potentials decay suitably at infinity, then there
are no positive eigenvalues. It has been shown [6,7] for a
large class of potentials including atomic and molecular
ones that the eigenvalues are contained in [info'(H), 0],
where 0(H) denotes the spectrum of H. Thus we may
assume the even weaker hypothesis that all eigenvalues
belong to a bounded interval, i.e. ,

(4)

Thus any bound state @ = P4 lies in the domain 17(H)
of H, which equals the domain 17(Hp) of Hp for Kato
potentials. Then we write

P U(Fp) 4 = P (H + i ) (H + i) ' (H, + 1) U(F, )

xU(Fp) '(Ho+1)
xU(Fp) (Hp+ 1) (Hp+ 1) @.

Furthermore, for Kato potentials (H + i) (Hp + 1) is
bounded and thus with (4)

IIP (H+ i) (H+ i) ' (Ho+ 1) II
= ci & ~.

The operator R(Fp) = U(Fp) (Hp+ 1) U(Fp) in the
momentum-space representation is just the multiplica-
tion operator

Here cq depends on V only.
For some exactly solvable Hamiltonians, such as e.g. ,

a h potential with one bound state, the decrease Fp
of the second term in (5) exactly reproduces the asymp-
totics of I(%', Ep) when Fp -+ oo. This observation indi-
cates that the estimate (5) should be optimal.

Although the physical interpretation of the ionization
is for bound states 4 only, we have actually proved

IIPU(Fo) @II ~ 0 as Fo ~ oo fo»ny @ c &(H) and
any P with llPH[l & oo. For the strong limit therefore
one has

lim, P U(Fp) = 0.
Fp -+ oo

Furthermore, Theorem 1 remains valid if we replace P
by the projection onto a subspace where H is bounded
from above, say by Ep. Then (5), with the constant ci
now depending on Eo and V, gives the ionization prob-
ability with the outgoing electron having energy larger
than Eo.

Let now V = —1/lxl. We will choose 4 = @„i~,i.e.,
@ is a normalized eigenstate of H with eigenvalue E„=
—1/4n2. Here n is the principal quantum number, l the
total angular momentum, and m the magnetic quantum
number. We are interested in the scaling relation between
Fp and n (for arbitrary l and m) for ionization of the
state 4'„~ with given probability Ip. We will use the
virial theorem (see, e.g. , Refs. [7,8]), which reads here for
normalized eigenvectors

(e„t lHple„i ) = E„=1/—4n .

Let for the moment c & 0 be arbitrary. Then

P U(Fo) 4„i = P (H —c) U(Fp)

xU(Fo) (H —c) U(Fo) 4„i~
= P(H —c) 'U(Fp) [H(Fp) —c] ill„i

where H(Fp) = H + 2p, Fp + Fp2. Thus with PH & 0

&(F.)(p) = [(p. F.)'+ p.'+ p-,'+ 1]
'

Hence we have

IIP U(Fo) @II ci sup(&(Fo)(p) (p'+1) ')ll(Ho+1) @II,

where cz is independent of Fp and 4. Now an easy esti-
mate shows that

IIPU(Fo) @.i II
& -ll(E. +F,' —c+2p.Fo) @.i II.

Now choose c = E„+Fo. In particular this means that
we restrict ourselves to those values of the field which
satisfy Fp & E In the c—ontex. t of classical mechanics
this means that the field is strong enough to ionize the
particle with energy E„.Then

1
p(&(F )(p) (p'+1) ')

P Fp

We have proved the following.
Theorem 1. For any Kato potential V which satisfies

(4) and for any normalized bound state @ = P@ the
ionization probability I(%', Fp) can be estimated

IIP U(Fo) @' i

2Fp X/2(+- -lp. l+- -)c

(@-i-IHol@-~-)'"

P
( E )i/2 (7)

c2
I(+,Fp) &1- '. Il(H. +1)+II' = Ki/ —E, K & 1 such that c = E~ + Fo

(~2 —1)(—E„). Then llPU(Eo) @ni~ll & 2K/(~ —1)
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This can be made arbitrarily small for ~ sufFiciently large.
We have proved the 6rst part of the following.

Theorem 2. Let H = Hp —1/Ix[. For any given
0 & Ip & 1 there is a sufficiently large r(Ip) such that
I[4 t, Fp —K(Ip) g—E ] ) Ip for all n, l, m. Con-
versely, for any e ) 0 there is sufficiently small K(c) ) 0

such that I[@„~,Fp —K(e) i/ E—] & e for all n, l, m. In
particular, for a prescribed ionization probability Io, one
has the scaling law Fo n for large n.

It remains to prove the second part of the theorem.
For arbitrary d ) 0 we can write

(1 —P) U(FP) 0 t = (1 —P) (H + d) U(FP) U(FP) (H + d) U(FP) 4nlm
= (1 —P) (H + d)

' U(Fp) [H(Fp) + d] 4'„t

Thus with (1 —P)H & 0

Il(1 P) U(Fp) @ l

where for some parameter p ) 1

Wp(x):= (1 —p) —+ pV(x) + x. VV(x).
Ix]

(10)

& dll(E-+Fp +d+» Fo) @-t-II.

We choose d = —Fo —E„such that Fo ( —E„, i.e., we
now restrict ourselves to fields below the classical ioniza-
tion threshold. Then in analogy with (7) we obtain

II(1- P) U(F.) ~-l-II & „(E-)"-
With Fp ——Ky E„, 0 & r—& 1 we get d = —E„(1—v.2).
Then II(1 —P) U(Fp) @„lmII & 2r/(1 —r ), which can be
made arbitrarily close to zero by making r sufficiently
small. This completes the proof of the theorem.

For Rydberg atoms the effective potential of the outer
electron has a dominant Coulomb tail with corrections of
faster decay

V(x) = ——+ V(x), IxIIV(x)I -+ 0
Ix]

If x VV(x) decays faster than Ix], as well, then
W~(x) & 0 for Ix] larger than some B(p). Since highly
excited states are localized far out it is natural to assume
for eigenvectors 4~ with H@~ = E~4'~ that

(@,Iw, I@,) & 0

for j larger than some j~ ) 0. Then &om the virial
theorem (9) we get instead of (6) the inequality

(e IH Ie ) =, (-E)+, (~ IW.le, )

,(-E,)

The estimate (7) now changes to

as Ix] -+ oo, q & 0. (8)

Now the virial theorem (see, e.g. , Ref. [7]) reads that for
any eigenfunction 4~, j = 0, 1, . . . ,

2(@,. IHp]@&) = 2(@&'I(E —V)]4', ) = (O', Ix VV(x)I4', ).

(9)

The expression on the right-hand side is

x VV(x) = + x VV(x) = —pV(x) + W~(x),

and the conclusions of Theorem 2 remain true.
Corollary Let H = H. p + V satisfy (8), (10), and (11)

for some 1 ( p ( 2. For any given 0 ( Io & 1 there
are sufficiently large K(Ip) and j~ such that I[@s,Fp ——

K(Ip) g Es] & Ip fo—r all j ) jo. Conversely, for any
e ) 0 there is a sufficiently small K(e) ) 0 such that
I[@~, Fp ——K(e)g . E~]& e for all j—& j. ~.
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