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Modeling harmonic generation by a zero-range potential
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High-order harmonic emission by one electron in a laser field bound to a zero-range potential is exten-
sively discussed. The model yields an expression for the emission rates in the form of a one-dimensional
integral that has to be calculated numerically. The solution is based on the quasienergy wave function of
the ground state. The approach is very significantly facilitated by suppressing the harmonic components
of the wave function at the position of the zero-range potential. This approximation is found to be very
accurate except for the third harmonic. In spite of the simplicity of the model, the harmonic spectrum
exhibits a very involved structure, occasional harmonics being strongly suppressed, with cusps and
spikes for certain evenly spaced intensities. The latter are due to channel closings for the same intensi-
ties in above-threshold ionization. The harmonics near and beyond the cutoff of the plateau are amen-
able to a completely analytical approximation. This approximation shows how the classical model of
Krause, Schafer, and Kulander [Phys. Rev. Lett. 68, 3535 (1992)] is embedded in a fully-quantum-
mechanical description. Results are also given for the harmonic production rates in an elliptically polar-
ized laser field; they display fair agreement with recent measurements. The model should adequately de-
scribe harmonic emission by negative ions with just one bound s state. Moreover, it also gives a fair
description of harmonic emission by an atom, particularly if the ground-state energy of the zero-range
potential is adjusted not to the binding energy of the atom, but rather to the energy difference between
the ground state and the first excited state. The reason why this is appropriate is found in lowest-order
perturbation theory, which sheds some light on the physical origin of the plateau.

PACS number(s): 32.80.Rm, 42.65.Ky

I. INTRODUCTION

The behavior of atoms in intense laser fields with inten-
sities exceeding [for neodymium-doped yttrium alumi-
num garnet (Nd:YAG)] 10' W/cm has revealed several
unexpected and fascinating effects; for reviews see Refs.
[1—9]. Among these, the production of very high har-
monics of the incident laser field and, in particular, the
shape of their spectrum has been possibly the most
surprising discovery, largely unanticipated by any theory
(for reviews see, in particular, Refs. [6] and [7]). Early
experiments had already shown some emission of quite
high harmonics [10—14]. However, major interest was
not really generated prior to the observation that within a
certain range of harmonic numbers the harmonic intensi-
ties are approximately the same and form what became
epitomized as the "plateau" [15]. That is, a typical spec-
trum of the harmonic intensities as a function of the har-
monic number exhibits a fast initial decrease followed by
a region of fluctuating but on the average fairly constant
intensities, viz. , the plateau, with a quite well-defined
upper end beyond which the intensities quickly decrease.
This pattern has been, by now, established through many
experiments performed at various laser frequencies and
intensities on the various rare gases [16—23]. The highest
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harmonics observed thus far are the 109th [21] of an
806-nm Ti-sapphire laser and the 135th [22] of a 1053-nm
Nd-glass laser, both in neon.

There are several reasons why high-order harmonic
generation (HHG) in atoms has attracted so much atten-
tion. First, of course, the plateau in HHG came as a
surprise, posing a challenge to theory. Second, it may
provide the basis for novel devices. Third, it is yet anoth-
er example of the failure of lowest-order perturbation
theory in high-intensity laser-atom interactions. Last but
not least, the accompanying theory suggests that the pla-
teau in the harmonic response is a very general property
of driven nonlinear systems. It has emerged from calcu-
lations of model systems as different as a two-level system
(which cannot be described by a potential in space}, one-
and three-dimensional 1/r potentials (having excited
states and a Rydberg series), and short-range and zero-
range potentials (with just one bound state}. Even a one-
dimensional classical harmonically driven anharmonic
oscillator produces a plateau in the Fourier components
of its dipole moment [7] not unlike the one observed in
experiments. In spite of the generality of the
phenomenon there is, to our knowledge, no equally gen-
eral physical model that elucidates the physical origin of
the three distinct regions of the harmonic response, viz. ,
the initia1 decrease, the plateau, and the final drop off,
and relates them to the parameters of the system. (This is
not to say that theory has not been very successful in
reproducing the data. ) However, important progress in
this regard has been made in understanding the upper
end of the plateau. The number of the highest harmonic
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can be explained in terms of the classical nonrelativistic
motion of an electron in a laser field [24,25]. It is given

by n, „=(~EO~+kU~)lfuu, where ~Eo ~
is the ionization

energy of the atom, U is the ponderomotive energy of
the laser field with frequency co, and k is a number ap-
proximately equal to 3. While this result at least partially
explains the physical mechanism behind the emission of
the highest harmonics and the existence of a cutoff' in the
harmonic spectrum, it still leaves open the question of the
origin of the plateau itself.

A complete theory of high-order harmonic generation
must take into account both single-atom and collective
aspects. In a microscopic description, the collective
response will not exhibit any particular harmonics if the
single atom does not, but high harmonics emitted by the
single atom could well be suppressed in the collective
response if the phases of the wave trains emitted by the
individual atoms do not match. Indeed, this is the case
for comparatively low intensities. Fortunately, it has
turned out that for the high intensities of interest the
single-atom spectrum gives a good indication of the col-
lective response [26,27]. In this paper, we will not be
concerned with the collective aspects.

There are, by now, a large number of theoretical at-
tempts at single-atom HHG, from comparatively simple
model calculations (some of which allow for almost
analytical results) to hydrogen and on to realistic efFective

potentials for the various rare gases. However, no at-
tempt beyond the "single-active-electron approximation"
[28] has yet been made. One model that can be solved en-

tirely analytically proceeds as follows [29]: replacing in
the Hamiltonian for hydrogen in a laser field the position
vector in the r E coupling term by an appropriate multi-

ple of the Lenz vector renders the Harniltonian integra-
ble. This replacement is equivalent to dropping the off-

diagonal elements of r. The results of this model yield a
cutoff in the harmonic intensity, though not at the
aforementioned proper position. Next, a two-level atom
yields a spectrum whose shape shows the typical struc-
ture of high-order harmonic production [30,31]. This is
particularly remarkable since the above-mentioned classi-
cal model [24,25] for the cutoff of the plateau so crucially
depends on the existence of a continuum. A two-level
system has also been used to model production of high
harmonics from inertially confined homonuclear molecu-
lar ions [32]. A four-level system allowing for resonances
has been treated as well [33]. Several one-dimensional
model potentials have been investigated, most extensively
the (1+x )

'~ potential [34], which preserves many
features of a real atom. Numerical integration of the
Schrodinger equation for this potential produced spectra
in good qualitative agreement with the data [35—37]. A
piecewise-constant potential allows (for electron scatter-
ing) for a largely analytical evaluation of the emitted har-
monic spectrum [38]. For hydrogen and the hydrogenic
ions, HHG was first attacked through lowest-order per-
turbation theory [39—41], which proved to be insufficient.
Nonperturbative approaches followed using Floquet
methods [42] or the numerical solution of the time-
dependent Schrodinger equation [43,44]. For a calcula-
tion for helium that uses a model potentia1 and pays par-

ticular attention to the eff'ects of intermediate resonances
on HHG, see Ref. [45].

State-of-the-art simulations of single-atom emission for
realistic rare-gas atoms (in the context of the single-
active-electron approximation) and the ensuing propaga-
tion have been pioneered and advanced by Kulander and
co-workers [46—48,26,27]. These calculations start from
the appropriate Hartree-Fock potential for which the
time-dependent Schrodinger equation is solved on a spa-
tial and temporal grid. Since HHG (particularly of the
highest harmonics) crucially depends on minute com-
ponents of the wave function, the requirements on the ac-
curacy are very high and extreme care has to be exercised
with regard to a large enough size of the grid and the
choice of the boundary conditions on the boundary of the
grid. Impressive examples of the deleterious effects of an
insufficient grid size are given in Ref. [47]. Different
forms of the dipole operator that are analytically
equivalent have a large impact on the accuracy of the nu-
merical calculation, all other things being equal [47,49].
The acceleration form has been found to be superior. Fi-
nally, after the single-atom dipole moment has been com-
puted it is inserted in the Maxwell equations as the
source of the macroscopic emission to be observed.

Two alternative approaches still ought to be men-
tioned. First, a purely classical treatment is able to gen-
erate a plateau as well. The dipole moment of classical
Kepler orbits in the presence of the laser field when aver-
aged over a sufficiently large ensemble produces harmon-
ic spectra much like those that result from a quantum-
mechanical treatinent [50,51]. In the light of the classical
model advanced to explain the upper edge of the plateau
[24,25] this may not be too surprising. However, the
completely classical trajectory-based description even
yields satisfactory agreement for the lower harmonics.
The need to average over a large number of orbits is a
disadvantage of the classical method. It has been shown
that in a mixed quantum-classical representation, where
only the radial motion is treated classically, comparative-
ly few trajectories suffice [52]. Finally, the Fourier trans-
form of the dipole moment of a classical one-dimensional
driven anharmonic oscillator exhibits a plateau [7] in
much the same way as the quantum-mechanical two-level

system.
Second, purely collective mechanisms have been sug-

gested [53—55], which are able to generate high harmon-
ics when the single atom does not. In the tunneling re-
gime, most electrons are produced at those times when
the electric field is at its peak, which happens at twice the
laser frequency. The ionization rate as a function of time
then has an almost steplike profile. Hence the electron
density produced by ionization exhibits harmonics of the
doubled laser frequency. The total electron current is
made up by these electrons, which then quiver harmoni-
cally with the field frequency so that the total current is
modulated at odd multiples of the laser frequency [53,54].
However, this mechanism does not play a major role un-
der the conditions of the experiments carried out thus
far. A very general treatment of harmonic production in
a laser-irradiated plasma described by the fluid approxi-
mation has been proposed too [55].
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In this paper, we will consider HHG for what may be
the simplest model potential that still has some features
in common with a real atom: the three-dimensional 5-
function potential [56]. This potential has exactly one
bound state with 1=0 and a continuum which is, except
for the s wave, unaffected by the potential. As opposed to
the one-dimensional case, the 6-function potential in
three dimensions requires a regularization procedure [57]
in order to exhibit a well-behaved bound state. In the
presence of an external plane-wave field this model poten-
tial still allows for an almost analytical solution [58—60].
Applied to HHG, emission rates can be evaluated analyt-
ically up to one final quadrature, which has to be carried
out numerically. In view of the aforementioned extreme
sensitivity of HHG (particularly of the highest harmon-
ics) to the slightest numerical inaccuracies of the wave
function, this is a valuable advantage. The absence of im-

portant features of a real atom, such as excited bound
states and a Rydberg series, raises, of course, serious
questions as to the significance of such an extremely

simplified model for the analysis of HHG. However, this
very deficiency can also be turned into a virtue: whatever
feature is obtained from such a bare-bones atom obvious-

ly does not depend on the more subtle properties of the
real atom, which were not part of the model. Moreover,
at least for not too high intensities, the 5-function poten-
tial supplies a fair description of the negative hydrogen
ion. In particular, it has given quite good agreement [61]
with measured multiphoton detachment rates of H
without any adjustable parameters. Preliminary results
for HHG have been published before [62,63]. In this pa-
per, we will give a detailed account of the underlying
analytical calculations, add a more extensive discussion
of the results, and discuss approximations to the exact
emission rates, which lend themselves to a physical inter-
pretation. Specifically, the model atom allows for an
analytical derivation of the above-mentioned "3U rule"
for the energy of the highest harmonic. The genuine
three dimensionality of the model is a decisive advantage
since it allows for the description of effects that are due to
the polarization of the external field. This will become
particularly important for the discussion of two-color
HHG to be treated in a separate paper.

The paper is organized as follows. In Sec. II, we
rederive the quasienergy wave function in the presence of
the external plane-wave field. This wave function is exact
for a monochromatic, circularly polarized field; for any
polarization other than circular, we will make some ap-
proximations which are discussed in Appendix A. In
Sec. III, we employ the quasienergy wave function to
derive the rates of high-order harmonic emission. The
result has the form of a one-dimensional semi-infinite
quadrature whose nurnerica1 evaluation requires in most
cases only a few seconds computing time on a worksta-
tion. Section IV discusses the HHG rates calculated
from the model as a function of its two dimensionless pa-
rameters, viz. , the binding energy and the ponderomotive
energy each divided by the energy of one photon. The
calculated rates exhibit the general shape known from the
experimental data. In particular, they have a cutoff at an
energy approximately equal to ~EO ~

+3U . Within the

II. QUASIENERGY WAVE FUNCTION

In this section, for reasons of completeness, we want to
rederive the quasienergy solutions for a particle bound by
the zero-range potential [56,57]

V(r) = 5(r) r .
2'

Br
(2.1)

This potential supports a single bound state with binding
energy

(2.2)

and wave function

An orthonormal set of continuum wave functions is given

by

plateau, individual harmonics may occasionally be
strongly suppressed. As a function of the field intensity,
the harmonic emission rates exhibit evenly spaced spikes
or cusps that can be related to channel closings in the re-
lated process of above-threshold ionization. We also cal-
culate HHG as a function of the ellipticity of the laser
field and compare with recent measurements. In Sec. V,
we derive an analytic approximation for '.he highest part
of the harmonic spectrum. This approximation makes
direct contact with a classical model [24,25] that at-
tributes the highest harmonics to electrons set free in the
continuum with zero velocity which subsequently are ac-
celerated by the field and fall back into the atomic
ground state upon their first recurrence to the site of the
ion. The second, third, and further recurrences make up
the plateau below the cutoff. However, the model fails to
explain the lower portions of the plateau as well as its t2

priori existence.
Appendix A justifies an approximation that we have

made for all of the explicit results: we have replaced the
time dependence of the wave function at the position of
the 5 function, i.e. , at the origin, which in principle has a
Floquet expansion form with twice the frequency of the
laser field, by its lowest-order term exp( iEt). Th—is is ex-

act for circular polarization, but an approximation other-
wise. In so much as high-order harmonic emission is

concerned, this approximation turns out to have a mar-
ginal effect on all of the higher harmonics with the excep-
tion of the third. Appendix B derives a relation required
in the main body of the paper. Appendix C deals with
the harmonics as derived from lowest-order perturbation
theory. This yields an important clue to the physical ori-
gin of the plateau: as soon as the energy of a harmonic
exceeds the binding energy, multiphoton-resonant inter-
mediate states contribute, enhancing its perturbative rate
of production very significantly. Therefore, contrary to
what might be considered intuitive, an increase of the
harmonic emission rates with increasing harmonic order
is predicted by lowest-order perturbation theory.
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g (r)=(2n) e'~'— 1 e''
K+lP r

(2.4)

The wave functions (2.3) and (2.4) form a complete ortho-
normal set.

We want to solve the time-dependent Schrodinger
equation

i %—'(rt)= — V + V(r) —er E(t) %(rt),. 8 1

Bt 2m
(2.5)

in the presence of a time-dependent field
E(t)= —(}A(t)/Bt. We will apply the long-wavelength
approximation throughout this paper so that A(t} does
not depend on the spatial coordinates. For the time be-
ing A(t) will be arbitrary, but later on we will restrict
ourselves to a monochromatic field with arbitrary polar-
ization ( —1 g 1):

A(t) =a(x cosset+ gy sino)t ) . (2.6)

i +—V2+er E(t) G' '(rt, r't')
Bt 2m

=5(t —t')5(r —r') . (2.8)

This is the long-wavelength approximation of a plane
wave propagating in the z direction. We will use the
length gauge in this paper. One of the reasons is that the
potential (2.1), upon minimal substitution, generates a
term proportional to 5(r)( ie A—r), which may lead to
ambiguities when applied to the wave function (2.3).

There are solutions of the Schrodinger equation (2.5)
that satisfy the homogeneous integral equation

%(rt) = fd r'dt'G' )(rt, r't') V(r')%(r't'), (2.7)

where G' ' is the (retarded) Volkov Green's function
satisfying

term, which would allow for the specification of an initial
condition as t ~—ao. Instead we demand that when the
field is turned off, so that 6' '~G' ', the solution turns
into the bound-state wave function (2.3).

We now consider Eq. (2.7) specifically for the zero-
range potential (2.1) for which it can be solved largely
analytically [58—60]. Applying the operation ((}/ar )r to
both sides of the integral equation (2.7) and letting r=0,
we afterwards obtain the one-dimensional integral equa-
tion

R(t)=lim r%(rt) .
r oBr

(2.14)

The limit of r~O in Eq. (2.13) does not immediately
commute with the integration since the result of the
latter contains a term proportional to r '. We extract
this term by writing

' 3/2

R(t)= lim r dw
2(r . (} lm

~m r~o Br o 2n.(r i e)—
. mr

exp i
27

Since

X [ [e iR(r, t, o, t —r—)e
—iAHt, t r)R (—t &)

—R(t}]+R(t)j . (2.15)

imr l2r
p 3/2 e

27Tl
1/2

1

r
(2.16)

only the term in brackets on the right-hand side (rhs) of
Eq. (2.15) contributes. This term no longer has the r
singularity. The limit now commutes with the integral
and we obtain

' 1/2

R(t)=lim r f dt'G' '(rt, Ot') R(t') (2.13)
r~p r —(x) Km

for the function

Its explicit form is

G( (rt, r't')=G( )(r—r', t —t')e
—iaaf(f, t')

where

(2.9)

1 mR(t)= ——
K 2S'l

I

[
lJlf((, f T)R (t )

0

(2.17)

For the monochromatic circularly polarized field (2.6)
(with g= 1) the function

' 3/2
. mr

exp i
2t

G' '(r, t ) =8(t)
2n.(t ie)— (2.10)

sin(cor/2)
C07 /2

2

=JK(~)

(2.18)

depends only on the difference of its arguments, viz. , on
~. In this case, Eq. (2.17) is solved by the exponential

f dv A(w)
t —t

(2.11) R(t}-e (2.19)

%(rt, r't'}=e A(t).r —A(t') r'.
I

, f dr A(~) (2.12)

1/2

f ( iEre i'(r) 1)—
() P/2 (2.20)

where the quasienergy E is to be determined from the in-
tegral equation

r

Equation (2.7) does not contain an inhomogeneous
If the field is turned off we have Af, (~)=0, and Eq. (2.20)
yields, as it should,
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K

Zm
(2.21)

In the presence of the field the quasienergy is complex,

E= IE—,I+aE t—r/2 . (2.22)

The quantity hE is the Stark shift of the ground state and
the imaginary part I specifies the ionization rate. It
must be positive in order that, in view of Eq. (2.19), the
ground state be depleted by ionization. However, if

I )0, the integral on the rhs of Eq. (2.20) diverges. This
characteristic difficulty has been noticed long ago. A
solution (2.22) of Eq. (2.20) must be sought through ana-
lytic continuation. The details as well as practical
methods of how to determine the quasienergy are dis-
cussed elsewhere [64].

For any polarization other than circular the function
Af(t, t r)—depends on both arguments separately and a
simple exponential no longer solves Eq. (2.17). For the
vector potential (2.6) we have, for arbitrary g,

At(t, t')=rt co(t t') 1—— sin(co( t t '—
) /2)

ccrc(t t')/—2

2

+ g cosa'(t+ t') since(t t') ——4 sin (ccrc(t t')/2—)

co( t t )— (2.23)

where we introduced the ponderomotive potential

e (A ) (ea)
~2)

2m 4m

and the parameter

1—2

I+(
In place of the ansatz (2.19) we now have to allow for a Floquet expansion,

(2.24)

(2.25)

R ( t) —e iEt y a
—

e 2incut —
e

—iEtu)( t) (2.26)

Inserting this into Eq. (2.17) and expanding the exponential of the second term on the rhs of Eq. (2.23) in terms of
Bessel functions, we get

' 1/2

Ka n

where

f" (
i[E' —(k+n)a&]r 4iqsin (cor/Z)I(re@) n —kgbak

k= —oo
0

l ]t: ~ Z (2.27)

z(r)=re sincor—
4 sin (cc)r/2)

(2.28)

and

E'=E —U

Subtracting and adding 5k„expi(E' —2ncc) )r under the integral in Eq. (2.27) yields

(2.29)

[( E'+2nco)' IEO—I' ]a„= g—R„kak,
k= —oo

with

(2.30)

R (4 ~
~
—(/2 ei[E' —(k+n)cct]r(e4irtsin (cur/2)/(rcs) ~ n —kg( 7Tl I 3/2

l k „Z 7 kn~
0

(2.31)

We notice the symmetry properties

(2.32)

det[[( E'+2nco)' IE—()I' ]5„——R„]=0 . (2.34)

and

n+i k+i(E') =Rnk(E' (2.33)

The quasienergy is determined from the condition that
the determinant of the infinite linear system (2.30) be
zero, viz. ,

As a consequence of the symmetry property (2.33), when-
ever E' is a solution of Eq. (2.34) then so too is E'+2nco
with integer n. We define as the quasienergy the particu-
lar solution of Eq. (2.34) that reduces to —IEOI for van-

ishing field.
In perturbation theory with respect to the intensity,

viz. , rI, the integrals (2.31) go as
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nek
R nk g, n=k . (2.35)

The lowest approximation to the solution of the deter-
minant equation (2.34) then consists in just keeping the
diagonal. In this case, the quasienergy as defined above is
given by the solution of

( E )i/2 ~E ~1/2 —R (E ) (2.36)

Here, it is a good approximation just to keep the terms
with n =0 and n = —1. This yields the equation

( —E')'/2 —~E ~'/2 —R

R 01
2

( —E'+2')' ' —IEOI' ' —R„
R 1 0

2

( E'+2m) )' ——
iEO i

' —R
(2.38)

which improves on Eq. (2.36). The expansion coefficients
a1 and a 1 can then be determined from ao through Eq.
(2.30). All other a„are still zero in this approximation.

The quasienergy wave function of the ground state is
given by Eqs. (2.7), (2.14), and (2.26):

%(rt)= dt'G' '(rt, O, t')e ' 'w(t') .= 2K
Km —oo

(2.39)

For most applications, we will replace the quasienergy E
on the right-hand side of Eq. (2.39) which, in principle,
has to be determined from Eq. (2.34) by its field-free value
of —

~EO~. We thereby neglect the small ac Stark shift of
the ground state. The ponderomotive shift of the contin-
uum states is unaffected by this approximation, since it is
contained in the propagator G' '. We will also let a„=O
for nAO and determine ao from the normalization of the
ground-state wave function (2.3} in the absence of the
field, so that

ao =~(a/2m. }' =(2m. )
' (2m ~Eo ~

) (2.40}

III. EMISSION OF HARMONICS

Having determined the wave function (2.39} of the
ground state dressed by the external field (2.6) we are in a
position to calculate the rates for emission of harmonics.
Initially, the "atom" is in its dressed ground state with
wave function (2.39). At time t it emits a photon with

The corresponding approximation for the expansion
coefficients is a0%0, a„=0 for nAO In .a next step, we

may keep terms in Eq. (2.34) with ~n
—m

~

=1 so that the
resulting matrix has tridiagonal form. The quasienergy is
then determined by

2
Rn, n+1

( E'+2—neo)' ~EO~' —R„„
1

[ —E'+2(n+ l)a)]' —iEO~" —R„+i „+i
(2.37)

frequency Q and polarization e and thereby ends up in
some final state VI(rt) dressed again by the field. The S
matrix element governing this process is

1/2I= —i Jd r dt e' '[4 (rt)]'2~0
V f

X (
—er.e)'V(rt }, (3.1)

where V is some normalization volume. Several remarks
are in order here. (i) The final state can, in principle, be
any excited state of the atom as well as the ground state,
each dressed by the field. It can be a continuum state as
well [65]. For any final state other than the ground state
we consider the combined process of excitation or ioniza-
tion plus harmonic production. However, unless the ex-
cited state is resonant with a multiple of the laser fre-
quency, the emitted frequencies 0 would not be harmon-
ics of the laser frequency co. While certainly possible, to
our knowledge such emission has never been observed.
Excited bound states do not exist for our model atom,
anyway. For these reasons, we will only consider emis-
sion processes where the atom, after the emission, re-
turns to its dressed ground state so that 4& =%. If %(rt)
were an eigenstate of energy the matrix element (3.1)
would be zero. But since the state %(rt) is dressed by the
field it is not an eigenstate of energy. The matrix element
is then proportional to the Fourier transform of the di-

pole moment of the ground state:
' 1/2

V
(3.2)

d(Q)= f dt e'"'d(t)

t re' '%' rt *er% rt (3.3)

X%'(rt) . (3.4}

(iv) The matrix element (3.1) or (3.4) is related to the ex-

Most often, the dipole moment d(Q) is used as the
starting point of the calculation of harmonic emission
since it acts as the source term for HHG in Maxwell's
equations. We have here preferred to start from the S-
matrix element (3.1) because it would allow for final
states other than the ground state as well.

(ii) We use the long-wavelength approximation for the
emitted Geld as well as for the laser field, thereby
suppressing higher-order multipole emission. It would
not be too difficult to use exp[i(Qt —K r)] in place of
exp(iQt) in Eq. (3.1). However, consistency might then
demand us to treat the laser field without the dipole ap-
proximation too. This, in turn, may require a relativistic
description in order to avoid artifacts that can occur if
one uses a field transforming under the Lorentz group in
the context of the nonrelativistic Schrodinger equation.
(iii) It is not difficult to convince oneself that the matrix
element M can also be expressed in terms of the p- A in-
teraction for the emitted photon:

1/2

Jd r dt e' '[%(rt}]" — cp-
m
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pectation value of the dipole moment rather than the
dipole-dipole correlation function. It has been argued
that the latter should be used in place of the former. This
would be true if we were interested in HHG of just one
single atom. However, by using the quasienergy wave
function (2.39) we already tacitly assume that we are in-

terested in an appropriate ensemble of uncorrelated
atoms averaged over initial conditions. It has been
shown that in this case the expectation value of the dipole
moment is the relevant quantity [30,66).

In view of Eq. (2.39) the Fourier transform (3.3) of the
dipole moment can be written in the form

d(Q) =
'2

dt e int f dt dt e
—'(Et" —&*t')

X [w{t')]*w(t")

Xd(t;t', t") .

The spatial integral

d(t;t', t")=f d r[G' '(rt;O, t')]*erG' '(rt;O, t")

(3.5)

(3.6)

can be reexpressed in terms of 6' ' as shown in Appendix
B. With the help of Eqs. (B5) and (B4) we arrive at

d(Q) = ——
m Km

2
lm

' 3/2

f dt e'"'f dt'dt "(t' —t" ie)—

(3.7)

with and the dimensionless sum and difference variables

9'(t;t', t")=e(t t")f d—r A(r)

+e(t' t)f d—r A(r) . (3.8)

This still holds for an arbitrary vector potential A(t). A
similar model that produces a dipole moment closely re-
lated to Eq. (3.7) has recently been proposed [76].

In order to make further progress we have to specify
the vector potential. For the monochromatic field (2.6)
with arbitrary elliptic polarization the function At(t, t )

has already been given in Eq. (2.23). It is convenient to
introduce the variables

r=co(r' r") (——~ &r& ~),
o =co(r'+r" ) ( lrl & o & a& ) .

(3.10)

At(t', t")=—
rt r 1— sins/2

r/2

+g cos(2ait —o } sinr ——sin—4. 2z
7 2

(3.1 1)

In terms of these and the parameters introduced above in

Eqs. (2.24) and (2.25},we have
2

r'=t t', r"=t —t" (0&r—', r" & ~), (3.9) and

9'(t;t', t")= e' '(x —i') r+e '—r icos —+icr sin—
2

C. C. (3.12)

We can now do the integration over t in Eq. (3.7). For simplicity, we will neglect the width I and Stark shift b E of the

ground states discussed in Sec. II (see, however, the remark below regarding emission, viz. , scattering of the fundamen-

tal). After some algebra, the dipole moment can be written as

2

d(Q) = —2vri
4m xm

2
im

3/2

g 5{Q— 2(tok+)neo)a„'+i—a(i"
k, n, l

2

f i{n+k)a t{IEP I/co+ n+21)r
exp 'ig~ 1—

(~+is)
sin{~/2)

~/2

X i(x igy)Jk+){z(r—)} —re' +e' icos —+iosin—.
—(x+igy}J (z(r)) —'r+e' ~ icos — i o sin—— {3.13)

where z(r) is given by Eq. (2.28) with a)r replaced by r as defined in Eq. (3.10). The a„are the Fourier expansion

coefficients of the function w(t) defined in Eq. (2.26). Finally, we can carry out the integration over o, which leaves
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3/2
2N

0
2

im2 2
d(Q) =2m.

4m m~

i I'pl /2
X i(x i—gy )Jk „+,(z(r) ) —sin—

g a„"+Iaii k5(Q (—2k+1)co}
2AM

Xfd~ i(IEOI/co+n+21)w igrI ]—[sin(v/2)/(v/2)] I i~Ill/(2~)
s/2 e e e

(r+ie) /

~e-'I'I"
+(x+i gy) Jk „(z(r)) —sin—

21—co Q
(3.14)

Through Eq. (3.2) the dipole moment d(Q) is proportional to the matrix element for emission of a photon with frequen-
cy Q and polarization e. It displays a sequence of odd harmonics of the laser frequency co, whose strength has to be
determined by the one remaining quadrature with respect to r Fo.r an elliptically polarized incident field (0 & lpl & 1)
the polarization of the emitted harmonics is elliptical too. For linear polarization (/=0) it is linear. For circular polar-
ization (lgl =1) we have z(r)=0. As a consequence, a„=0 for n40 and no harmonics are emitted. Equation (3.14)
does not allow for the calculation of the scattering of the fundamental, owing to the divergence of the last square brack-
et for Q=co. This can be traced back to our neglecting the width I'. In order to compute scattering of the fundamen-
tal, this width, but also, and more importantly, other existing damping mechanisms, would have to be included.

It is more convenient to restrict the remaining integration in Eq. (3.14) to positive values of r. Such a form is
3/2 ' '2

d(Q) = 2e Q 2' N g 5(Q —(2k+ 1)co)
m~ n

= g dk5(Q —(2k+1)co),
k

X ~ a+ a Zk+n . r cine/(2')X n+I I
0 3/3

nl 0

X I(x i gy)J—k „+,(z(r)}p+(r)sin(aknl(r))

(x+i gy—)Jk „(z(r))P (r)cos(ak„i(r)) I

(3.15)

where

ak„((r)=

+i r/2

p+(r) = ——sin —,
1+co Q

IEo
+n+21 r+r}r 1— sinr/2

r/2

2

(3.16)
~2k+i
dQK

3

e l22' k (3.18)

I

sion per unit time and solid angle of a photon of the
(2k +1)st harmonic with polarization e,

7T 7T (n+k), —
4 2

(3.17)

and z(r) is defined in Eq. (2.28) (with cor~r). In Eq.
(3.1S) the terms with n =k+1 and n =k apparently give
rise to a divergence at r =0 since Jo(0)=1. If these terms
are to be kept, one has to go back to Eq. (3.14). There is
no actual divergence since f"„dr(r+i@) =0

Finally, we square the matrix element (3.1), multiply
with the phase-space density of the emitted photon with
momentum K( l

K
l

=Q ), divide by a long normalization
time, and integrate over the energy-conserving 5 function
of the (2k+1)st harmonic. This yields the rate of emis-

IV. PROPERTIES OF THE EMITTED HARMONICS

In this section we will present and discuss the spectral
intensities of the emitted higher harmonics as a function
of the two dimensionless parameters of the model
e= lEO l

/A'co and ri= U /A'co. To this end the one remain-
ing quadrature in the expression for the induced dipole
moment has to be carried out numerically. For all the re-
sults presented in what follows we will start from Eq.
(3.15) with the approximation discussed in Appendix A
that a„=5„Dao, where ao is given by Eq. (2.40). Most of
the time we will deal with purely linear polarization g= 1.
In this case, the dipole moment {3.15}reduces to

k
d(Q)= (177}lEol/m )' y 5(Q —(2k+1)co) e'"+'

CO (2k+ 1)2 o

X [Jk+&(z(r) }P+(r)sinakoo(r) —Jk(z{r)}P (r}cosakoo(r)] . (4.1)
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In order to make contact with the notation used previ-
ously [62,63], we note that

d(Q) =2e
1/2

x g 5(Q —(2k+1)co)LI,* . (4.2)
k

The differential emission rate per unit time and solid an-
gle (3.18) then reduces to

—10

CO

4t~-20
Cg0

L LL
L

L

~ ~ ~ ~ ~ ~ +
0
e

0 ~~ ~ ~ ~ ~ ~ 4
& ~

+
T + ++I~

'T y+ L

Eo a=
5.00
10.0
15.0
20.0
25.0

dR 2k+1 rO
=co (2k+1) E, Lk

K
(4.3)

Here the dimension is carried by the factor of co,

ro =e /m is the classical electron radius, and A. =2ir/co is
the laser wavelength. The fact that the dimensionless
quantity lLk l only depends on the two dimensionless pa-
rameters e and g implies scaling laws for the emission
rate (4.3).

The dipole moment (4.1) vanishes with vanishing lEol,
as it should; in the nonrelativistic domain under investi-
gation here, an electron that is just subject to the field
and not to any third agent moves harmonically and does
not radiate any higher harmonics. However, the dipole
moment goes to zero only as the square root of lEol.
Hence, we will see below, even for very small binding en-
ergies there is still substantial harmonic emission. Owing
to rapid depletion of the ground state, however, which we
neglected by the approximation I =0, these results are
only physically meaningful in the limit where the pulse
length goes to zero.

Figures 1 and 2 display typical results. Figure 1 shows
the harmonics emitted by a model atom with the binding
energy of argon (lEol =15.76 eV) in a Nd:YAG laser
(idio=l. 165 eV) for several intensities and Fig. 2 com-
pares various model atoms with different binding energies
while the intensity is fixed. All of the spectra show the
end of the plateau at a harmonic number near
(lEol+3U&)/fico. Figure 2 indicates that the height of
the plateau, that is, the ef5ciency of HHG, drops dramat-
ically with increasing e. Therefore, e.g. , doubling cu for
constant lEol boosts the eSciency of HHG even if i),

-30
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Lv~vv +vvZT

Kf
~ 4I
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FIG. 2. log~0(lLk l ) as a function of harmonic order (2k + 1)

for an intensity of 3X10" W/cm' in YAG (g=2.7) with

l Eo l

= 5, 10, 15, 20, and 25fico

which scales as co, decreases in the process. Figures 2
and 6 show that the height of the plateau scales less
dramatically with i), particularly for i) ))l. Unfor-
tunately, however, the extent of the plateau thereby
reduces significantly since its maximal energy is approxi-
mately lEol+3U .

As a general feature, the intensities within the plateau
region fluctuate by up to one order of magnitude from
one harmonic to the next and in some cases even more.
For example, Fig. 1 shows that the 15th harmonic in "ar-
gon" is suppressed by about two orders of magnitude
with respect to the two neighboring harmonics. This
effect is pursued more closely in Fig. 3 with the result
that this suppression takes place in the intensity region
2 g ~ 5. It is amusing to observe that experimentally
the 13th harmonic in argon in the situation covered by
Fig. 1 has not been detected in the earlier measurements
[16] and has just barely been seen recently [67], about one
order of magnitude below the average level of the pla-
teau. The near agreement with the data may well be ac-
cidental. However, the fact that these features occur for
the bare-bones 5-function atom proves that they are not
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FIG. l. log, o(lLk l ) as a function of the harmonic order
(2k+1) for argon (lEol =15.76 eV) in YAG (A'co=1. 165 eV) for
three different intensities. The rate of emission is proportional
to (2k + I )'lL& l'.

FIG. 3. log, o(lL„l ) as a function of intensity for the 13th,
15th, and 17th harmonics for argon (lEol =15.76 eV) in YAG.
Throughout most of the intensity range, the 15th harmonic is

significantly suppressed with respect to its neighbors.
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~

) as a function of harmonic order (2k +1)
for i)= 5 and with binding energies ~Ep ~

=0.05, 0.1, and 0.5A'co. FIG. 6. Single-atom harmonic emission rate for H in a CO&

laser at intensities 1, 2, 5, and 10X 10' W/cm .

necessarily related to resonances, Rydberg series, or other
more subtle properties of real atoms and/or fields. Just
one bound state, a continuum, and a plane-wave field of
infinite extent are sufBcient to generate them.

Figure 4 shows the harmonic spectra for extremely low
binding energies. The plateau still obeys the "3U~ rule.

"'
The figure also vividly illustrates the fact that even

though no harmonics are emitted for ~Eo~ =0, they die

out only very slowly when ~Eo~ approaches zero. Of
course, these results are rather academic as atoms with

binding energies this low can only be exposed for the in-

tensities under consideration to extremely short pulses
before they ionize.

In contrast to their rugged structure within the pla-
teau, the harmonics drop very smoothly beyond its end.
In Fig. 5, we have plotted the number of the "last" har-
monic, defined as the last local maximum of the harmon-
ic intensities versus g. The straight line

n,„=(~E ~o+3.17U )/Irico provides an almost perfect fit

up to very high intensities. We will investigate this rule
more closely in Sec. V and relate it to the properties of
the integral (3.15) and a simple physical model [24,25].
The 3U rule agrees quite well with the data [22,24];
significant deviations have been attributed to harmonic
emission from the respective ions [24].

While the 5 potential when applied to real atoms can at

best be expected to pinpoint some trends and some gen-
eral features, it constitutes a reasonable model of the neg-
ative hydrogen ion to the extent that the former can be
described as an effective one-electron system. This
should be possible for not too high intensities. Indeed,
multiphoton detachment of H has been successfully
modeled with the 5-function potential [61]. However, for
intensities approaching the stabilization regime the
description by an efFective one-electron potential is
known to break down [68,69]. No experiments on higher
harmonic generation in H have been carried out yet. In
Fig. 6 we show the harmonic production rates for
H (~E0~ =0.754 eV) in a CO2 laser for various intensi-
ties. Of course, experimental results for H would be
highly interesting since they would for the first time deal
with harmonic production from a non-Coulombic (short-
range) potential.

The dependence of a given harmonic on the intensity
displays the same rugged nature as the plateau for a given
intensity. In Fig. 7 the 19th harmonics for "krypton"
and "argon" in Nd: YAG (@=12.01 and 13.52, respective-
ly) are plotted versus rl. Two distinct patterns are im-

mediately distinguished. First, there are pronounced
spikes spaced by integer intervals in rl. Second, the emis-

180
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FKj'. 5. End of the plateau, defined as the last local max-
imum of the harmonic emission rates, as a function of the inten-
sity for ~Ep~/%co=10. The straight line Q=~Ep~+3. 17U~ pro-
vides a perfect fit.

FIG. 7. log«&(~L9~ ) as a function of laser intensity for
~Ep~/fico=12. 01 (krypton) and ~Ep~/fico=13. 52 (argon). The
evenly (in g) spaced spikes or cusps which are visible for g=(in-
teger) —0.01 for krypton and g=(integer) —0.52 for argon are
related to the closings of ATI channels.
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FIG. 8. Phase of L9 as a function of intensity for the same
situation as in Fig. 7. Since the phase changes on the average by
2n. when g increases by 1 in the plateau region, the quantity
arg(L9 ) —2m.g is plotted.

FIG. 9. Argument and phase of L7 as a function of q when
@+g=13.57 is kept constant. The spikes related to the channel
closings are absent.

sion rate drops occasionally by several orders of magni-
tude, e.g. , for krypton at g=6. 5 and g=9.5 and for ar-
gon at g=4. 8 and g=7.9. Figure 8 gives the phase of L9
for the same situation. We can infer a close correspon-
dence between these patterns in the magnitude and in the
phase of L9. The physical origin of the integer-spaced
spikes has been explained in Ref. [63]. They occur at
those intensities where an above threshold ionization
(ATI) channel corresponding to the absorption of a
specific number of photons closes owing to the pondero-
motive barrier increasing with intensity. These channel
closings occur at

is varied. Indeed, the spikes related to channel closings
are now absent. We have no explanation for the quite
pronounced structures that still remain and the associat-
ed suppressions of the harmonic emission rates.

Figures 10, 11, and 12 deal with the efFects of the po-
larization of the incident laser field (2.6) on the spectrum
of the emitted harmonics. Figure 10 shows the decrease
of the harmonic response with increasing ellipticity of the
laser field. Both the intensities of the electric field of the
harmonics in the x direction and in the y direction are
given. We notice that both components have the same
cutoA; which is approximately given by Eq. (5.24), viz. ,

~EO~+ Uz =nba E,„=iEoi+3. 17Upl(1+( ) . (4.5)

or

E+Yf =n (4.4)

The fact that the components of the harmonic intensities
in the two directions have the same cuto6' implies that

i.e. in the case of Fig. 7 at g=n —0.01 for @=12.01 and
at rl=n —0.52 for @=13.52. In the phase of Lk these
channel closings show up as a sudden temporary decrease
of the phase. The spikes only occur for the harmonics
within the plateau and not for those beyond. For Fig. 7,
the 19th harmonic for e= 12.01 is outside the plateau for
g-2. 5, and we can see how in this region the spikes
disappear and the slope of the phase settles to a value
near 3.3 (to be explained in Sec. V). It is interesting to
notice that approximately integer-spaced structures
(spikes or resonances) have also emerged from single-
atom calculations based on a numerical solution of the
time-dependent Schrodinger equation (see Ref. [27] for
xenon and Ref. [47] for hydrogen) and to some extent
have also been seen experimentally [67]. Attributing ex-
perimentally observed structures in the intensity depen-
dence to patterns calculated for single atoms at constant
intensity cannot really be done without properly averag-
ing over the intensity distribution in the interaction re-
g1on.

In view of the above, we expect that the harmonic
emission rates are much smoother when g+e is kept con-
stant while either g or e is varied. This expected
behavior is displayed in Fig. 9, where g+e=13.57 and q
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FIG. 10. Harmonic emission rates for the case where the po-
larization of the driving laser field [given by Eq. (2.6)] changes
from linear to circular for ~EO~/co=10 and q=3. The topmost
triangles and the squares correspond to /=0. 001 for polariza-
tion along the x and y axes, respectively. (The topmost triangles
agree up to three digits with the case where /=0, viz. , linear po-
larization. ) The circles and diamonds are for /=0. 5, for x and y
polarization, respectively, and the plusses and lower triangles
for /=0. 9.
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FIG. 11. Harmonic emission rate of various harmonics vs el-

lipticity g, for ~Ep ~
/co 4, g = 1. The figure corresponds to Fig.

1 of Ref. [74] (xenon, 600 nm).
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FIG. 12. Harmonic emission rate of various harmonics vs el-
lipticity g', for ~EO~/co= 11.1, q=42. The figure corresponds to
Fig. 2 of Ref. [74] (neon, 825 nm).

throughout the harmonic spectrum the polarization of
the emitted harmonics is roughly similar to the incident
laser field. For example, for /=0. 001, i.e., when the laser
field is practically linearly polarized, the y intensity is
lower than the x intensity on the average by a factor of
10 =g . Figures 11 and 12 correspond to recent mea-
surements and will be discussed below.

How well does this model fare when in spite of the
above-mentioned reservations a quantitative comparison
with the data is attempted? We can get a partial answer
from a numerical comparison between the hydrogenic
Coulomb potential and a Yukawa potential whose pa-
rameters are adjusted such that it supports exactly one
bound state with a binding energy equal to the ground
state of hydrogen. Figure 6 of Ref. [47] (see also Fig. 13
of this paper) shows that for a fixed intensity of 2X10'
W/cm and 1064 nm the Yukawa potential underesti-
mates the harmonic emission rates by many orders of
magnitude, due to the lack of near-resonant rate-
enhancing excited states. The relative spectra, however,
are comparable and, in particular, the numbers of the last
harmonics that are clearly discernible above the back-
ground are almost identical.

FIG. 13. The harmonic components of the dipole moment
calculated using the explicit solution of the time-dependent
Schrodinger equation by Kulander, Schafer, and Krause (Ref.
[70]) for a Yukawa potential with one bound state (open
squares) and a Coulomb potential (open triangles) both with a
binding energy of 13.6 eV compared with the 5-function poten-
tial model for binding energies of 13.6 eV (filled diamonds) and
10.2 eV=

4 X 13.6 eV (filled triangles); the latter number corre-

sponds to the energy difference from the ground state to the first
excited state of hydrogen. The data points of Kulander,
Schafer, and Krause, which were listed with arbitrary units,
have been scaled so that the third harmonic of the Yukawa po-
tential and the 13.6-eV 5-function potential match.

There is no compulsory reason as to why in adjusting
this model to a given atom we have to identify ~Ec ~

with
the binding energy of the atomic ground state. Indeed,
we argue in Appendix C that for the purpose of describ-
ing high-order harmonic generation, ~Eo~ should rather
be adjusted to the energy difFerence between the ground
state and the first excited state. Figure 13 shows that this
yields spectra which agree with those calculated numeri-
cally for hydrogen [70] within less than two orders of
magnitude. For a Yukawa potential with just one bound
state and the 5-function potential adjusted to the same
bound-state energy the discrepancies are within the same
range.

Macklin, Kmetec, and Gordon [21] have carried out a
very detailed comparison between their measurements at
800 nm in neon with the predictions of this model which
was used to provide the single-atom dipole input for the
propagation model of Ref. [26]. The measurements of
Macklin, Kmetec, and Gordon represent, at the time of
this writing, the most extensive investigation of the inten-
sity dependence of very high harmonics. They followed
the 31st, 41st, . . . , 101st harmonic from their respective
appearance intensity up to the intensity region where the
harmonic response becomes Bat, that is, well inside the
plateau. For the comparison with the 5-function model
adjusted to the binding energy of neon, they integrated
the fixed-intensity dipole response [as given in Eq. (3.15)]
over the intensity distribution in the interaction region.
They made the assumption that their measured intensi-
ties were too high by 40% for the 31st to 51st harmonic
and by 40% for the 61st to 81st harmonic and multiplied
the calculated response by relative factors of 1, 1.1, 1.9,
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10.5, 14, and 7 for the 31st to 81st harmonic, respective-
ly. The last-mentioned numbers may partly reflect the
unknown relative wavelength sensitivity of their detec-
tion system. Under these conditions they obtained a very
good fit of the intensity dependence of the observed har-
monic response ranging from the initial rise of the har-
monics with a power of the intensity near the one pre-
dicted by perturbation theory to the much flatter increase
when the respective harmonics reached the plateau. Sat-
uration was neglected in this calculation.

These comparisons suggest that the atomic binding po-
tential strongly affects the absolute magnitude of the har-
monic response, particularly the height of the plateau,
and to a much lesser degree the relative harmonic spec-
tra. As argued in Appendix C, near-resonant energy
denominators have a dominant effect on the magnitude of
the harmonic response. Therefore, the agreement be-
tween the data for a particular atom (or computer simula-
tions of the same situation) and the results of the 5-
function potential is significantly improved if the parame-
ter ~E0~ is adjusted to the energy difference between the
ground state and the first excited state rather than to the
binding energy.

Finally, we can compare the results of this model to re-
cent measurements where the effects of the ellipticity of
the incident laser field on the harmonic spectrum have
been investigated [74]. Figures 11 and 12 give the results
of the zero-range potential for the cases of Figs. 1 and 2
of Ref. [74]. For comparison with the data, we have in
each case adjusted the binding energy ~ED~ to the energy
difference from the ground state to the first excited state
of the respective atom, as discussed above.

An expansion of Eq. (3.15) (with a„=O for nWO) to
lowest order in g shows that

(4.6)

V. APPROXIMATION FOR THE HIGH HARMONICS
AND A CLASSICAL MODEL

One of the characteristics of higher-harmonic emission
of laser-irradiated atoms is the existence of the three dis-
tinctly different regions of the harmonic spectrum: the
low harmonics where the intensity rapidly decreases with
increasing harmonic number, the plateau region, and the
region beyond the plateau where again the intensity
quickly drops for each higher harmonic. In this section
we will consider the last mentioned region. A glance at
the explicit results displayed in Sec. IV shows that in this
region the dependence of the harmonic spectrum on the
harmonic number and the other parameters is quite
smooth. Hence, it is not too surprising that for this re-
gion we will be able to find an excellent analytic approxi-
mation to the dipole moment. Fortunately, it will turn
out that this approximation still holds in the uppermost
part of the plateau, thus covering what might be the most
interesting part of the harmonic spectrum.

We will restrict ourselves to the case where the approx-
imation a„=a05„0 holds. The integral (3.15) is largely
dominated by the behavior of the Bessel functions

Jg+ )(z(7 ) ) and Jk (z(r ) ) with the argument

4sin (r/2)z(r)=r}g sinr— (5.1)

The absolute value of z(r} has maxima for r=r„which
are independent of k, g, and E0. These values are solu-
tions of

displays a lot of structure for which we have no physical
explanation, such as the initial increase of the intensity of
the 15th harmonic with increasing ellipticity and the pro-
nounced shoulders visible for the 33rd to 63rd harmonics.

in agreement with an earlier estimate [75]. It can also be
seen from Eq. (3.15) that there is symmetry with respect
to g~ —g. We will therefore plot results only for posi-
tive values of g.

Figure 11, which is for @=4 and g=1, plots the total
harmonic intensity, viz. , the sum of the x and the y com-
ponents, versus the ellipticity g for the 9th, 11th, and
13th harmonics, which lie beyond the plateau. At
(=0.5, the calculated relative harmonic intensities
exceed the lowest-order perturbation-theory (LOPT} esti-
mate (4.6) by less than 20%. The corresponding mea-
sured relative intensities (Fig. 1 of Ref. [74]), on the other
hand, exceed LOPT by a factor of 3. Figure 12 is for a
substantially higher intensity (E=11.1 and r}=42) and
corresponds to Fig. 2 of Ref. [74]. All of the depicted
harmonics now lie within the plateau. Our results repro-
duce the experimental observation that the measured har-
monics split in two groups: the lower ones (the 15th and
17th) and the others. As in the case of Fig. 12, the inten-
sities calculated from the zero-range potential fa11 off fas-
ter with increasing ellipticity than is shown by the data
[74]. This is what one would expect to happen, from the
point of view of a classical model, for a zero-range poten-
tial (see the discussion at the end of Sec. V). Figure 12

dz= 4cosr„+ sin r„ /2
d7

4
sin(r„/2)cos(r„/2) =0 .

+n
(5.2)

This condition can be rewritten as

2
sin(r„/2) —cos(r„ /2) =+sin(r„ /2) . (5.3)

The corresponding values of z(r„) and its second deriva-
tive are

z(~„)=27}gsin(r„/2) cos(~„ /2)—
2 sin(r„ /2)

= + 2gg(sin(r„ /2) }

z(r„)= —ggsinr„.

(5.4)

(5.5)

&I, + ~&~, —«2, + «2, —~ '

There are two sets of solutions to Eq. (5.3), corresponding
to the two signs in Eq. (5.3), which we will denote by
r„~(n =1,2, . . . ). It is easy to see that
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For large r, z(r) approaches ggsinr and hence
r„+~(2n —

—,')n and ~„~(2n + ,'}—~ T. he lowest solu-

tions 7„+are given in Table I, along with the correspond-
ing values z„+ z—(—~„z}. We notice that in general

~z„+) & )z„~. The solution with the largest associated
value z(r„) is

r, + =4.0856 with z, + = —1.5866qg . (5.7)

This ~z, + ~

constitutes an upper bound of ~z(r)
~

for all r.
For later use, we still compute

r

d
7

d7.
4 sin (r/2)

7=7
n

10 80 30 40 50

I dz d sinr

rg d~ d7.

=1 cosr„=—2 sin r„/2

z(r„)
+

r=v
n

(5.8)

FIG. 14. J,o(z(r}}as a function of r for q=6. The integral
(3.15) for the harmonic emission rates receives its dominant
contributions from the maxima at times v=7„~. These are the
times when, in a classical picture, the electron returns to the site
of the potential.

ing the second derivatives. The approximation then is

where in the last step Eq. (5.4) has been used. In Eq. (5.8)
the upper (lower) sign holds for r =r„+ (r=r„).

For ~z~ &&k, the Bessel function Jk(z) steeply increases
with increasing argument as exhibited, e.g., by the lowest
term of its power-series expansion, that is,

1 zJ (z)-
k~ 2

Z21+0 (5.9)

Since ~z(r)~ has the just mentioned upper bound of
1.5866 rig, we are certainly in this regime as soon as
k »1.59gg. The integral (3.15) will then receive its
dominant contributions from the maxima of Jk(z(~)}
which, in turn, occur for the maxima of ~z(r)~. This
means that the Jk(z) can be approximated by a series of
peaks at 7=7„+,cf. Fig. 14. The figure also shows that
the peaks at 7=7„+dominate the peaks at 7=7„since,
in view of Table I, ~z„+~ & ~z„~. In this case, for
moderate intensities, the peak at 7& + is by far the strong-
est. We will approximate Jk{z(r)}by a series of Gauss-
ians centered at

J„(z(r))-g J„(z)exp( —bk(r —r) ), (5.11)

with z =z(F) and

Jk(z) 1 Jt(z)
b = — z(F) = r}g sin(T)

2k Jk(z) 2k Jk(z)
(5.12)

if(7) if(7) if'(7.)(~—~) (5.13)

and extend the integration to —Do. Moreover, we drop
the term with the Bessel function Jk+,{z(r)) as, in view
of the approximation (5.9), it is smaller than Jk(z(r) }by
a factor of z/(2(k+1)). With these approximations the
relevant integral

k 3/2 e ' 'Jk z 7 7 cosak00 7
0

where Eq. (5.5) has been used. For z «k, b is indepen-
dent of k. In the integral in Eq. (3.16), Jk(z(r)) is multi-
plied by exponentials and powers. We replace powers 7
by 7 and exponentials according to

7 7n + —7 (5.10) {5.14)

with appropriate widths b—:bk(~) determined by match- is approximated by

—in/4
Ak =—( i )" —g Jk(z)27'";

1/2

1 —co/0

—5 4bk 4bk
e i(Q/2~ —] /2)~g jp ~—/ ~

with

—5 /4bk ~ — — /4bk )i[(Q/2')+1/2)7'I iF' + i ~ I i ik —if ~++—e
7

t

and
2

(5.15)

+

5~= +

Q 1

2' 2

n
2' 2

(5.16)

(5.17)

0 7+g7 1—
CO

sin(F/2)
r/2

(5.18)

In obtaining Eqs. (5.16) and (5.17) we make use of Eq.
(5.8). For



1554 W. BECKER, S. LONG, AND J. K. McIVER 50

(5.19)

and 0 &)2' we have
~ y+ ~

&& ~5+~. We may then drop in

Eq. (5.15) the terms involving exp( o+—/4bk). In order
to obtain an approximation valid for the end of the pla-
teau we may also restrict the sum over i in Eq. (5.15) to
just~=~, +. Then

—ip
Ol

Cg

pp
O

g = 0.30
g = 3.00
g= 100
g = 30.0

~ yy H +yg+1 Q Q yA

z = —l.5866'}g, (5.20)

e= 7+3.309',

0 1+ —+ 1.5866',2' 2

—i v/4

Ak =i"+—' J„(z)
2

—3/2
ikV —iF

1 i —
y /4bk ) i-, —y+/4bk

e +—e "e
2k

and the approximation reads [recall Q =(2k+ 1 }ni]
' 1/2

(5.21)

(5.22)

(5.23)

-30
0 80

I

40 BO 80
Harmonic Order

I

ioo i80

the electron moving classically in the presence of the
laser field only, so that

x(t)=—ea
(cosset —coscoto }+x ( to ),

m
(5.25}

FIG. 15. Comparison of the approximation, Eq. (5.23), and
the exact integral (4.1) as a function of the harmonic order
(2k + 1) for a binding energy of ~EO ~!fico=10at selected intensi-
ties.

A very crude estimate of the maximum of
~ Ai, with

respect to k can be obtained as follows. The magnitude
of ~A„~ is predominantly determined by the product
J„(z)exp( —y /4bk). The Bessel function assumes its
maximum for k —

~z~ while the exponential does so for
k=~Eo~/co+~z~/g& ~z~. The maximum of the product
will occur about halfway in between, i.e., at

k =— +—(I+()X1.5866rt .
1 ~Eo~

(5.24)
2 N 2

This estimate is supported by the numerical results to
be discussed below. The result (5.24) seems to imply that
even in the limit where g goes to zero (circular polariza-
tion) harmonics are still emitted. The estimate does not
take into account that for decreasing g the intensity of the
harmonics quickly decreases so as to vanish completely in
the limit of a circularly polarized field.

In Fig. 15, the approximation (5.23} is compared with
an exact evaluation of Eq. (3.15). As expected, the ap-
proximation works best beyond the plateau, but is al-
ready quite good around its upper edge.

The emission of the highest harmonics near the end of
the plateau can be quite well understood in terms of a
simple classical model which was advanced by Kulander
and co-workers [24,25]. We restrict ourselves to linear
polarization, viz. , /=0 or /=1, in what follows. The
model assumes that at some time t =tp the electron is set
free in the continuum with velocity zero. From this time
on we neglect the atomic binding potential and consider

= U (1+2cos ceto) . (5.26)

Depending on the time tp at which the electron was set
free, its time-averaged kinetic energy varies between U
and 3U . The maximal energy that the electron can emit
occurs in this picture if it falls back into the atomic
ground state. This energy is

E~,„=iEoi+3U~ —=(2k,„+1)co . (5.27)

A more refined version of this model [25] takes into ac-
count that the electron is most likely to emit the harmon-
ic photon when it is within the range of the atomic bind-
ing potential, that is, for our zero-range potential when it
is back at the origin. Rather than averaging the kinetic
energy over time, we then determine the time t, of emis-
sion from the condition that for given tp,

ea eax(t, ) = — —(sincot, —sincoto)+ (t, t )coscoot o—

(5.28)

This has solutions t i
=

t i (to). We then look for the extre-
ma of the kinetic energy at t = t

&
with respect to t0:

where, by assumption of the model, x (to) =0. We obtain
a first estimate of the maximal energy that the electron
can emit by calculating the time-averaged kinetic energy
of the electron moving according to Eq. (5.25). This is

2

(E„,„)=—(x(t) ) = ( —,'+cos ceto)
2m

Ei,;„(t,)= 2U (coscot, —coscoto)
B(ceto )

'"
B(toto )

Bt&=4U (cosset, coscoto) —sincot, — +sincoto =0 .
0

(5.29)
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(coscot, —coscot0 ) = co—( t, t—
o )sincoto .

0
(5.30)

Equation (5.29) with (5.30) and (5.28) then provide two
equations for to and t, under the condition that Ek;„(t&)
is extremal,

Differentiating Eq. (5.28) with respect to to, we determine

Bti /Bto

In the third and last lines of the preceding equation, Eqs.
(5.36) and (5.4) have been used, respectively.

We see that the quantum-mechanical integral (3.15) re-
ceives its dominant contributions from those values of ~
that in the classical model correspond to a time difference
between ejection of the electron into the continuum and
its recurrences to the site of the nucleus, such that the
kinetic-energy gain is stationary. The second derivatives
of the kinetic energies are

coscot
&

co—seato = co(t—
& to )s—incor &,

sincot
&

sinco—to =co(t
& to )c—oscoto .

In terms of the sum and difference variables

co(t—) to), 0' —co(t(+to},

Eqs. (5.31) read

(5.31)

(5.32)

~ +kin(tl ) 'f(r+ 1) 2 '7
(5.38}

+
Ek;„(t&)=4U sin

' =3.173U&, (5.39)

so that the ~+ yield maxima and the ~ minima of the
kinetic energy. According to Table I, the first recurrence
time ~& + yields the highest possible kinetic energy, viz. ,

7 7 7 . 0 1 . 7 0'
sin ———cos—sin —=—sin —cos—,

2 2 2 2 2 2 2

7 . 7 . CT . '7 7 7 0—sin —sin —= sin ———cos—cos—,
2 2 2 2 2 2 2

(5.33)

so that the solutions are determined by

7
sin ———cos—=+—sin —,

2 2 2 2 2

and consequently

CT
tan —=+1 .

2

(5.34)

(5.35)

Equation (5.34} is identical with Eq. (5.3) which deter-
mines the maxima of the argument ~z(r)~ of the Bessel
functions in the integral (3.15). Hence the solutions are
the ~„+ tabulated in Table I. The corresponding solu-
tions for the sum variables cr are

7T
o „+=+—+2k'.

2
(5.36)

=4U sin-~ 27
2

= +2coz(r„~)/g . (5.37)

with any integer k. The table also lists the corresponding
kinetic energies

E„;„(t,}=2U (coscot, coscoto)—

=8U sin —sin-~ 20 2&
2 2

slightly larger than the crude estimate (5.24). Hence, Eq.
(5.39) specifies the upper edge of the plateau in this classi-
cal model. The model also predicts a minimal kinetic en-

ergy of 1.54U . This is not related to any feature of the
integral (3.15). The classical model and the approxima-
tion are just not applicable for these comparatively low
harmonics.

Figure 16 depicts the contributions from some of the
higher peaks. The absolute value of each is plotted sepa-
rately; of course, Eq. (5.15) states that, actually, they
have to be added coherently. There is some tendency of
the higher peaks to fill in lower parts of the plateau down
to a harmonic energy of about ~EO ~

/co+ l. 5r}.
Physically, from the correspondence developed thus far

between the peaks of the integral (3.15) and the return
times of some classical orbits, we can draw some con-
clusions. For the uppermost part of the plateau, the clas-
sical picture elaborated above appears to be quite close to
reality. According to it, this part is due to electrons set
free in the continuum at such a time that their kinetic en-

ergy, when they erst return to the nucleus, is maximal.
For the lower portions of the plateau, there is still some
truth in the picture that they are emitted at subsequent
recurrences to the nucleus. For the lower half of the pla-
teau, below approximately ~EO~/co+1. 5r}, this classical
picture fails.

Sometimes it is assumed that this classical model ap-
plies for high intensities such that the electron appears in
the continuum via tunneling ionization. Figure 15 shows
that this is not necessarily the case. The approximation
works very well already for intensities which clearly cor-

TABLE I. Recurrence times r„~ and associated values of z(~) and the respective kinetic energies at
the recurrence times.

1

2
3
»1

+n, +

4.086
10.792
17.155

(2n ——')m.

z(~„~}/gg
—1.587
—1.202
—1.123
—1

Ekin(+n, + )/Up

3.173
2.404
2.247
2

7.623
14.004
20.327

(2n + —')m.

0.771
0.867
0.906

+1

Ekin(+n —)~Up

1.542
1.735
1.813
2
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FIG. 16. Contributions from some of the higher-order maxi-
ma ofz(r„+) to the exact integral for i)=10, ~Ep~/fipi=10.

VI. CONCLUSIONS

The potential that we have used in this paper to model
higher-harmonic production arguably constitutes the
simplest possible description of an atom. This has two
immediate advantages. First, the model yields expres-

respond to the multiphoton regime.
The classical model discussed here is very reminiscent

of a similar two-step model for above-threshold ioniza-

tion [71]. In this case, it was assumed that the electron
was injected into the lowest possible continuum state and

developed from there on according to a Volkov solution

subject to the field only. For linear polarization, this
model led to a fairly good description of the electron en-

ergy distribution [72]. This brings us to a limitation of
these simple two-step models when it comes to their ap-

plicability to real atoms: they only work well for linear
polarization [73]. For circular and already for elliptic po-
larization, the model assumptions are not justified. First,
the electron cannot be injected any more into the contin-
uum with zero or near zero angular momentum. Hence,
the assumption of an initial zero velocity is unattainable.
Second, only a few electron trajectories ever return to the
site of the nucleus, not enough to yield a stationary value

of the kinetic energy with respect to the injection time.
This is the case for two-color high-order harmonic pro-
duction to be discussed in a separate paper. It is also the
case for harmonic production by an elliptically polarized
laser field, which we discussed in Sec. IV. The classical
model would predict virtually no harmonic production in

either case. Equation (3.15) (and a similar equation for
the two-color case), on the other hand, yield significant
harmonic emission. However, the model might still hold
if the electron is no longer required to return to the exact
center of the binding potential, but only to come close. If
such a picture is valid, it might explain why the zero-

range potential gives significantly lower harmonic emis-
sion rates for nonzero ellipticity than recent experiments
have measured [74]; it is much more difficult for the elec-
tron to return to within the range of a zero-range poten-
tial than to a Coulomb potential.

sions for the rates of emission of higher harmonics in
closed form, that is, just one quadrature is left for numer-
ical evaluation. These integrations typically run on a
workstation not much longer than a few seconds depend-
ing on the parameters. They require nothing more than a
reliable integration routine, as opposed to the numerous
subtleties involved in a high-precision numerical solution
of the Schrodinger equation. Moreover the model is truly
three dimensional. Second, the model provides a good
deal of physical insight in the following sense. Whichev-
er qualitative features it yields do not depend on any
more complicated properties of the atom than the very
facts that (i) it binds and (ii) it can be ionized. Effects
present in the data but not in this model then have to be
attributed to the detailed atomic structure. For example,
such a model is not capable of pinpointing the conse-
quences of resonances with excited states which from the
point of view assumed above may be considered a virtue.
The model should provide a good description of harmon-
ic production in negative ions such as H . Finally, it has
turned out [21] that it even gives a good description of
the relative intensities of high-order harmonic production
in atoms over a large range of harmonics and laser inten-

sities. Probably still better agreement with the data
would result if the ground-state energy of the model
would be adjusted to the energy di6'erence between the
ground state and the first excited state of the atom rather
than to its binding energy, as we proposed in this paper.
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APPENDIX A: APPROXIMATION
OF THE QUASIENERGY GROUND STATE

All of the explicit computations in this paper and all of
the results are contingent upon the approximation
a„=ap5„p, that is, we replaced the function R (t) defined
in Eq. (2.14) by apexp( iEt) This is —exact .for circular
polarization but not in general. In order to obtain an ac-
curate solution we have to solve Eq. (2.30), which in-
volves the eigenvalue of E' in a complicated nonlinear
fashion, for the expansion coefficients a„. For the leading
coeKcients a+, (and, possibly, for a~2) this can be done
as outlined below Eq. (2.36). In general, however, we re-
place E on the right-hand side of Eq. (2.31) by its field-

free value —~Ep ~
while linearizing the left-hand side of

Eq. (2.30) with respect to the quantity b, —il /2, which
when cut off can be solved by standard methods to yield
the a„. These then enter Eq. (3.15), which specifies the
harmonics. %'e will here be satisfied with just presenting
and discussing the resu1ts.

Figure 17 displays selected expansion coefficients for
~Ep ~

/co 10. Most importantly, the a„come out to be
very small compared to unity. They can be seen to follow
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0

Cl

OQ
O )

4 8

+4 ~

-20
—1

I s,
I +2

+7
I

0
logio(n)

~ Eo ~
/co+ n +21 =0 in Eq. (3.17), i.e., where

I = ——2( ~Ec /co+k ),n+I= ——2( ~Eo ~co
—k) .The explicit

evaluation shows that the error introduced by the ap-
proximation of the ground state is of relative order 10
or smaller for all harmonics but the third. In the latter
case, it may be of order unity or even larger, but in any
case within one order of magnitude. For example, for
g~10, the approximation underestimates the rate of
emission of the third harmonic by a factor of 1.6, while
for the fifth harmonic the approximation agrees with the
exact result up to terms which are of relative order 10

APPENDIX B: A FORMAL RELATION

FIG. 17. The expansion coefficients ~a„~/~ao~ defined in Eq.
(2.26) for

~
Eo ~

/co= 10 and various values of n as a function of g.

the expected power law a„-ri" up to values of ri well

above unity. Moreover, for n & 1, we have ~a „~ && ~a„~.
This is to be expected as the a„with n &0 correspond to
virtual states above the ground-state energy —~Eo~. In-
serting now the a„ in Eq. (3.15) we have to carry out the
various integrals, all of which are of the same form as the
Lk. These integrals are largest if the index of the Bessel
function is zero, i.e., for n =k or k + 1 and if

In this appendix, G' '(rt, rt') will designate the homo-
geneous propagator, defined again by Eqs. (2.8)—(2.12)
but without the 5 function on the rhs of Eq. (2.8) and
without the 8 function on the rhs of Eq. (2.10). This
propagator satisfies

fd rG' '(r't', rt)G' '(rt, r"t")

iG ' —'(r't ', r"t"), (B1 )

by virtue of being the propagator. Differentiating this
equation with respect to r' and r" and adding or subtract-
ing the two resulting equations yield with the help of the
explicit form (2.9)—(2.12),

rG' ' r't', rt rG' ' rt, r"t"

Since

I lt

(t t") r'+ ——f d~ A(r) +(t' t ) r"+——f d~ A(~)t' —t" m m
G' '(r't', r"t") . (B2)

[G' '(rt, r't')'= G' '(r't—', rt),
for the homogeneous propagator, we obtain from Eq. (B2) letting r'=r" =0 the relation

(B3}

d r[G' '(rt, Ot')]'rG' '(rt, Ot")=—,„(t t") d~—A(r)+(t' t) dr A—(r) G' '(Ot', Ot") . (B4)m(t' —t"), gll

We notice that

fd r[G' '(rt, 0t')]'erG' '(rt, Ot")

=d(t;t', t"}=[d(t;t",t'}]", (B5)

where d(t;t', t") has been introduced in Eq. (3.6).

APPENDIX C: PLATEAU AND LOWEST-ORDER
PERTURBATION THEORY

0

—10

00
—-20O
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IEol/a =

k 3
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~ 7
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k ~

Superficially, it appears that HHG is the paradigm of a
phenomenon that cannot be explained by lowest-order
perturbation theory (LOPT). On closer inspection, how-
ever, it becomes clear that some of the surprising features
of HHG, in particular the fact that the harmonic produc-
tion rates do not uniformly decrease with increasing or-
der, are already ingrained in LOPT. In this appendix, we
will present and discuss LOPT for the harmonics in order

—30
0 10 15

Harmonic Order (2k+1)

I

20

FIG. 18. Lowest-order-perturbation-theory cross sections as
a function of harmonic order for selected binding energies. The
cross sections rise when the harmonic order approaches the
binding energy.
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FIG. 19. ~Lk ~' calculated by lowest-order perturbation
theory as a function of intensity for a binding energy of

~ Eo ~

Iirtco =8. The figure displays the intensities

7)7 9 7)7 ] ] g7 ]3 and q5 7 where LOPT rates intersect, as
discussed in the text.

to elucidate the general behavior of HHG.
Figure 18 depicts the LOPT harmonic cross sections

C„, defined by

2 —( 2k+1
k 2k+1 9 (Cl)

This definition is somewhat arbitrary. We could have
just as well included in the definition the constants
displayed in Eq. (4.3), in particular the factor of (2k + 1)'.
The data points were calculated by using a very low in-

tensity, viz. g=0.01. They agree with what would have
resulted from true LOFT. Figure 18 exhibits a dramatic
rise of the harmonic cross sections whenever the harmon-
ic order approaches and exceeds Eo/co. Similar results
have been encountered in early calculations based on
LOPT I39—41]. The physical reason is obvious if one en-

visions the analytic expression for the LOPT cross sec-
tion: as soon as n ~ ~Eo /co, real intermediate states con-
tribute. Figure 19 provides for another view of the same
situation from a different angle. Here the quantities ~Lk

as obtained from LOFT are plotted versus q. On the
doubly logarithmic scale of the figure they are represent-
ed by straight lines with a slope of 2k +1. However, ow-

ing to the dependence of the cross sections C2&+, on k,
all of the straight lines with n =2k +1 & ~E(i ~

Ico intersect
those with n ) ~Eo~/ro. The intersection that occurs for
the lowest value of g is between those harmonics whose
order is just above and just below ~Eo I Iro. In the case de-

picted where ~Eo ~
/co =8, these are n =7 and n =9 and we

refer to the corresponding intensity parameter by g79.
For laser intensities higher than this point of intersection,
according to LOPT, the intensity of the ninth harmonic
would exceed that of the seventh. This defines the likely

FIG. 20. Comparison of ~Lk~' obtained from lowest-order
perturbation theory (dots), the exact integral (squares), and
"modified" perturbation theory where the plateau is set to the
level of its lowest member (line).

point of departure from LOPT for the ninth harmonic,
not for the seventh, which keeps following LOPT until at
a much higher laser intensity q& 7, it intersects the fifth
harmonic. It is at the intensity corresponding to n7 9 that
the plateau begins to form. As the intensity increases,
the higher harmonics one at a time intersect the seventh,
at intensities g7», g7», . . . . The procedure is more
easily read off from the figure than explained in words.
Figure 20 demonstrates that it is not a bad approximation
to describe the entire plateau by LOPT for its lowest
member. If we plot, for fixed g, the harmonic intensities
versus the harmonic number it boils down to approximat-
ing the plateau by a horizontal line extending to the right
starting from the lowest harmonic beyond which the
LOPT harmonic intensities start rising.

The conclusions to be drawn from these observations
are somewhat counterintuitive; the harmonics outside the
plateau, both the lower and the higher ones, follow
LOPT. (The fact that the high harmonics beyond the
plateau do so has already been clear from the approxima-
tion discussed in Sec. V; cf. Eq. (5.23) and notice that
beyond the plateau the Bessel function can be replaced by
the leading term of its power-series expansion. ) The har-
rnonics within the plateau region are deemphasized by the
departure from LOPT (rather than enhanced, as one
might expect at first glance); LOPT predicts a tnountain
where the exact calculation yields the plateau. For low
laser intensities, the plateau starts to form at n = ~Ep ~/co.
With increasing intensity it grows both towards lower-
and towards higher-harmonic numbers, though much fas-
ter towards the higher harmonics. With respect to the
laser intensity g, the plateau roughly scales with the har-
monic number n;„of its lowest member, that is, with

min
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