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Cold collisions in a laser field:
Quantum Monte Carlo treatment of radiative heating
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We give a full quantum treatment of the radiative heating mechanism which arises in atomic
clouds at low temperatures due to the collisions in the presence of a light field. The time scale of
these collisions is comparable to the time scale of spontaneous decay, hence one needs to combine
excitation and decay processes with the quantum motion of the colliding atoms into a single model,
which we have done. Our study produces a statistical approximate to the full density matrix by
combining wave-packet dynamics with the Monte Carlo state-vector method. We also present a
quantitative semiclassical treatment based on the Landau-Zener model, and show that it agrees
with the quantal results in certain parameter regimes. However, for low temperatures and strong
laser fields the full quantum treatment is needed. We describe our numerical procedures and the
statistical aspects of the Monte Carlo state-vector method in detail. Our main result is that the
low-energy collisions can produce appreciable heating of the cloud.

PACS number(s): 32.80.Bx, 32.80.Pj, 42.50.Vk

I. INTRODUCTION

Collisions between atoms undergoing laser cooling or
trapping limit the densities and temperatures that can be
achieved. Establishing the precise limits is, however, an
extremely complex matter as one has to treat very cold
collisions in the presence of a laser driving field. Due
to the extremes of temperatures reached the de Broglie
wavelengths involved are very large compared to atomic
dimensions. The interactions between the atoms also oc-
cur on very large characteristic lengths as the atoms with
very little kinetic energy experience their mutual influ-
ence at large separations. This means that the quantal
motion of the atoms has to be followed on a scale far
larger than the one associated with conventional thermal
energy collisions [1].

In the presence of the laser driving fields —responsible
for the cooling and trapping —an extra complication oc-
curs: excited atoms can emit spontaneously during the
slowly evolving collision. This combination of physics
means that we have to describe long-range quantal inter-
actions where dissipation is present. This in turn means
that we are forced in general to use a density-matrix de-
scription of the collision process. There are, however,
certain regimes in which semiclassical or perturbative ap-
proaches can be used.

The first approach to the problem [2,3] employed a
combination of a local excitation model with classical
motion on the excited surface. This model, further de-
veloped by Julienne and Vigue [4] and by Smith, Bur-
nett, and Julienne [5], was able to give a fairly accurate
description of collisions at T ) 1 mK as long as satura-
tion effects could be ignored. The optical Bloch equation
(OBE) approach of Band and Julienne [6] remedied the
defect in the semiclassical approach for what is now con-
sidered a moderately high temperature, i.e., T ) 1 mK.

At the very low temperatures now available both these
approaches are now known to fail even in the weak-field
regime [7,8]. For very weak fields a probe field approach
based on optical potentials can be used rather success-
fully [7]. In the regime we shall address in this paper,
namely, ultracold temperatures with laser saturation ef-
fects, a full treatment of the density matrix is required
and this is what we can now provide [9].

The direct conventional computation of a density ma-
trix for the system of interest is, however, simply not
possible with presently available machines [10]. Most
fortunately we are now able to produce the equivalent
computations using a Monte Carlo state-vector method.
This constitutes, we believe, a considerable advance in
the field, enabling us to study the long-range collision
processes in detail. In this paper we shall study the
way in which long-range collisions in a laser Geld produce
heating of the atoms being cooled and trapped. This pro-
cess exhibits features that cannot be described directly
using a semiclassical approach. We have, however, been
able to give a description based on the wave-packet dy-
namics [11] that can be partially explained in semiclassi-
cal (Landau-Zener) terms.

The results obtained using our simulation method al-
low us to make an assessment of the way this collisional
heating will affect future experiments. We cannot, of
course, include all of the physics responsible for every
detail of the collisional process at present. Hyperfine in-
teractions between the entrance and exit channels of the
collision will undoubtedly affect the quantitative conclu-
sions. The inclusion of these interactions (which increases
the computational problem by three to four orders of
magnitude) is part of our ongoing research. In spite
of this lack of detail we are able to make considerable
progress, particularly in the elucidation of the underly-
ing mechanism of the collisional heating process. We
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are also able to produce benchmarks for simp1er theo-
ries that, although more limited in scope, can handle
some other aspects of the complexity. In fact, it is only
through calculations of this type that the limits of the
simple theories can be established.

The main result of our study is that low-energy colli-
sions in the presence of a laser field produce appreciable
translational heating of the atoms involved. This heat-
ing affects the bulk of atoms that participate in collisions.
The amount of kinetic energy that a pair picks up is very
small compared to that needed to produce trap loss in
most practical cases [5,8]. This gain in kinetic energy is,
however, very significant when compared to the amount
the pair has as they enter the collision. The fact that this
heating is significant for the bulk of atoms that partici-
pates in collisions also makes pussible the simulation of
the process using the Monte Carlo state-vector method.

The effects we have been able to describe impinge on
the cooling process and limit the temperatures that can
be reached at higher densities. This should be contrasted
with the fact that most other calculations of cold colli-
sion dynamics have focused on trap loss. Computation-
ally collisional heating is a much more complex issue than
trap loss as it arises from a nontrivial interplay of excita-
tion and decay. It is, however, exactly the sort of prob-
lem the Monte Carlo state-vector method can handle by
providing the probability distributions for transitions to
occur from initial to final momenta.

The overall effects of the collisional heating process on
a particular trapping and cooling scheme will depend on
the detailed arrangement of laser fields. We concentrate
on a general model for kinetic energy changes at binary
collisions and avoid the use of any specific schemes. Our
results can then be used in the relevant model of cooling
and trapping process to predict the final momentum dis-
tributions (or density matrix in quantal treatments) that
are reached. This article is organized as follows. In Sec.
II we show how one can obtain the Hamiltonian used in
our simulations. Wave-packet dynamics and the Monte
Carlo state-vector method are presented in Sec. III with
an emphasis on the actual numerical implementation. In
Sec. IV we present the semiclassical Landau-Zener the-
ory for the heating process. The results from actual sim-
ulations for cesium with corresponding predictions of the
Landau-Zener approach are presented in Sec. V. Finally,
our study is concluded with the discussion of Sec. VI.

II. THE QUASIMOLECULE COLLISION MODEL

At the moment the atomic densities obtained in
magneto-optic traps are in the range 10 cm up to
10 cm [12]. At the low temperatures achievable by
laser cooling, the collisions, even though relatively long
ranged, can still be regarded as binary events. The time
between collisions is several times longer than the spon-
taneous decay time scale 1/I' or the duration of a single
collision [13]. All memories of the previous collisions, ex-
cept possible changes in the kinetic energy, are therefore
erased well before the next one is begun. Hence the bi-
nary collision approximation (BCA) is well justified and

we shall use it. Although we shall describe heating due
to collisions, the increase in velocities is not large enough
to cause a breakdown of BCA.

We have chosen the cesium two-atom system as the
basis of our study. The slowly colliding atoms can be
regarded as a quasimolecule system, in which the motion
takes place on the corresponding molecular potential sur-
faces along the axis connecting the two atoms. We can
assume for red detunings that our excitation from the 0+

g
molecular ground state ( Si~2+ Siy2) occurs dominantly

to the attractive 0„+molecular state ( Siy2+ Pqy2) of the
Csq quasimolecule. The choice of this case is motivated
by its potential importance in a wide range of experi-
ments. The method we use is, however, quite general.
For simplicity we assume that the ground state is Hat

with an infinite repulsive core at R = 0, where R is the
interatomic distance coordinate. The excited-state po-
tential is assumed to consist solely of the dipole-dipole
interaction, which dominates the motion on the excited-
state surface in the regions important for laser-induced
interactions. Hence it has the potential Rap —CsjR
where ~0 is the asymptotic energy difference between
the ground state and the excited state.

The laser-induced dipole coupling between the molec-
ular states has the classical form

C (R, t)Q (r„R)+ C, (R, t)g, (r„R), (2)

where r, is the set of electron coordinates, and
and g, are the electronic basis functions in the Born-
Oppenheimer approximation. The adiabatic approach
to the internal motion of the quasimolecule is justified
by the low energies involved. We can assume that the
changes in the angular momentum induced by the field

have a negligible effect on the wave-packet dynamics.
This will hold in the regime we have studied. For sub-

stantially lower temperatures or higher couplings this ap-
proximation will break down.

In the rotating wave approximation we obtain (in the
absence of spontaneous decay) the evolution of the am-

plitudes to be in the ground and excited states from the
time-dependent Schrodinger equation

ih = HC,

where

t' iII (R, t) l I' C, (R, t) exp(iAt) 'l

q 4, (R, t) p ( C, (R, t) exp(iupt) )
(4)

V(t) = 2hA cos(url, t).

Both 0 and the decay parameter I' (introduced later)
depend on the dipole moment d, and hence on R [4], but
for simplicity we ignore this dependence although it can
be added when needed. We can also assume that the
spatial variation of the field across the region where the
field driven dynamics occurs is negligible.

We make a partial-wave expansion of the wave func-
tion. Hence for each partial wave with angular quantum
number / we have the following radial part:
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and

with

h~ 02
T(R) = ——

2p OR2

U(R) = hl(l+1) h~
2pR'

h2l(I + 1) C3
R3

( T(R) + Ug (R) hA
hO T(R)+U, (R) )

'

some approximate methods can be derived, especially in
the semiclassical limit [14], only direct numerical integra-
tion of the differential equation itself can yield appropri-
ate solutions.

There are several algorithms available, usually based
on the split-operator technique [15], where the Hamilto-
nian is divided into parts. During one step of time each
part operates on the state-vector on its turn. One such
division is the separation into the kinetic and potential
energy operator parts, as was done in Refs. [10,16]. An-
other way of splitting the Hamiltonian is based on sepa-
rating wave-packet motion (WPM) and field-induced in-
teraction (int); we have adopted this approach and write
our Hamiltonian as a sum

Here the detuning is 4 = uo —ul, and p is the reduced
mass of the Cs2 system. The state vector ill(R, t) repre-
sents the wave packet, which tells us the probability of
finding the system at location R at time t, and its com-
ponents @s(R,t) and @,(R, t) provide the additional in-
formation on the distribution of probability to each state.

The phase shifts introduced in Eq. (4) make the numer-
ical treatment of the problem less tedious by removing
rapidly oscillating terms in the time domain. As a re-
sult the ground state is shifted up in the energy scale by
one laser photon: this is the curve-crossing picture used
generally in wave-packet dynamics. In spite of the shift
the states are still bare ones. By making the basis trans-
formation into the eigenstates of H (ignoring the kinetic
energy operator, though) we obtain the fully field-dressed
states, which are often called adiabatic states. They are
coupled by the nonadiabatic coupling arising &om the
spatial derivatives in H —this coupling disappears in
the adiabatic limit, which usually corresponds to strong
fields and/or slow motion.

The Born-Oppenheimer potential surfaces are occa-
sionally called adiabatic states, but in our terminology
they correspond to the bare states, also called diabatic
states. Although they are adiabatic in the terms of the
internal motion of the quasimolecule on the time scales
of the electronic motion, they are diabatic in terms of the
laser coupling. Moreover, the spontaneous decay is best
defined in terms of the bare states. We have performed
our study with bare states in the curve-crossing picture,
but occasionally discuss the wave-packet motion also in
the terms of the fully field-dressed (adiabatic) states.

H = HwpM + Hint&

where

F T(R) + U'(R)
WPM

p

h~ nn-)
int

hfdf p

0
T(R) + U,'(R)

here T(R), U,'(R) = U, (R) and U'(R) = Ug(R) + hA are
as in Eq. (6).

The wave-packet part H~pM will evolve the state-
vector components independently along their correspond-
ing potential surfaces, and the interaction part H;„tpro-
vides the laser-induced coupling and detuning. Since the
two Hamiltonians commute (we ignore any spatial de-
pendence of the laser field), the integration is treated as
a two-step process. The factor M, could alternatively be
put into H~pM, or even split between the two Hamilto-
nians. The benefit of this particular operator splitting is
that Hj„tis independent of R and H~pM is diagonal.

We start with a given initial condition @(R,P) and
advance it for one time step by solving

ih ' = HwpM4'(R, t),
. M(R, t)

Bt

with the Crank-Nicolson method [15,17]. Then, using the
resulting 4'(R, t) as an initial state we solve

th ("') = H;„te(R,t),

III. WAVE-PACKET DYNAMICS AND MONTE
CARLO STATE-VECTOR METHOD

A. Wave-packet dynamics

In this section we shall describe wave-packet dynamics
and the inclusion of dissipation. We discuss our numeri-
cal approach, and the details of its implementation. The
problems arising from the discretization of position and
time in the method are also described.

We shall first discuss the case where spontaneous de-
cay is absent. The art of solving the time-dependent
Schrodinger equation (3) with preset initial conditions
is generally called wave-packet dynamics [11]. Although

with the fourth-order Runge-Kutta algorithm [15]. Then
we take the next step in time and repeat the whole pro-
cess again. In many cases the time scale for the interac-
tion process, set by 0 and 6, is much smaller than the
time scale for the wave-packet motion. In such cases we
can evolve the state-vector for several time steps under
H;„t,before applying H~pM, thus speeding the numeri-
cal integration process. Unfortunately, in our particular
problem the time scales for wave-packet motion vary a
great deal during the collision process, making such an
approach unfeasible.

B. Monte Carlo simulations

In order to treat the spontaneous decay of the excited
state properly one must replace the state-vector 4 with
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the corresponding density operator p. We can consider
the electromagnetic modes of the vacuum as a large reser-
voir coupled to our system. By applying the standard
Markovian approximation (Wigner-Weisskopf) we obtain
the reduced system density matrix p(R, t). The system
dynamics is then given by the Liouville equation

instead of the Schrodinger equation.
Here H is the Hamiltonian for the nondissipative sys-

tem; in our case it is given by Eq. (5). The effect of dissi-

pation, i.e., broadening of the excited states and sponta-
neous decay of populations and coherences, is described
by the operator Z. For the two-state system this can be
written in the form

nr, . . Sl' ~ 0 0 l
!Hg =—H —i a+~ —=H —i (14)

With this Hamiltonian we can take @(R,t) to 4(R, t+ht);
we have used 4 instead of 4 to emphasize that since H,g
is non-Hermitian, C is not normalized. Indeed,

We have chosen the Monte Carlo wave-function technique
proposed by Dalibard, Castin, and M@lmer [21]. It can
be easily applied to wave-packet dynamics and has been
tested to some extent by comparing it with the corre-
sponding density-matrix approach [10]. Next we shall
give a brief and by no means fully comprehensive de-
scription of the method; for more details and discussion
we refer to Ref. [21].

First, we replace the system Hamiltonian H in the
Schrodinger equation with an effective one:

. sr
C[p] = i (0+a p——20. po+ + pa+0 ), g(e(R, t+ St)[C(R, t+ m)) = 1 —S., (15)

where o.+ are the standard raising and lowering operators
(combinations of Pauli matrices). The factor I' is the
decay parameter; in the absence of other processes the
excited-state population would decay as exp( —I't) (in our
study I' = I',().

One can readily apply Eq. (12) to wave-packet dynarn-
ics, but the numerical treatment becomes quite differ-
ent [10]. Instead of tracking 4(R, t) through time we

have to work with p(R, R', t) If XR. is the number of
spatial grid points required for treating 4 properly, then
we need X~ x NR points for p. Even for supercomput-
ers this limits N~ to 10 or less (see Refs. [10,18] for
discussion and examples of wave-packet dynamics with
density matrix). In brief, one cannot treat our problem
with the density-matrix approach, unless an increase of
at least two magnitudes in currently available computer
memory can be obtained. By using highly oversimplified
systems one can use the density-matrix technique to per-
form studies at temperatures which, unfortunately, are
well above those which we want to treat [18].

It is possible to transform Eq. (12) into optical Bloch
equations by replacing the quantum dynamics with ap-
propriate semiclassical trajectories, and hence treat cold
collision problems [6]. Then spontaneous decay and re-
excitation of decayed population are taken into account
properly, but the important changes in the kinetic energy
due to the spontaneous decay are still left out. In t, he
wave-packet dynamics the divergence of the semiclassi-
cal trajectories at classical turning points is unimportant
since all motion is treated in a fully quantal way, but in
the OBE method one has to adapt the standard WKB ap-
proach. It is clear that when t is nonzero and the crossing
point and the classical turning point on the ground state
lie close to each other, any treatment based on semiclas-
sical trajectories is inadequate. It is clear that we have
to keep the quantum motion when treating Eq. (12) with
any approximative technique.

The statistical nature of Eq. (12) and spontaneous de-

cay itseN can be used as a basis for new methods. Several
approaches for obtaining an approximation for the re-
duced density matrix itself have been developed [19—22].

where the sum can be considered either as a summa-
tion over the spatial grid, or integration over the spatial
continuum, the former being the numerically necessary
approximation of the latter.

In the Monte Carlo approach bs is the probability of
making a quantum jump during the time step bt from an
excited state to the ground state, followed by a detection
of the emitted photon. In a two-state system we have

bs = I!4',(t)[2Q; (16)

!'Ii,(t)! = PR [4,(R, t)! is simply the total excited-
state population before the time step is taken.

After having advanced our state-vector with the ef-
fective Hamiltonian, we produce a random number e be-
tween 0 and 1. If bs is less than ~, which is quite probable
since bs is small, we assume that a quantum jump did
not occur. Then we simply proceed by renormalizing our
state-vector C(R, t + bt) into @(R,t + 8t) and take the
next time step. However, if it occurs that e & bs, we

assume that a quantum jump did take place. Hence we

know that at t the system was in the excited state, and at
t + bt it is in the ground state. We set 4', (R, t + bt) = 0
and 4'g(R, t + 8t) = 4, (R, t + 8t), normalize the new
state-vector to unity, and take the next time step.

Following the above procedure we obtain a state-vector
with a history of time evolution perturbed by quantum
jumps. If we repeat the process, we get a state-vector
with a different history, due to the random choice of

Each state-vector becomes a member in an ensemble,
which in the limit of infinite number of members corre-
sponds to the density matrix, see Ref. [21]. However,
finite ensembles can give a reasonable approximation for
the density matrix. The study presented in Ref. [10] indi-
cates that aiready ensembles with less than 10 members
provide a good approximation for density-matrix wave
packets. For reasonably accurate results even ensembles
with 50 or so members can be adequate enough; this is
also our experience. We shall discuss the appropriate
sizes for ensembles further when presenting the actual
results.
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With the Monte Carlo technique we can now produce
an approximation for the density matrix with standard
wave-packet dynamics. We add the non-Hermitian part
to I; t. After each internal step we calculate bs' and with
a random number determine whether a jump occurred or
not. Each full integration produces an ensemble member;
it is important to notice that if we want to calculate dis-
tributions in the momentum space correctly, we must in
the end take the average over Fourier-transformed state-
vectors, rather than a Fourier transform over the average
state-vector. This applies also to taking expectation val-
ues for operators which are not c numbers in position or
momentum representation.

In wave-packet dynamics it is easy to encounter sit-
uations where the decay parameter I' has a spatial de-
pendence. Even in our cold collision study the retarda-
tion corrections (large R) and Hund's case basis changes
(small R) produce such an effect. However, as mentioned
earlier, we have chosen to neglect them. If they were to
be taken into account, we could simply replace Eq. (16)
with

bs = ) I'(R)iC, (R, t)['bt (17)

C. Scaling and effective potentials

For practical purposes it is best to scale the
Schrodinger equation and physical quantities involved.
We have chosen the scaling summarized in Table I. Then
the classical relations between velocity v, momentum p,
and kinetic energy E~;„become

and proceed as usual with I' = I'(R) in Eq. (14).
In the limit of strong coupling 0 one is tempted to

diagonalize the Hamiltonian, and proceed by calculating
the time evolution along the field-dressed potential sur-
faces. It is numerically less demanding, because the new
coupling term in the Hamiltonian is rather small, and
appears more like a perturbation. However, we would
then have a decay factor I' with a strong spatial depen-
dence, and the whole concept of quantum jumps would
become rather complicated, as the new states would be
combinations of the ground and excited states. Hence we
shall always use the bare states as our basis for numerical
integration, even in the limit of large coupling.

As described in Ref. [21], the Monte Carlo technique
can be adapted to take into account the momentum
changes in the system due to the spontaneous emission.
A new random element is then added for the direction
and polarization of the spontaneously emitted photon.
By keeping track of the quantum jumps one can esti-
mate the magnitude of the additional momentum diffu-
sion caused by the random photon emission. However,
since we are treating situations with momentum values
at least ten times the momentum of recoil, we can ignore
it. Besides, it would be inconsistent to add these "mo-
mentum kicks" when the similar effect of the laser field
is ignored, i.e., exp(+ik R) terms in the light field.

TABLE I. The physical units (scaling) used in this paper.
The key quantity is k„„whichis the wave number for the
transtion between the ground state and the excited state (at
larger R) in our model. It also deiines our momentum unit as
the recoil pick given to an atom by an emitted or absorbed
resonant photon. Here a = 5.2g1 177 A is the Bohr radius
and p = 1.1 x 10 kg is the reduced mass of the Csz system.

Quantity
distance
momentum
time
energy
velocity
temperature

Unit
A = A/2w = 1/k„,
&&rec

2p/Fck„,
(hk„,) /2p
&krec/p
(hk...)'/2 @k~

Unit value in Csq
136 nm = 2560ao
7.78 x 10 kgm/s
38.5 ps
2.74 x 10 J
7.1 mm/s
0.2 pK

where

8' - l(l+ 1)
gR2 ' & R2

l(l+1) C,
R2 R3

(20)

The above form is extremely suitable for numerical treat-
ment. For our particular Cs2 model we have then C3 ——

1925, I'
q

——1240, and I'
~

——1655, corresponding to the
values given in Ref. [4] for our system [I' t ——5.13 MHz,
I' i = (4/3)I' q, and in atomic units Cs ——20.33(eao) ].

Wave packets evolving along the attractive —Cs/Rs
potential can have enormous kinetic energies when they
reach the distances of a few tens of Bohr radius, where
the potentials finally become repulsive. Our numerical
methods cannot deal with the corresponding momentum
values. However, for the range of detunings we treat
we can safely assume that the strong spontaneous decay
depletes the excited state before significant kinetic ener-
gies are reached. Also, the time which the system would
spend at short ranges is small compared with the decay
time scales. In any case, since we are interested in the
heating rather than trap losses, it is quite adequate to re-
place —Cs/R with a potential which is finite at R = 0,
but resembles it well at distances above 500ao. Such an
effective potential is, e.g. ,

U„(R)=-
(Rn + R )s/n

' (21)

i.e. , the reduced mass p is in effect equal to 1/2. The
values for temperatures associated with the relative mo-
tion are obtained &om the expression T = p, in units of
0.2 pK. The Doppler temperature for Cs2 is TD ——130
pK, and the corresponding value of p is 26. The max-
imum initial momentum used in our study is 60 units,
corresponding to T = 0.7 mK.

The main consequence of adopting these units is that
our Schrodinger equation becomes

Bless

. l (T+U s n l (@s&
T+Ur E~ )'

v=2p and E&III = —V = p )

1

4
We have chosen R s = 10 and n = 12; then U,s(0) =
100Cs, and until R = 0.3 (770ao) the deviation of U,s.
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from —Cs/R remains less than half a percentage, but
then increases rapidly as R becomes smaller. For the
centrifugal potentials we have just replaced R with R+
R g, to avoid the singularity at R = 0.

D. Initial conditions

In wave-packet dynamics we need to know the form of
the wave packet at the initial moment t = 0. We have
to abandon the standard scattering theory concepts of
probability fluxes with single valued energies, momen-
tums, and directions. In reality we have distributions
with finite widths, limited by the Heisenberg uncertainty
principle.

We define the initial condition as a minimum uncer-
tainty wave packet:

The probability distribution ~ilia(R, O)
~

is peaked at Ro
and has the full width ADO. The corresponding momen-
tum distribution is

P, (p, o; p, )
(P —Po)'

(23)
/2ir(hpo) 2(&po)

with b,Jio ARo ——1/2.
When this wave packet evolves freely on the flat ground

state it spreads: AR(t) = ARogl + t2/ARo4; we call
this the &ee spreading of the wave packet, to make a
distinction with the collision-induced difFusion. In order
to avoid having a large spatial separation between fast
and slow components of the wave packet as it approaches
the crossing we need to place it relatively near to the
crossing in the beginning. If we solve Eq. (11), with the
initial condition ~iIig(0)

~

= 1, we obtain

Q2
~e, (t) ~' = cos'(~t) +, sin'(~t),

02
I
@.(t) I' = —,sin'(~t),

(24)

(25)

where w = gA /4 + 0 [23j. One can see these Rabi
oscillations in the wave packet as it moves towards the
crossing.

When spontaneous decay is turned on, the above pic-
ture is changed. The Rabi oscillations will disappear
within a few time steps and the population inversion
reaches a steady-state value, which is a result of the inter-
play between the field-induced inversion and spontaneous
decay. In the steady state, before the dipole-dipole po-
tential starts to have an effect and the wave packet enters
the immediate interaction region, we then have [23]

& ss ~2 + 202 + (I /2

One should choose the initial position of the wave packet

1 (R —Ro)
iIig (R, 0) = exp — + ipoR

2vr(ARo)' 4 &Ro '

(22)

so that the steady state between practically flat energy
surfaces is formed well before entering the crossing re-
gion. We have chosen R 10 ao as the initial position;
then U ir(R ) = 0.024I' « I'

We propagate our wave packet into the crossing and
then wait until all important components have emerged
again, i.e. , reappeared in the region where the excited-
state potential is relatively flat. Normally the interac-
tions near R R„cause a large spatial spreading of
the wave-packet, which overwhelms the free spreading
AR(t). In the end we have all the wave-packet compo-
nents of importance at large values of R, and they once
again settle into a steady state given by Eq. (26).

Although our initial and final states are not taken
on uncoupled surfaces, they nevertheless correspond to
the system starting from and arriving into a well estab-
lished steady state. Hence we define the collision-induced
changes in the kinetic energy as difFerences between the
ground-state momentum distributions corresponding to
the observed precollision and postcollision steady states.

E. Discretization of position and momentum spaces

The fact that we must limit ourselves to a finite, dis-
cretized space instead of an infinite continuum requires
some discussion. In position space we have a grid with
NR points and constant spacing covering a length of L.
Hence our spatial resolution is bR = L/(WR —1). Of
course, we would like to minimize L and maximize N~,
in order to have good spatial resolution. However, these
quantities will also determine our momentum space char-
acteristics: maximum absolute value for available mo-
mentum is ~p~ „=m/bR = m (KR —1)/L, and resolution
is bp = vr/L We rest. rict the values for W~ to 2", where
n is an integer; this speeds up the numerical fast Fourier
transform routine.

Since the collision process can spread the initial wave-
packet quite a lot in both position and momentum, we
need large enough boxes to follow the fast wave-packet
components until the slow ones have had enough time
to get out of the immediate collision region. Because
we are only interested in distributions of absolute values
of momentum we can allow the fast components to be
reflected at R = L, as long as we stop our integration
before they have reached the crossing region again. Even
this restriction could be lifted; the fast components have
a very small excitation probability as they reenter the
crossing region. Besides, they usually form only a small
fraction of the total population.

We settled in our study with N~ ——2 = 16384 and
L = 35, giving bR 0.0021. Since our initial wave
packet has the width ARO ——0.25 it is well defined in
terms of our spatial grid: ARo/bR 120. Correspond-
ingly, ~p~ „1470and bp 0.09, which defines the
initial momentum distribution with a reasonable accu-
racy: Apo/bp 22.

F. Numerical accuracy

The routines which we use for numerical integration
are accurate to second order in the time step bt. If E
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represents the largest values of energy involved in our
study, then we require that in scaled units bt (& 1/E.
Hence the phase term exp( —iEt) is well defined in our
time grid. In terms of kinetic energy and momentum this
becomes bt (( p . We have used integration times T
from 0.35 to 0.7, with the number of points Nq ——8192.
Then bt becomes equal to p roughly at p 110 for
T = 0.7 and p 150 for T = 0.35. This allows us to
treat properly the bulk of the collision process, i.e., the
heating below p = 100, but not necessarily the small
&action of momentum components responsible for trap
losses.

The second criterion for bt is set by spontaneous decay.
We simply require that ht (& 1/I'

~ 6 x 10, which
is clearly fulfilled even by the largest bt used.

The stability of the Crau. k-Nicolson method requires
that hR2 & 2" bt [15], which in our scaling is simply
bR2 & bt. Since for us bR2 4.6 x 10 s, the crite-
rion is fulfilled. If both the criterion bt « p

2 and the
stability criterion are satisfied, then necessarily phR (& 1
is true, and the wave-function momentum terms such as
exp(+ipR) are well defined over the discretized position
space.

IV. THE SEMICLASSICAL APPROACH

A. The Landau-Zener theory

In this section we present a simple semiclassical
method for obtaining the momentum distributions. As
the wave packet evolves along a potential surface we can,
to some extent, regard it as a classical object moving un-
der the inHuence of the potential. The idea is to slice
the wave packet into a multitude of components, each
of which evolves independently according to the Newto-
nian laws of classical mechanics. The slicing can be done
either in position or in momentum representation. Of
course, this approach has only limited use, as it clearly
cannot describe any processes involving phase eKects and
genuinely quantum mechanical phenomena.

In the case of two potential surfaces, coupled by some
interaction, and possibly brought into resonance as well,
the above approach can be connected with purely time-
dependent quantum mechanical models, which have an-
alytic solutions [11]. The best known case is the use of
the Landau-Zener theory [24] for wave packets moving
through a linear level crossing with constant coupling
[18,25]. Since most potential surfaces can be safely lin-
earized in the vicinity of crossings, this model can be
applied to a number of situations. We shall next give
a brief presentation of the Landau-Zener method, and
apply it to the coM collision problem.

We start with a purely time-dependent situation. We
consider two states, which have energy values that change
linearly in time, with a difFerence AE = Pt, P being
a constant parameter. These states are degenerate at
t = 0, and coupled by a constant interaction 0; they
uncouple asymptotically at t ~ Woo. If we start on one
state at t = —oo, then we have the probability

( 2~n'l
II = exp ~—

~ )
(27)

to be on that state as t ~ oo. This is the expression Zener
derived by solving the time-dependent Schrodinger equa-
tion (which leads to parabolic cylinder functions) and
Landau derived using contour integration in the complex
time plane, both independently in 1932 [24].

Next, we regard the wave packet in momentum rep-
resentation to be made of independent momentum com-
ponents. The wave packet traverses a level crossing at
R = R„,formed by linear potential surfaces for which
the potential difference is 6U = U, —Ug n(R —R„)
If the change in the motion of the components is negli-
gible during the passage through the level crossing, i.e.,
the interaction region surrounding the crossing point, we
can take a simple classical path AR = vent = 2pAt for
each momentum component. With AU 2opAt, 2n~p~
is easily identified with P in Eq. (27), and we can write
for each component the excitation probability

( mO'l
Pi z(p) = 1 —exp

I

E lpl~)
(28)

{29)

It is not surprising that this is also the condition under
which the excited-state population in the steady state for
large R is small. In Fig. 1 we show the appropriate level
structures for the parameter choices studied in Sec.V. In
order to visualize the width of the crossing we have also
plotted the lower adiabatic state for each case. Except
for the (6 = 2I' i, 0 = I' i) case, the linearization is a
valid approximation.

The initial mean momentum po is the main factor in
determining if the incoming wave packet traverses the
crossing adiabatically, i.e., if it follows the lovrer adia-
batic surface rather than the bare states. The slower
the wave packet is, the more time it has to get excited.
In Fig. 2 we plot Eq. (28) as a function of momentum for
selected parameters; we use the notation (m, n) for difFer-
ent parameter combinations: 4 = mI' t and 0 = nl
Clearly, with values of ]pe] close to 10 units the wave
packet evolves and moves onto the excited state adiabat-

Integration of this result with the incoming wave-packet
momentum distribution over p gives the excitation prob-
ability of the wave packet [18]. Often Eq. (28) varies very
little over the momentum distribution and can be used
directly with p = (p).

We shall apply this approach to our specific cold col-
lision problem. We limit the discussion in this section
to the l = 0 case; angular momentum states will be ad-
dressed in Sec. V. If we linearize the Cs/R —potential
at R = R„,we get n = 3(64/Cs)irs. In the original
Landau-Zener theory the crossing has the natural time
scale w„=20/P = 0/(~p~n). This gives the spatial
width of the interaction region as AR„20/o;. By
studying the higher order terms in the Taylor expansion
of —Cs/R near R = R„onecan set the condition of
validity for the linearization of the crossing as
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FIG. 1. The level con6gurations for the chosen combina-
tions of detuning A and coupling 0 in the curve-crossing pic-
ture. We have plotted the smaller eigenvalue of the Hamilto-
nian in Eq. (19) in order to demonstrate the size of the inter-
action region. The dotted lines are for 0 = I' ~, the dashed
lines for 0 = 0.2I' t, and the dot-dashed line for 0 = 0.6I' t.
The Hat solid lines represent the ground-state positions for
different detunings, and the curved solid line stands for the
excited-state potential surface.

0.9

ically as it passes through the interaction region. How-

ever, if it is strongly accelerated by the radiative heating
mechanism, it has a clear nonzero probability to remain
in the ground state when it goes through the crossing
for a second time after a re8ection at the core. Also,
the —Cs jBs potential is less steep for R )B„than for

R dR'

., 2/p2, + Cs/B's —6 (31)

where p„is the momentum of the wave packet (or its
component) when it enters the crossing. At this point we
define for simplicity all momentum values to be positive,
even when the motion takes place &om large values of R
towards smaller ones. Using Eqs. (30) and (31) we obtain
the distribution in momentum terms:

p2 p2 ) 4~2

P, (J) =- I1+
n (

R ( R„,especially if the detuning is small. Because
of these asymmetries it is possible to observe heating as
a net effect (a clear shift in the mean value of momen-
tum), in addition to diffusion (increase in the width of
the momentum distribution). Since we have spontaneous
decay in our model, any phase information &om the first
crossing is wiped out before the second one is entered.
Hence eEects such as Stuckelberg oscillations are absent;
however, they do exist in nondissipative wave-packet dy-
narnics [26].

In the limit of weak dissipation the spontaneous de-
cay acts mainly after the excitation process rather than
during it. This is not true for ultracold collisions; we
shall discuss them later. By assuming a purely resonant
excitation (AB„=0), we can write a relation between
time v spent on the excited state and obtained momen-
tum change, if the system experiences a quantum jump
back to the ground state at 7. The probability distribu-
tion for a quantum jump taking place during the interval
[r, r + dw] is simply

P~ (r ) = I' exp( —I'r )dr. (»)
The classical path approximation for the first entry into
the crossing gives

R
7

R. 2p(B')

0.8-

0.7-
(10,1) r

x exp —— dp'
~

1+ "
~

dp.
n p g 6 )

0.6-
~ 05-

C4

0.4- (6,0.6)"::.-
0.3-
0.2-
O. l-

20 40 60
momentum p

80 100

FIG. 2. The momentum dependence of the Landau-Zener
transition probabilities. The crossing process is adiabatic
when Pr, z is close to unity. In the (2,1) case Pr, z is practically
equal to unity for p ( 100, and is therefore omitted. The lines
correspond to the difFerent (detuning, coupling) combinations
as marked in the graph.

This expression, if integrated over p„with the distribu-
tion of p„,is in fact the momentum distribution we ex-
pect to find on the ground state when all the population
on the excited state has finally disappeared. Similarly,
swapping p (p') and p„in Eq. (32) we obtain an expres-
sion valid for the second crossing.

If we take the spontaneous decay to be too weak
to interfere with the excitation process, but so strong
that most of the decay takes place while the linear ap-
proximation is valid, Eq. (32) becomes very simple with
p(r) = nr +p„:

r r
P, (p) = —exp ——(p .—p.,) dp.

C1 Ck'

A model for radiative heating must involve the two
sequential level crossings. The first one occurs as the
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initial wave packet on the ground state enters the in-
teraction region. The second one is encountered by the
core-reHected outcoming wave packet. We can separate
four cases: (a) no excitation at all, (b) excitation and
decay only at the first crossing, (c) excitation and decay
only at the second crossing, and (d) excitation and de-
cay at both crossings. We assume that Eq. (33) can be

I

applied instead of Eq. (32).
The first crossing accelerates the wave packet (p )

p„),and the second one decelerates it (p & p„).In the
linear approximation the asymmetry causing net heating
is provided by Eq. (28). Then, following the guidelines of
previous discusssion we obtain for the 6nal ground-state
momentum distribution the expression

p

Pf(p, po) = [1 —Pi,z(p)] P (p, 0;p ) + —[1 —Pi,z(p)] exp( —I'p/a) dp'exp(I'p'/a)Pi, z(p')P (p', 0;po)
A 0

+—exp(l'p/a) dp' exp( —I'p'/a)PLz(p ) [1 —PLz(p')]P (p', 0;p )A p
2 OO p"

+—
2 exp(1'p/a) dp" exp( —2I'p" /a) PLz (p") dp' exp(I'p'/a) PLz (p') P (p', 0;pp).

A p 0
(34)

The four terms correspond to the cases (a)—(d) mentioned
above, in that order. This distribution is for absolute
momentum, i.e., we use positive p's for both incoming
and outgoing cases. For the results given in Sec.V we
have used Eq. (23) for Pg(p, 0; po), and I' = I'

With the above expression (34) one can try to bridge
the gap between the wave-packet dynamics subjected to
the Heisenberg uncertainty principle, and standard sta-
tionary scattering theory in which single momentum and
single energy states are allowed (since we look at infinite
time). By exchanging the Gaussian initial distribution
for a Dirac b function one obtains a mapping from single
initial p0 to single 6nal p —a true scattering matrix.

As usual, there is a snag: we can expect Eq. (34) to
work only in a narrow region of parameter space. First,
the linearization argument must be valid for both the
Landau-Zener result and the classical path [Eq. (33)].
Secondly, our assumption of only four possible cases (a)—
(d) can be questioned. If the second crossing remains
highly adiabatic for the outcoming wave packet, and if
it does not possess enough kinetic energy to escape the
potential well formed by the reQective core at R = 0 and
the excited-state potential, it may be trapped. Even-
tually the wave packet escapes either by experiencing a
quantum jump near its outer turning point, or by tun-
neling out via a nonadiabatic transition at the crossing.

B. Population recycling

In this subsection we consider the main complication in
the Landau-Zener approach, which arises when the spon-
taneous decay is strong, i.e., quantum jumps are likely to
take place when the wave packet is still going through the
excitation process. Then Eq. (34) should fail as jumps are
followed by an almost immediate reexcitation; it is called
population recyc1ing. In Fig. 3 we show the ratio of the
time it takes to traverse the crossing (p unchanged during
the process) to the mean decay time 1/I'. If this ratio
is larger than one, we can expect recycling of population
between the ground state and the excited state during
the crossing process.

It is possible to estimate the magnitude for the recy-
cling contribution in the final (p). We take the relevant

which gives

~n
+cr (36)

2 $I

:i
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FIG. 3. The ratio of the crossing time v„to the averaged
decay time 1/I' for different parameter combinations. In the
(2,1) case I'x„))1 for p ( 100 and is therefore beyond the
range used in the graph. The line styles are as in Fig. 2.

I

width of the crossing region to be roughly b,R'„0/a,
a factor of 2 less than earlier; then our estimate should
form a lower limit for the momentum shift. We can as-
sume that while the wave packet is within the interaction
region, recycling will efFectively keep it in the excited
state. The crossing process can be regarded as fully adi-
abatic if 0 is large enough compared to other factors:
Pi,z = 1. For large detunings the linearization procedure
is still quite valid, so acceleration depends only on the
time spent on the excited state, even if the excitation
takes place at R g R„(ofF-resonant excitation due to
the power broadening).

Classically, the recycling lasts for T,', :
hR'„=2pp~,', + a(r,',),
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if 0 )) po. The wave packet accelerates steadily during
the recycling process and we obtain A(p) nw,', ~O.
This shift is independent of 4, p0, and I'.

The recycling process ends when the excitation dies
off, and we are left with the normal exponential decay.
It produces a second shift b, (p) n/I calculated with
Eq. (33). Combining the recycling and exponential decay
contributions we get the estimate

(p) - V fl + cr/I' + po

v 0+ cr/I', (37)

as we have already assumed ~O )) po. Hence in the
(6,0.6) and (10,1) cases we expect to see a large shift in

(p), which at small po is independent of po. In Table II we
show the relevant data regarding the recycling efFect and
the exponential decay for the parameter combinations
used in Sec.V.

Our result is only a rough estimate with limited va-

lidity, but it serves well as a reasonable qualitative pic-
ture of the wave-packet processes when I is large and
the pure Landau-Zener approach fails. The results pre-
sented in Ref. [18] (Figs. 7 and 8) support our analysis of
the recycling effect. There the wave packet experiences
a large shift in (p), which is reduced as I' increases, but
still remains relatively large. The corresponding time-
dependent data for (Ji) and Ap show the formation of a
steady state with a lifetime roughly independent of I' for
large I', before the exponential decay takes over. The
results seem to follow roughly our estimate for recycling
[since in Ref. [18] po )) A(p) one has to use the exact
solution of Eq. (35) for r,',].

It is possible to consider that during recycling only a
fraction of the population can simultaneously be on the
excited state, in the spirit of Eq. (26). Then, although
all wave-packet components experience excitation, they
do it effectively only for time p7,'„where p is the degree
of excitation given by Eq. (26) with a suitable average
local detuning. In the case of large 0 this would increase
7, by a factor of 1/p, which compensates exactly the
diminished acceleration: A(p) npw, ', This compe. nsa-
tion is not present if A(p) « po. The estimates for A(p)
given by this fractional recycling picture, however, seem
to fall clearly below the actual numerical results featured
in Ref. [18].

V. SIMULATIONS WITH CS

A. Simulation results

p =10
I

po= 35

(10,1)

,0.6)

(2, 1)

0) If ~ T

GJ

U
CO

D
X
Q)

(2 1)
.S. haL ~+~ar f Ql~+

{2,0.2)

0.2) (10,0.2)

In this section we present our main results, obtained
from the fully quantal approach and from the Landau-
Zener approach. First, in this subsection, we look at the
8-wave scattering, i.e. , the case when I = 0. We have
performed simulations with five different combinations
of detuning and coupling strength. We use again the
notation (m, n) for 6 = mI' t and 0 = nl' t. The en-
semble sizes were N 50 and above: we shall discuss the
ensemble statistics in a later subsection. Here we concen-
trate on the actual results and their interpretation in the
context of the Landau-Zener approach and the recycling
efFect. In each series of simulations we started with an
initial momentum p0

——10, and increased it in steps of
5 units, until interesting effects disappear or we get to
value p0

——60.
In Fig. 4 we show the excited-state population as a

function of time for pp = 10 (a) and Jio —— 35 (b).
In all cases the two-state wave-packet system rapidly
reaches the steady state, where the population is given
by Eq. (26). At the end of the simulation the same steady
state reappears. In our calculations the 6nal momentum
distributions mere taken at larger values of time than
those presented in Fig. 4 to assure that even when p0 is
small, all components have emerged from the crossing re-
gion. This includes any population temporarily trapped
into the upper adiabatic state potential mell at R & R„.
Except for the (10,0.2) case where the interaction region
is very narrow, it is diKcult to distinguish at p0 ——10 the
double crossing nature of the dynamic process. This is

0
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I I I
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0.2
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8.1
8.1

35.0
69.0

~n
16
35
27
35

/r

5
21
42

&(p)
21

48
77

TABLE II. The momentum shifts predicted by the semi-
classical approach. The fourth column corresponds to the
recycling eKect and the fifth one to the exponential decay;
their sum appears in the sixth column.

time time

FIG. 4. Examples of the time evolution of the excited-state
population as seen in the simulations. Two values for initial
momentum are chosen: pp = 10 for (a) and pp = 35 for

(b). The parameters used are indicated on the figure. The
dashed lines correspond to the steady-state populations given
by Eq. (26), and they are, from top to bottom, 9.76 x 10
(10,1), 9.69 x 10 (6,0.6), 0.155 (2,1), 8.84 x 10 (2,0.2), and
3.98 x 10 (10,0.2). The solid bottom line for each individual
population graph corresponds to the zero level.
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the corresponding (2,1) case of Fig. 6(a).
We show in Figs. 7—11 the main results of our simu-

lations, namely, the final momentum distributions. The
accompanying numerical data are in Tables III—VI. In
general we have calculated the final mean values (p) of
the distributions using the data up to p = 100. For
technical reasons stated earlier the accuracy of simula-
tion data above momentum values of p = 100 can be
questioned. Also, in real experiments one has a limit
where heating turns into a trap loss process, determined
by the particular setup. Hence there is a real cutoff at
some relatively high momentum if only heating is stud-
ied. However, in the (10,1) case the contributions f'rom

values higher than 100 units are relatively large, and we
have included them nevertheless in Table VI ~ The rela-
tive kinetic energy change is expressed with

I I

Q = 0.2Iat po ——45

po ——40

po ——35

po= 30

po
——25

(p') —
L o+ (&po)'1

p'. + (&p.)' {38)
po—- 20

a= iOr„,n=O. 2r, p =35
0

p =30

The case (10,0.2) is not very interesting, as seen from
Fig. 7. Only at very small values of pp does a tiny tail
representing partial heating appear. Following Fig. 2 the
negligible heating is not a real surprise, as the crossing is
not very adiabatic even at pp = 10. The Landau-Zener
results are not shown in the figure. They do, however,
predict the tails nicely, but the main parts differ strongly
&om the simulation results at pp & 15. We shall return
to this case when discussing the simulation statistics.

In the case (2,0.2) (Fig. 8) the excitation probability
is clearly larger than for (10,0.2) and we observe modest
heating (see Table III) for small po. The Landau-Zener
prediction is not too far off, especially at pp & 20. For
po & 20 the increase in (p2) is larger than 100%%, and
we see in (p) minor manifestations of the recycling effect.
The use of true semiclassical trajectories, i.e. , Eq. (32)
does not improve the Landau-Zener result (we tested it).

po ——15

po= 10

I I I I

0 10 20 30 40 50 60 70 80

momentum

FIG. 8. The final momentum distributions for the (2,0.2)
case. The momentum values are as indicated on the graph.
The solid lines show the simulation results, the dashed lines
the initial distributions, and the dotted ones the correspond-
ing Landau-Zener predictions by Eq. (33). The distributions
are normalized to have the same area.

Figure 9 shows a clear breakdown of the Landau-Zener
argument for all values of momentum in the (2,1) case.
Because of the strong adiabaticity the recycling effect
is present at both crossings. But, as discussed in the
context of Fig. 6(a), a net heating is present. According
to Table IV (p) = 30 for po + 30. For larger po the values
for (p) simply follow po. The main failure of the Landau-
Zener approach at large pp is the prediction for spreading.

p =25
0

p =20
0

p =15

TABLE III. The simulation and semiclassical data for the
(2,0.2) case. The expectation values for the simulation data
(the second and the fourth column) and for the Landau-Zener
approach (the third and the fifth column) are calculated from
the corresponding distributions with a cutoff set to 100 mo-

mentum units. The ensemble size is N, averaged number of
quantum jumps per ensemble member is n, and the corre-
sponding standard deviation is An.

p =10

10 20 30 40
momentum

50 60

FIG. 7. The final momentum distributions for the (10,0.2)
case. The momentum values are as indicated on the graph.
The solid line shows the simulation results, and the dashed
line is the initial distribution, both normalized to have the
same area.
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37
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0.0
0.0

AtUgz

0.8
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0.3
0.2
0.2
0.1
0.1
0.1
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48
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97
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13.3
9.1
8.8
6.8
7.0
6.7
5.6
5.2

4.0
3.3
3.7

2.4
2.7
2.5
2.4
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FIG. 11. The final momentum distributions for the (10,1)
case as a three-dimensional plot, showing the approximate
mapping from initial momentum states to final momentum
states. The curves have been smoothed in order to remove
the spiky structure due to the small ensemble sizes (the sharp
distribution peaks corresponding to the individual ensemble
members are smoothed out only in truly large ensembles, with
N & 500 [10]). This procedure improves the visibility of the
main characters of the distribution, such as the formation of
the long tail at p & 100, emergence of the peak at po for

po & 30, and the largely po-independent behavior of the main
part located at p ( 100.

FIG. 9. The Bnal momentum distributions for the (2,1)
case. The layout is as in Fig. 8.

TABLE IV. The simulation and semiclassical data for the
(2,1) case. The presentation is the same as in Table III.
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FIG. 10. The final momentum distributions for the (6,0.6)
case. The layout is as in Fig. 8.
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15
20
25
30
35
40
45
50
55
60

41
42
40
42
42
45
49
48
51
53
62

(p) i.z
26
29
32
36
40
44
48
52
56
60
64

20.0
8.9
4.1
2.6
1.5
1.0
0.8
0.3
0.2
0.1
O.l

Atogz
9.7
4.6
2.7
1.7
1.2
0.9
0.7
0.5
0.4
0.3
0.2

N
53
80
51
55
51
51
56
50
58
78
56

12.3
11.8
12.2
9.8

10.2
9.3
8.0
8.2
7.8
7.2
7.8

4.0
4.8
4.6
3.7
3.8
3.8
3.6
3.8
3.7
3.0
3.2

TABLE V. The simulation and semiclassical data for the
(6,0.6) case. The presentation is the same as in Table III.
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for higher l the crossing is shielded as the wave packet is

re8ected before it can reach the crossing. Hence we have

for heating l R„happ].
For small detunings one can see strong deformation of

the excited-state potential, especially for large l. How-

ever, we are interested in cases where the heating is

strong. Then we usually have a large detuning and the
deformation is small (as in Fig. 12). For small detunings
heating is strong only for very small po (Fig. 9), so that
l remains small, reducing the deformation. In fact,
in our model we have to go to values such as 6 I' t
and po 50 in order to produce an example of highly
deformed level structure for t ( I „.Simulation results
for that particular case (with 0 = I'

q) do not show any
spectacular phenomena, and we observe only negligible
heating anyway.

In order to extend the Landau-Zener approach to cover
the t g 0 cases we turn again to energy conservation
and classical ideas. The repulsive ground state slows the
wave packet, and its components with initial momentum

p reach the crossing carrying the momentum

~V
~ ~
~ ~

~ \ ~ ~

~ ~

~ ~ ~
~ ~

~ ~ ~
~ ~

~ ~

~ ~

Iat
6I at,

I = 20

I = 19

I=17
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I = 13

~ 0 ~ ~ ~ ~ ~

I = 10

l=5

I = 15
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' tk'4a ~aa ~~~»~

l(t+ 1)
R2 (39)

~ ~" "r
I=O

In practice we just replace po with pz in Eq. (33). For
large detunings o. is still a good approximation for the
slope. As AU is independent of l, the energy gain due to a
quantum jump is unchanged. We assume strong decay, so
that the potential difference on the ground state between
points R~ where the jurnp occurred and the crossing point
R„is negligible, thus producing no further increase in the
kinetic energy during the passage from R~ to the second
crossing. After the second crossing the wave packet still
gains some kinetic energy as it rolls down from R = R„
to R &) R„.Therefore we have to invert Eq. (39) and
use it on p in Eq. (33); in practice this leads to a shift
in the distribution towards larger p with a sharp lower
cutoff at small p.

We present the simulation results in Fig. 13 and Table
VII. They correspond to the level structures presented
in Fig. 12. The failure of the extended Landau-Zener ap-
proach is evident for t g 0. The cutoff at low p is not as
sharp as predicted by the semiclassical approach. This
suggests that those wave-packet components which are
excited at the second crossing advance on the excited
state clearly to the region where R )) R„beforea quan-
tum jump takes place. Hence they are already strongly
decelerated, and in addition gain less extra kinetic energy
when reemerging on the ground state at R~ )) R„rather
than at the immediate vicinity of R„.The net result is
a smooth tail towards p = 0.

At t = l
„

the contribution of the initial momen-
tum distribution is much less than expected from the
Landau-Zener approach. The reason is clear: the cou-
pling 0 provides a tunneling efFect that enables the wave
packet to reach the crossing even when it is classically
forbidden. This becomes clear if we consider the wave
packet moving along the lower adiabatic potential sur-
face [which corresponds to the smaller eigenvalue of the
nondiagonal Hamiltonian in Eq. (19), see Fig. 1]. Then

20 40 60

momentum

80 100

FIG. 13. The Snal momentum distributions for the angu-
lar-momentum study in the (6,0.6) case with po

——25. The
solid lines present the simulation results and the dotted lines

stand for the Landau-Zener results from the extended model;
the latter ones are given only for l (l „16.

TABLE VII. The angular-momentum study for the (6,0.6)
case with po ——25. The angular-momentum quantum num-
ber is t, otherwise the presentation follows Table III. The
data from the extended Landau-Zener approach are omitted
for l ) 15 as the crossing becomes shielded in the classical
picture.

(p)~oo (p) (p)r. z

0 49 42 36
5 51 42 38

10 57 48 41
11 50 42 41
13 54 45 41
15 54 47 33
16 58 49
17 52 45
19 40 37
20 37 33

+~2oo
4.7
5.3
6.0
4.7
5.4
5.4
6.1
4.9
2.7
2.3

Am Amzz
2.6 1.7
2.6 1.9
3.3 2.1
2.5 2.2
2.9 2.2
3.1 1.1
3.4
2.8
1.7
1.2

N n An
55 9.8 3.7
53 9.8 11.8
72 11.5 14.7
72 7.8 6.9
92 8.4 6.9
55 8.9 10.6
63 10.4 12.6
63 9.3 9.1
71 7.5 6.4
55 6.9 2.9

the potential surface has a maximum at R„,which in
energy scale lies 0 units below the point where the di-
abatic surfaces cross. Hence the tunneling observed in
the diabatic kame is in the adiabatic kame classically
allowed motion through the crossing region. This feature
has been confirmed with wave packets in Ref. [25] using
linear level crossings. When the crossing of the potential
barrier even in the adiabatic frame becomes classically
forbidden, the wave-packet results show no marked ef-
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for each simulation for all the data presented. Based on
prev'ious studies [10] we have in general used % = 50 as
the basic ensemble size, which has kept the duration of
each simulation within the limits we find acceptable (less
than a week depending on the workstation in question
and its then current load).

In Fig. 14 we show typical quantum jump distributions.
In most cases the number of jumps form a simple group
around the average value. In practice the X = 50 is a
reasonable size if the individual evolution histories for
ensemble members all remain very alike. However, com-
plications can occur. In the (10,0.2) case there is a clear
switching between cases with either zero quantum jumps
or one jump. In Fig. 7 the ensemble sizes were N = 202
for po ——10 and % = 278 for po ——15. The corresponding
portions of zero jump cases are 36'%%uo and 52%. However,
another simulation for pp = 10 (N = 65) gives 49% and
the final distribution has a fIat top instead of the two-
peak structure. It is clear that the final distribution in
the (10,0.2) and pp ——10 case is made of two peaks, one
for the zero jump case and the other for the one jump
case. The tail is probably formed by cases with more
than one jump. Hence in order to have the correct form
for the main body of the distribution we would need a
truly large ensemble. Only then can the correct relative
occurrence of zero and one jump cases be established with
reasonable certainty.

Similarly, in the strong heating cases with large po we
know that there must be cases which preserve part of
the initial wave packet. This is because the population
inversion [Eq. (26)] in most cases produces a sizable re-
fIection of the ground-state distribution on the excited
state. Hence all information about the initial wave packet
is destroyed only if either the ground state is fully de-
pleted by a strongly adiabatic excitation, or the levels are
strongly decoupled over the area where the ground-state
wave packet happens to be when the jump takes place.
In Tables III—VII the number of jumps is relatively large,
and increases with the steady-state inversion. In fact,

150
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C. Simulation statistics I

20

For the Monte Carlo state-vector method the choice
of suitable sizes for the enselnbles is an important and
nontrivial problem. Hence for all specific applications
of the method the way the ensemble is formed and how
it converges towards the density-matrix result must be
addressed with care. In this subsection we discuss the
problem in the context of our study.

In Tables III—VII we have given the ensemble statistics

FIG. 14. Examples of the distributions for the quantum

jump occurrences in ensemble members for selected simula-

tions. The parameters are as marked in the graph; for all
cases po

——15. The statistical data are (a) K = 56, n 14,
and An 6; (b) N = 278, n 0.7, and Dn 0.9; (c)
%=92, n 140, dAan1n3;(d)%=48, n 9, and

Qn 3.

fects; the excitation probability merely keeps decreasing
steadily and disappears eventually when the height of the
barrier is much larger than po. This is probably due to
the fact that a wave packet is a momentum distribution
of finite width, rather than a b function.

Although the extended Landau-Zener approach fails
for / g 0, the use of l „obtained from the classical de-
scription provides a reasonable lower estimate for heating
calculations. We observe that as / increases the heating
is at first slightly enhanced from the value at l = 0 as
the wave packets arrive at B„withreduced momentum
and the adiabaticity of the crossing process is increased.
The acceleration taking place between B~ and B„also
increases kinetic energy further and hence reduces the
excitation probability at the second crossing. The mag-
nitude of these enhancements, however, is not very large,
just barely observable in the limits given by the statisti-
cal inaccuracy of the simulation method. Because of the
power-induced lowering of the potential barrier, the heat-
ing still continues at l ) t „butdies ofF rather rapidly
with increasing l as the height of the barrier increases
roughly as l

In Ref. [25] a trapping of the wave packet in the po-
tential well formed by the upper adiabatic surface was
observed in addition to the barrier lowering efFect. In
our case this rather narrow well roughly consists of the
ground state at B ( B„andof the excited state at
B)B„.Such trapping would strongly increase the time
the wave packet spends near the crossing region, and the
number of quantum jumps could increase. In Table VII
we see that except for / = 0 and l = 20 the standard de-
viation is quite large. The reason is that for other values
of / we observe that the number of quantum jumps in
most members of the ensemble lay close to the average
value n & 10, but for about &10 % cases the number of
jumps is in the region 30—70. This changes the average
very little, but clearly afFects An. We do not observe this
jump behavior in any of the t = 0 cases presented in the
previous subsection, so it seems to be a clear t g 0 effect.
The actual averages over different wave packets (in the
form featured in Figs. 5 and 6) do not reveal any clear
differences between t = 0 and t g 0 cases. There is the
small peak in excited-state population at B B„which
survives long after the main body of the wave packet has
left the immediate crossing region, but it is present also
for the l = 0 case (Fig. 5).

We can, therefore, conclude that one can use the s-wave
result for Am and the semiclassically obtained t for
producing an estimate for the total kinetic energy change.
Since the simulations are tedious and time consuming,
this fact is of utmost importance.
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many of the reported quantum jumps take place while
the wave packet is in the steady state before or after the
collision, especially when we wait for the small trapped
or strongly decelerated components to emerge &om the
interaction region. This is especially true for the (2,1)
case; the decline in n with increasing po in Table IV is
mainly due to the gradual shortening of the integration
time &om 0.5 to 0.35. Small ensemble sizes will tell us
that we have contributions from the initial wave packet,
and &om the well-spread tail structure. The form of the
tail is given rather well, but the exact ratio between the
two possibilities can be accurately defined only with rel-
atively large ensemble sizes which lie beyond those we
have used.

We observed a clear two-case behavior also in the stud-
ies of angular-momentum states presented in the pre-
ceding subsection. There we had the number of jumps
per ensemble member either roughly 10 or alternatively
above 30. In the wave-packet evolution we could not see
any clear two-case structure. Clearly the weaker effect
(& 10/&) becomes hidden by the bulk behavior. How-
ever, when building the ensemble one could use the num-
ber of jumps in order to classify the wave-packet histories
into two separate groups. Then we would be in a bet-
ter position to study the less probable processes. This
is one clear advantage of the simulation method over the
standard density-matrix study, where disentanglement of
different histories is not possible, unless they correspond
to behavior that leads to a clear separation either in po-
sition or momentum space.

Our view is that N = 50 is an adequate ensemble size
to determine wave-packet effects in the presence of spon-
taneous decay when the things we look at can be regarded
as a bulk effect to which all the different histories con-
tribute, differing only slightly from each other. As in the
Feynman path integral representation of quantum me-
chanics, we expect all the quantum trajectories to con-
centrate in the vicinity of a single classical trajectory. If
there were many possible but clearly separate classical
trajectories, we would have to determine the quantum
motion near each of them, and also the extra probabili-
ties for picking up a certain classical trajectory. In wave-
packet dynamics this would probably require N = 500—
5000 members for an ensemble. We cannot always wait
for the computers to create such ensembles.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have shown how it is now possible
to solve the problem of ultracold atomic collisions in the
presence of laser driving fields and damping due to spon-
taneous decay. The computation, although very consid-
erable, is still well within the range of the capabilities
of today's workstations. This has to be contrasted with
a direct assault on the time-dependent density matrix,
which is still out of the question [10]. We have shown
that these cold collisions produce heating of the atoms
that can be very significant near the saturation limit es-
pecially at the temperatures below the Doppler limit TD.
At temperatures around and above TD the changes in the
momentum are modest compared with the initial one.

This suggests that a semiclassical approach such as that
used by Smith and Burnett [27] will be appropriate in
this limit.

For the lower temperatures we study we have seen that
the momentum spread can become very large compared
to the initial one. This goes hand in hand with signif-
icant reexcitation (population recycling) and precludes
any simple quantitative approach. We have, however,
been able to give what we feel are sound physical pictures
of these processes based partly on semiclassical notions.
The results that we have presented in this article and
elsewhere [8] clearly state that the Landau-Zener theory
with semiclassical trajectories is the undisputed basic ap-
proach outside the population recycling region, against
which all other methods should be compared. The ap-
proach also gives good physical insight into the compli-
cated problems.

It should be emphasized that our treatment is time de-
pendent, so many of the standard concepts of the time-
independent scattering theory appear in a form which
differs &om the usual one. For example, bound-state
resonances appear via trapping of the wave packet on
the excited-state potential. At small detunings the res-
onances disappear due to the spontaneous decay: the
bound-state structure near the continuum is dense and
easily smeared out by the natural linewidth. For large de-
tunings, however, resonances can be observed in trap loss
rates [28], which arise from population exchange between
two fine-structure excited states of the collisional quasi-
molecule at interatomic distances of the order R 100ao.
As the states involved have very different asymptotic en-
ergies, this exchange leads to clear trap loss instead of
heating. The process is very sensitive to the population
of the excited state even when it is very small. Hence
even negligible trapping of wave-packet components on
the excited state is observed as resonance structure in
the loss rates related to the fine-structure change. De-
tectable collisional heating, on the other hand, is a bulk
effect and involves therefore the main part of the wave
packet. Our results show that trapping on this scale is
practically absent and hence the resonances have no vis-
ible role in the heating process.

The results of our calculations still have to be com-
bined with models of specific experimental arrangements
to obtain predictions for the velocity distributions in the
presence of laser cooling and collisional heating. Our cal-
culations provide momentum-changing cross sections for
such models. We shall present elsewhere how to use the
momentum distributions in the more general thermody-
namical context. We are also confident that the method
described here will form the basis for future work in which
the sundry approximations we have made can be relaxed.
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