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Heating due to long-range photon exchange interactions between cold atoms
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We have calculated the long-range part of the momentum difFusion coefficient of two atoms in a
radiation field using an S-matrix expansion to first order in the dipole-dipole interaction between
the atoms. This perturbative treatment is limited to the low-saturation regime and large detunings
(~b~ )& p). The physical processes arise from the interaction with the coherent and incoherent parts
of the scattered spectrum. We find that in the regime of a constant density the extra difFusion term
when averaged over the trap volume depends on the total number of trapped atoms to the third
power and is independent of the atom laser detuning.

PACS number(s): 32.80.Pj, 42.50.Vk

I. INTRODUCTION

Measurements by Clairon et al. [1] and more recently
in this laboratory by Foot et al. [2) show that the tem-
perature of Cs atoms in a magneto-optical trap depends
on the total number of atoms in the trap, N. For num-
bers of atoms in the range of N 10 to N 10 the
temperature varies as the number of trapped atoms to
the one-third power.

In this paper we present a model which shows that the
extra diffusion caused by the reabsorption of scattered
light can give rise to extra heating which scales as num-
ber of atoms to the one-third and is independent of the
detuning. In a dense cloud of cold atoms the scattered
photons from one atom can be reabsorbed by a second
atom nearby producing a repulsive force between the two
atoms. There is also an attractive force due to the atten-
uation of the laser beam as it passes through the cloud
of atoms [3]. The forces due to these processes have first
been discussed by Sesko et al. [4] under the assumption
of an optically thin medium, i.e., the assumption that
a photon is not scattered more than twice on its way
through the cloud. In equilibrium the trapping force is
then balanced by the repulsive force, leading to a regime
of constant density [4,5]. Hence the number of atoms
N, the density n, and the trap radius L are related byI ~ (N/n)i~s. This approximation breaks down when
the cloud is no longer optically thin. Lindquist et at. [6]
have shown that for larger numbers of atoms the trap
radius will go more like the square root of the number
of atoms in the cloud. Their data are at rather low de-
tunings. We expect that the regime where the radius
depends on the third power of N increases when larger
detunings are used.

We show in this paper that these scattering processes
also give rise to an extra term in the momentum diffu-
sion coefficient. In our treatment we use an S-matrix
expansion in terms of 1/kr and take the average sep-
aration of the atoms to be much larger than the laser
wavelength. We restrict ourselves to the limit of small
saturation, i.e., the Rabi kequency 0 is small and the
laser detuning b = ~L, —uo is large compared to the

natural linewidth p. In the far-field limit the extra con-
tribution to the diffusion is proportional to the optical
thickness of the cloud, i.e. ,

Here 0 is the scattering cross section for the absorption
of light at the laser frequency. If the separation of the
atoms becomes comparable to the order of the wave-
length higher orders in 1/kr have to be taken into account
and the dependence on I becomes more complicated.
The results presented in this article show qualitatively
that as long as the separation of the atoms in the cloud
can be considered large compared to the laser wavelength
the photon exchange interactions give an excess heating
of the cloud which has a functional dependence on the
number of trapped atoms which is in agreement with
experimental observation. As we restrict ourselves to a
two-state atom it is clear that the theory cannot account
for effects which the scattered radiation has on the sub-
Doppler cooling mechanisms [7] which have been shown
to be important in the trap [8]. Nevertheless we believe
the formalism and results we describe form a proper basis
to examine the more general case.

The paper is organized as follows. In Sec. II A, we de-
scribe the mathematical method and the approximations
necessary to calculate the momentum diffusion coeKcient
from an S-matrix expansion. We then calculate the one-
atom diffusion term to set up the formalism in Sec. IIB.
In Sec. II C, we perturbatively calculate the contribution
of the photon exchange of the pair of atoms to the diffu-
sion coefficient and finally in Sec. IID we obtain a result
for the trap averaged magnitude of this extra term.

II. CALCULATION
OF THE DIFFUSION COEFFICIENT
USING AN S-MATRIX EXPANSION

A. Mathematical method

In this section we will set up the mathematical formal-
ism for the calculation of the momentum diffusion coeffi-

1050-2947/94/50(2)/1479(11)/$06. 00 50 1479 1994 The American Physical Society



1480 G. HILLENBRAND, C. J. FOOT, AND K. BURNETT 50

cient in terms of the S matrix. The starting point is the
distribution function f(p, t) of p at time t T. his proba-
bility function can be obtained from the density matrix
by adiabatically eliminating the internal fast variables
[9,10] and we can then derive a Fokker-Planck equation
for f(p, t). The conditions this imposes on the validity
of our treatment are first that the width of the wave
packet in momentum space is large compared to a pho-
ton momentum hk and secondly that kv/I' « 1. The
first restriction is equivalent to assuming that the atomic
wave packet is well localized within a laser wavelength.
W(p, Ap) ds(Ap) is the probability that an atom initially
at momentum p after a time 7. has a momentum in the
interval p+ EJ7, p+ b, p+ d(6p). The momentum dis-
tribution after time t+ 7 is then given by

The total momentum diffusion coefBcient is obtained by
averaging D„(p) over the distribution of all incoming mo-
menta, p. Defining P(p) as the probability distribution
for the incoming mean momenta in the cloud of cold
atoms we obtain the diffusion coeKcient in the form

Dp ——— d Ap d pBp, ApPp Ap

We note that this formula is equivalent to the defini-
tion of the momentum diffusion coefBcient as the rate
of change of the expectation value of the square of the
momentum change

f(, t+ ) = fd'(6 )f( Apt)W( —, A, A—g. (2)

We take the time ~ to be small enough so that only mo-
mentum changes AJ7 with ~Apg && ~pg can occur. This
condition will generally be xnet for Ap of the order of
hk as this procedure corresponds to the usual expan-
sion of the optical Bloch equations up to second order
in hk. From the preceding discussions it becomes clear
that the concept of a difFusion coefficient which is part of
a Fokker-Planck equation arises from taking the semiclas-
sical limit. We expand f(p —b J7, t) and W(p —AJ7, ApQ to
second order in Ap and keep only the terms up to second
order in the expansion parameter to obtain a Fokker-
Planck equation for f(p, t),

The S-matrix transition element for the probability of
atom A to experience a momentum change of Ap is given
by the sum over all possible interactions which will shift
the momentum distribution by the appropriate amount.
The first processes are those where the atom interacts
only with the laser Geld, i.e., the absorption of laser pho-
tons followed by a stimulated emission of laser photons
or a spontaneous emission of fluorescence photons. The
net momentum change of such a process is equal to the
difference between the total momentum absorbed from
the laser Geld and the sum over the momenta carried
away by the fluorescence photons 6p = P kl. —P ks.
The second type of process involves the reabsorption of
photons scattered &om atom B by atom A. The momen-
tum change of atom A due to these processes is given by
AJ7= P k„ ie, —P ks where e„ is the unit vector point
from atom B to atom A and k„q is the magnitude of
the k vector of the scattered photon. Figure 1 shows a

The force F(p) and the elements of the momentum
difFusion tensor D;~(p) are defined as

(4)

R(p, bpg is the transition rate for an atom initially in
momentum state p to experience a momentum change
Ap

R(p, bp) = W(p, Ep)
(6)

W (p, Apg is equal to the modulus squared of the 8-matrix
element (p+ Ap

~
S

~
pQ. For isotropic momentum distri-

butions the ofF diagonal elements of the diffusion tensor
are zero. We then have

FIG. 1. Diagrammatic representation of the expansion of
the S matrix for two particles: the single particle lines in-
clude the interaction of the single atom with the electromag-
netic leld. This includes processes like absorption followed

by reemission of a laser photon or by emission of a auorescent
photon. The lines connecting the single particle propagators
represent the exchange of scattered photons.
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diagrammatic expansion of the S matrix. The important
question now is how many of the photon exchange di-
agrams and the diagrams representing the scattering of
photons we have to take into account. Swain [11] and
Ballagh and Cooper [12] have shown that in order to ob-
tain the correct spectrum for the scattered light it is nec-
essary to sum over the interaction of the atom with the
Geld to all orders to get the correct width and intensity
of the Mollow triplet [13]. Hence for an accurate calcula-
tion of the pair diffusion coefficient it would be necessary
to take all the diagrams represented in Fig. 1. Taking
into account only a single absorption and reemission cy-
cle gives the one photon spectrum with the correct width
and line strength within 30%. To establish the number
of photon exchanges we need to consider the time scale of
the processes involved. The time scale for the scattering
of photons is given by the optical pumping rate, which is

I'so, where 80 is the saturation parameter given by

02/2
b'2 + ~2 (10)

and I' = 2p is the natural linewidth of the transition.
The time scale for the photon exchange between the pair
of atoms is therefore given by the optical pumping time
times the probability to find the photon in the direction
of r which is approximately given by I'so(l/kr)

There are two time scales for the fiuctuations of the
force between the atoms. The first one is of the order of
the natural linewidth corresponding to the exchange of
photons which belong to the incoherent part of the scat-
tered spectrum. The second arises from the exchange of
coherently scattered photons, i.e., the interaction of the
mean dipoles. The correlation time for the latter pro-
cesses is of the order of the time an atom needs to move
a distance of the order of the laser wavelength. For cold
atoms this time is comparatively long compared to the
time for the exchange of a photon between the atoms and
becomes of the order of the time for one photon exchange
if the separation of the atoms is of the order of 25AL, . The
amplitude of the nth order photon exchange diagram is
proportional to (1/kr)". This means that the terms con-
tributing to the two-atom part of the momentiim difFu-
sion coefficient are at least of the order of (1/kr) . It is
therefore consistent to neglect those terms in the far-field
approximation as their contribution is small compared to
the lower-order and single-atom terms. To obtain an ap-
proximate result of the diffusion. coefficient of the pair of
atoms it is therefore consistent to take only the lowest-
order diagram for the photon exchange and the lowest-
order diagrams which give rise to the elastic and inelastic
parts of the scattered spectrum.

A
'A'

A
'A' f

FIG. 2. Lowest-order diagram for the single-atom difFusion
coefficient of a ground-state atom. The absorption of a laser
photon is followed by emission of a photon with wave vector
~OUt ~

B. The single-atom diffusion term

To begin with we calculate the single-atom momentum
difFusion coefficient to set up the formalism for the cal-
culation of the two-atom contribution to the momentum
diffusion coefficient. This result is compared with the
one obtained by Gordon and Ashkin [14] for a two-level
atom. Perturbative methods for the calculation of diff'u-

sion in the low-saturation limit have, for example, been
discussed by Cohen-Tannoudji [15].

The momentum diffusion of a single atom in the case
of a plane wave arises &om the absorption of a laser pho-
ton followed by the emission of a photon in a random
direction. The basic diagram for this process is given in
Fig. 2. Hence the single-atom diff'usion rate is easily cal-
culated as follows. Let V~~(k) be the interaction of atom
A with a photon with polarization A and wave vector k
defined by

with

and

V~p(k) = -i'(k)(d~ ~p)

x [a~ se'"'"& (it e '" "&]'

a(&) —= I&I /~~y"

g(~~) = I&l Q

(12)

We assume that the laser is sufficiently weak that
the system is in the atomic ground state. The initial
state of the atom is [(I)'~, g) where [@g) describes the
external degrees of freedom, i.e., (p ~

4g) describes
the atomic wave packet in momentum space. The S-
matrix element for the scattering &om a state with rno-
mentum p; and nl, laser photons ~p;, g) ~nL, ) to a state

~p, + (kL, —k»t), g) ~nL, —1, 1& g ) with final momentum

p,. + h(kL, —ko„t) and nl, —1 laser photons and a single
photon in the mode with wave vector k „t and polariza-
tion A is to lowest order given by

&p", , g[(n, —1, 1„„-]S[n,)]g,p,")
= (—~ )&(@n — »t)(Py ) gl(nL, —1, 1„p]V~~(hut)&AO(@n) V~~. (kI ) (g, p; ) [nL). (14)

Here Ggo(E) is the resolvent operator given by
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G~o(E)—: A

F —HAP —Z
(15)

where HAp is the kee Hamiltonian of the atom. The diagonal operator Z is the self-energy correction to the &ee

propagator which is given by the fainiliar expression I16]

(~~~ (~~I
Z(e, e) = —i'+ hp P d

I

—
I ~

—
I

k~o) k4'o J
)

Calp

Z(g g) = —hpP dl —
I I

—
Io)

CcPp
y

(16)

In the following calculation we include the Lamb-shift terms arising from the principal parts, which are formally
divergent until a proper renormalization is performed, into the transition frequency up. The scattering amplitude is

given by the matrix element for the change of moxnentum from p, to the momentum»7& integrated over all incoming
momenta.

3 A

(py gl~lg @~) =
2

', (»7y gl( L,
—i, i,-„,l~l L)lg, p,")(p,"I@ )

Evaluation of the matrix element in formula (14) yields

(pf 1 gl (nr. —1, 1& i Ivz& (k «)G&o(E;„)viz (kL ) lnz ) Ig, p, )

1= hg(k, «)(d~ ep)~

~

~

(dL, —4Pp —V; kg —
2 + l f

g(kl, )(d~ eg, )(2m) b (»7y
—

(»7g + kl, —ko«)).

Finally substituting Eq. (1S) into (17) we find for the scattering amplitude

)gy, g
l

g
l g, @~) = (—g«}g(@ —&. c)gg(g. ~)(A fi)

L,
—~o —v,. kl. —

2 + sp

xg(kr, )(dx ex, )4'~(p~y —(kL, —ko«)). (19)

We now neglect the Doppler and recoil term in the intermediate propagator. This is justi6ed by the fact that for

a gas of cold atoms we have very low velocities lkvl « lbl, b = urL, —eo. The probability for the atom to undergo a
transition into a 6nal momentum state pf by absorption of a laser photon followed by the emission of a photon with

wave vector k „t is given by the square of the matrix element in Eq. (19). We then obtain

d~(py ~ (kL —4«)) = 2«7'b(E Eo«)g(ko«) l(dx ' ex)I g(kL, ) I(dx 'equi)I ~2g2 + ~2

, d'py )' d'k «')
x l@~(» y

—(kL —k. i)) I'
2JI' s ( 2m' s )

(2o)

dW(P&, (kL, —k „t)) is the probability to scatter from an incoming state»7+& —(kL, —k „t) into the final state pf . Note

that Eq. (20) already includes a weighting by the probability distribution of the incoming momenta which is given

by the factor l)I)~(»7& —(kL, —k „t))I
. The total probability W(kl, —k «) to have momentum change (kl, —k~«) is

given by integrating Eq. (20) over dsp& and summing over polarization of the outgoing photon. Using the relations

and

f
3 A

I4'~(»7f —(kL, —k „,))I = 1 (21)

(22)

the rate of change of momentum by kL, —k „t is given by
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dsk
R(k) —k,„t) = 2m. h8(E;~ —E~„g)[d~ (I —ng.„, ng „,) d~]g(k~g) ~(d~ op~)~ g(kL) ~

V '" . ( 3)'+p' ~ 2vr ')
The Rabi &equency 0 is de6ned as

(24)

We now neglect the contribution of the change in kinetic energy in the b function for the energy, i.e., E; —E „t
h(urL —~ „t). Equation (23) can be rewritten as

02 2
R(kL —k „t) = 2mb(uL —u „t)[d~ (I —ni.. . @n~,) d&]g(k „t) [(g&. p& )[2

2 + p2

By substituting Eq. (25) into Eq. (8) we find the one-atom momentum diffusion coefficient

d3kD„' = —V "s R(kL —k,„t)h (kL+ k „,—2kLk, „qcos8)
2 (2vr)

l(dx ' ac) I p ~ ~
[dg (I —nI.„, ng.„,) dx]h (2kL —2kL cos 8). (26)

1 -
~ 0 /2 f'(uL't dO~„g

2 ' b'2+72 ((uo) 4m/3

2/D/'coos
7 3~3

The angular integral yields

(27)

f dOou"
[d~ (I —n~.„,8 ng.„,) d~]

x (2h kL —2h kL cos 8) = —h kL, (28)

p is half the natural lifetime of the transition defined as
I

shown in Figs. 3 and 4. Figure 3 gives the part which is
due to the interaction with the elastically scattered com-
ponent and Fig. 4 depicts the lowest-order contributions
to the sidebands of the Mollow triplet. These parts also
give rise to a b function contribution for the elastically
scattered light. But we do not include this in our calcu-
lations as this diagram mould be reducible and could be
resummed in a different way [11,17]. The particles are
described by two Gaussian wave packets at a distance
~r[ apart with mean velocities F7~0 and J7~0, respectively.
The wave packets are given in momentum space,

where we have used the fact that the contribution of the
extra cos term does not contribute in the average and

f

�8'
dn. „,[d . (I - n, , g n, , ) . dI = —.

s
W

@'~(pz) =
1,~2,~

exp , (p~ —S"~o—)'—,
s

@B(pB)=
~, ~2,[ exp , (pB p—B0—)

x exp[—i(pg —pro) r].

(31)

The factor (~L/~0) is approximately equal to unity in
the rotating wave approximation. Substituting Eq. (28)
into (26) yields

To calculate the extra difFusion we assume that the par-
ticles are well localized in position space within a wave-
length, i.e., a (( AL. The two particles are treated as

Dp
' = p[(dA ~A. )~'so(hkL)' (30)

for the single-atom difFusion coeKcient. so is the satura-
tion parameter for the Rabi &equency at the position of
the atom which in the case of a plane wave is position in-
dependent as long as shielding eÃects due to a surround-
ing medium are not taken into account. For an incident
plane wave and low saturation this coincides exactly with
the expression calculated by Gordon and Ashkin [14]. B

Ag, p .

B
gB P.

A
A'

B
g p

C. The two-atom diffusion diagrams

In this section we study the infIuence of the presence of
a second atom at a distance [r[ on the diffusion rate. The
diagrams which we have to include to lowest order are

FIG. 3. Lowest-order diagram for the exchange of an el-
lastically scattered photon. Atom B scatters a photon with
wave vector k which is reabsorbed by atom A. Finally atom
A reemits a fiuorescent photon with wave vector k „t.
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Ag, P
A

B
gg, P H

, P

(Jf gl(@~ glS(r)lg @~)lg @'~)

d pf (~~ Ipy ) (p f ~ gl (pf, glS(r) lg~ @~)lg, @&).

(32)

Again we neglect the kinetic energy part in the interme-
diate propagators.

1. The S matr-is. element for the elastic component of
the scattev ed epect~m

A

A
'A'i A

A'

The S-matrix element for the elastic component is of
fourth order in the atom Geld interaction and is shown in
Fig. 3. We have to sum over the intermediate photon to
get the total contribution. Denoting the diagram for the
exchange of a particular momentum k by Sg(r) the total
contribution of the photon exchange can be written as

Bg, P
Hg, P

with

S(r) = V Sg(r),
2rr ' (33)

FIG. 4. Diagrams for the sidebands of the Mollow triplet.
Atom B undergoes two absorption-emission cycles emitting
two photons with different wave vectors kA and k~. One of
them —here denoted by k&—is reabsorbed by atom A and
reseat tered.

independent, that means we do not symmetrize our wave
function and the initial state is described by 1@~,g)
1@~,g). For spatial separations much larger than the
spread of the wave packet the exchange integral due to
the symmetrization gives a zero contribution. We regard
the second atom as a bath, i.e., in order to get the total
transition matrix element we take the average over the
second particle. The S-matrix element for the extra dif-
fusion on atom A due to the surrounding cloud of cold
atoms is hence given by the relation

Si-, (r) = Vgypr (kL, )Ggyp(E;~) ) Vying(k) Dy'( goi)Vgp(k)

x Gxo (E;n)Vxx.„,(k~„g)

x (—2rri)b'(E;„—E „,). (34)

This corresponds to atom B absorbing a laser pho-
ton after which it propagates &eely until it emits a pho-

ton of wave vector k. D~ is the &ee relativistic pho-
ton propagator for the electric field and we neglect the
Doppler and recoil shift in the propagator as it is negli-
gible compared to the laser detuning. After absorption
of the intermediate photon by atom A the latter propa-
gates freely until it emits a photon of wave vector k „&.
The matrix element for the exchange of a photon of wave

vector k, (p+&, gl(pg, gISg (r ) lg, p; ) lg, p, ), is proportional

to the b functions (2rr)sb (g7+&
—[p; —h(k „t —k)]) and

(2rr)sbs(p+& —[p+ —h(k —kl. )]). The matrix element

(pf, gl(@B,glS(r) lg, 4'ir) lg) 4g) is therefore equal to

(py gl(@is glS(~))lg, @a)lg @~) = V
dk dpi'3 3 B

(2rr) 2rr s
4* (pf )C gg(pf + h(k kL, ))

x(pf gl(py glS;(r)Ig p; +h(k —k~))lg, p,"+h(k-.i —k))

xe„(pq + h(k.„,—k)). (35)

The matrix element (p&, gl(p&, glSg(r)lg, p& + h(k —kL, )) lg, p& + h(k~„t, —k)) for the scattering between difFerent

momentum states is given by

(J7~, gl(pf, glSg(r)lg, py + h(k —kl, ))lg, pf + h(k „, —k))

1 1
(—2rri) b(E,„—E.„,).

QJL —~It, + 2E 4)L + (dk —2C

= (2rr) hg(k~„&)(dz. ez.„,)( . ) g(kl)(dz e&, )g (k)[d& (I —n& ni ) dz]
2y

(36)
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lt is worth noting that (J7&, g[(p&, g~Ss(r) ~g, p& + h(k —kL, ))~g, p& + h(k « —k)) is independent of p& and p& in the
low-velocity approximation. The assumption of good localization in position space means that

— Pf +h I--IL -PBO ——Pf -PBO +0 — .

The terms of the order of
&

are small so that we can neglect them in the Gaussian. Hence using Eq. (31)

d pf 4Q(p& )@n(p& + h(k —kL, )) = exp[—i(k —kL, ) . r]
~

~ (38)

The integration over the intermediate photon momentum is demonstrated in detail in the Appendix. In the far-Geld

approximation we get the result

3 (~,)'
(p&, g((4'~, g~S(r) )g, 4a) (g, @g) = Feg(k «)(dg ei,„,) . g(kL, )(da ex~) 20 I+ ~7) E~o)

x[d~ (I—e„se„) d ]
kl, r

x4'~(p& + (k,« —kL, e„))exp[+ikL, r]27rib(E;„—E«q) (39)

The net effect of the average over all intermediate photons is an extra momentum kick of magnitude kL, in the direction

of the unit vector of r The .change in momentum of atom A is equal to Ap = (k « —kr, e„). In the low-velocity
approximation (39) is independent of p& and is interpreted as the transition amplitude for a ground-state atom A

with final velocity p+ to have experienced a momentum change by from scattering of a photon emitted by a secondf
ground-state atom driven by a laser at a distance ~rg apart. Taking the modulus squared and summing over all possible
Gnal momentum states gives the total probability to have a momentum change 6p. The probability for this process
can be written as

de „,(r, bp) = hg(k«q)(d~ ep.„,) . g(kL)(d~ ep~)+ip)
3 2

-' i'"'i [d (I-- -) d
]'"'["""]

2 ((uo p
"

kl, r

(40)

The index A « indicates that the polarization of the outgoing photon is fixed. Summing over A,«and using Eqs. (21)
and (22) the total probability is given by

dW(r, 6p) = —b(kL, —k «)dk «dO«q[dg (I —nI,.„,3 ns „,) d~] ~D~

3 ~ 0 /2 [d~ (I—e„ e„) d~]
X —p d~ 6&s . X (41)

Again we have replaced factors of the order (urL, /ufo) by
unity and the weighting by the probability distribution
of the incoming momenta is already included.

The Rayleigh cross section OR „(h) for a two-level atom
in the low-saturation approximation is given by

O.n r(b) = 4vr)D[
hc h'+~2 (42)

and the transition rate is defined by R(r, b,pQ

Using Eq. (42), Eq. (41), and Eq. (30) for
the single-atom diffusion coeKcient gives the transition
rate for the photon exchange interaction,

R(r, bp) = dk «dO «h(kr, —k «)

x [dg . (I —nI, , II ns, ) . dg]

2 Dl —at

2(8x)' "
(hkL, )'

2
[d~ . (I —e„ e„) dg]

X
r

Substitution of the transition rate in Eq. (43) into Eq. (8)
gives the contribution of the elastically scattered light to
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the momentum diffusion coefficient which is equal to

, 3 [d~ (I —e„g e.) dB]D (Tj =Dp oRaY b
p 8rr r

(44)

2. The 8 ma-tris: element for the inelastic component
of the scattered spectrum

The diagrams for the sideband of the triplet are given
in Fig. 4. For the evaluation of the contribution of the

side bands to the two-atom momentum diffusion it is suf-
ficient to consider only the resonance component of the
scattered light where the reabsorbed photon k~ has the
&equency su~ ——cuL, —b and the second photon has the
&equency ~L, + b which is far off resonance for large de-
tunings b. The contribution is of the same order as the
contribution of the elastically scattered light due to the
fact that the reabsorption process is proportional to the
resonance cross section rather than the elastic cross sec-
tion for large detuning. The two diagrams corresponding
to the two possible ways of emitting the resonance pho-
ton are evaluated the same way as before and we find for
the sum of the amplitudes

&py gl(II~ gl~(r)lg @~)lg ~~) = 0'/2 g(kout)g(k~) ( 'I (d ) (d )0 oat A '
eAoua B '

eked~

, 3 - - exp[+ikon]
x(dg . tp ) p[d~— (I—e, e„) dg] exp[iko r]]

kpr

x 1+ . 4'~(PI + ke„t —koe„).
2 + (45)

In the limit of [b[ )) p the second term in the square
brackets is a lot smaller than 1 and we can neglect it. To
obtain the probability for this process we have to sum
the modulus squared of the matrix element in Eq. (45)
over all possible polarizations of the two outgoing pho-
ton lines, integrate over the solid angle of the second
photon scattered by atom B and multiply by a factor
id&dw&/(2rr ) for the width of the energy interval of pho-
ton k~. u~ is equal to idL, + b and the width of the en-

ergy interval is given by the width of the sideband which
is approximately equal to the natural linewidth 2p. The
contribution of the resonantly scattered light to the mo-
mentum diffusion coeKcient is then given by

D'"'(r) = Dp" l~~ '~. I'

(48)

In a similar way we obtain for the contribution of the
inelastically scattered light

02 0.
Dinei( ) i 7 RaY( ) Dl-at

2~' r' (49)

The factor of 0 /2p2 comes from the resonance cross sec-
tion which has been taken in the limit of 0 && p . For
larger Rabi frequencies the strong dependence of the in-
elastic two-atom diffusion coefBcient is unrealistic. The
cross section for the reabsorption of the inelastically scat-
tered light can be approximated by [5]

[dg (I —e„se„) d~]
X (46)

3, +i
+ ) ~ + '/( '+ ') (5O)

The numerical factor for the extra diffusion due to an
atom a distance r away can be estimated by integrating
over dO„ to get the contribution of all the amplitudes of
particles located in a spherical shell of width dr. Perform-
ing the integration over the solid angle dO„gives a factor
of 3 . The integral over the solid angle of the scattered
photon gives another factor of 3 . tA'e therefore have

where the factor 1 —
&

indicates the relative1+so

strength of the inelastic component of the scattered light.
The total intensity of the scattered light is given by
I„ t ——oR Y(b)I, I being the total laser intensity. The
total contribution of the inelastic scatter to the diffusion
is proportional to the total scattered intensity times the
cross section for the reabsorption of the inelastic part
which is given by

(47)

If we now assume that the atomic dipole is oriented along
the local laser polarization which varies across the trap
and take into account a further factor of 2 which arises in
the averaging over the change in momentum the factor
multiplying the extra diffusion term is given by 2 x 3
—= 2.8.

sp+ 11— RaY+") "+ '/( '+ ')

Sp 02 2

+ ~2/(b2 + ~2) RaY Q2/2 + ~2 Rar~R I= ~R I (»)

The resonance cross section for Rabi frequencies of the
order of the natural linewidth gives rise to a factor of
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O2/(O2/2+ p ) which is of the order of unity for large
Rabi frequencies. The perturbative treatment for low
saturation does not exhibit this dependence because it is
equivalent to making the approximation so/(1+ so) = sp
in the expression for the inelastic cross section. Mak-
ing this approximation in Eq. (50) yields a factor of
O2/(2p2). This illustrates the limitations of the dia-
graxnmatic treatment. Its virtue lies, however, in clearly
showing the physical processes which contribute to the
difFusion coeKcient of the pair.

D. The trap averaged momentum diffusion
coefHcient

Under the assumption of a constant atoxnic density n
throughout the trap the total contribution from the cloud
can be calculated by integrating over the trap size. This
yields

(D +Dr', )~„=rrf drr (D'(r)+D'" (r))

=
~

2.8+ 1.7
~

D n oR~„(b)L,
( O'l

2&')

(52)

where L is the trap radius. In the regime where radia-
tion trapping forces become important L scales as N /',
with N the number of trapped atoms. With the aid of
formula (1) the difFusion coefficient for a two-level atom
including the efFects of reabsorption of scattered radia-
tion can be written as

ping forces have a dependence on the atomic separation
which is proportional to 1/r O. ur calculation shows that
this assumption is only valid for the far-field regime. We
therefore expect that the condition of a constant density
is violated if the spacing of the atoms in the trap is com-
parable to the laser wavelength. We also note that the
validity of the 8-matrix expansion only depends on the
condition kr )) 1. This condition is not equivalent to
the approximation that the cloud is optically thin and
our treatment does not exclude the possibility that noL'
is of the order of unity. In the average over all pairs in the
trap we still have to assume the cloud to be optically thin
in order to exclude processes which are due to photon ex-
changes which involve three or more atoms. There will
also be an efFect due to the attenuation of the incoming
laser beam. In the regime where the cloud is considered
to be optically thin and a photon is rescattered not more
than once the attenuation of the laser will only affect the
one-atom diffusion coefficient. The effect can be included
by a reduction of the local laser intensity due to scatter-
ing out of the beam. This attenuation will not affect the
two-atom part as a shielding of the incoxning laser pho-
ton will in this case correspond to a higher-order effect.
For optically thick clouds the attenuation is included by
replacing the incoming photon line by a shielded photon
line. This can be done, for example, by performing a ring
summation over an infinite sequence of bubble diagrams.
As this efFect would affect the single-atom diffusion the
saxne way as the two-atom diffusion this term will not
show in the extra dependence of the temperature on the
number of trapped atoms. The problexn in the summa-
tion for optically thick clouds lies in the summation for
xnultiple scattering of the intermediate photon between
atoms A and B via a third or more atoms.

O2
Dr=D~ ' 1+~ 28+12 r l&~ rR,r(6)N ). III. CONCLUSION

Formulas for the limiting constant density expected from
the model developed by Sesko et al. can be found in
Refs. [4,5). According to these expressions the density
has a dependence on detuning which is proportional to
bs. The scattering cross section OR „in the large detun-
ing limit scales as 1/(P and the density n to the power
of two-thirds is proportional to b . The extra terxn in
the difFusion coefficient in Eq. (53), n2)'so. R „((|')Ni~s, is
therefore independent of detuning as was observed in
Refs. [1,2]. We have to point out, however, that these
density formulas are derived under the assumption of a
spring constant which is independent of the density. This
in fact is not true as the sub-Doppler cooling mechanisms
are very sensitive to the interaction with the scattered ra-
diation [18].

Equation (A3) clearly shows that this result is only
valid in a density regime where the average separation
of the atoms is large compared to the wavelength. This
is also true for the theory developed by Sesko, Walker,
and Wieman [4] as they assume that the radiation trap-

We have calculated the momentum diffusion for a pair
of atoms in a laser beam. In the low-saturation regime
the total momentum diffusion is calculated by adding the
contributions of the individual beams. The Feynman di-
agrarn technique used allows us to identify the physical
processes which contribute to the pair diffusion coeffi-
cient. The results obtained are only giving a qualitative
picture and do not allow an accurate prediction within
more than a factor of 2. In our treatxnent we take the
cloud to be optically thin, which means the photon does
not get scattered xnore than twice on its way out of the
cloud. This is the same regime used by Sesko et al. [4] to
derive their expression for a constant density. Our cal-
culations show that one additional assuxnption has to be
made for the validity of their discussion. If the spacing
between the atoms becomes too small the 1jr dependence
of the radiation trapping forces becomes invalid and one
has to take higher orders in 1jr of the dipole-dipole in-
teraction into account. The expressions for the limiting
constant density derived in [4,5] are no longer correct in
this case. As Sesko, Walker, and Wieman [4] pointed
out, there is also an attenuation of the laser beam as it
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propagates through the trap. As the intensity used in
computing the diagrams is the local intensity the atten-
uation of the beam leads to a reduction of the one-atom
difFusion which also has to be taken into account as its
magnitude is of the same order as the contribution due to
the radiation trapping force. This contribution reduces
the effect of the elastically scattered light. Due to the
stronger resonant cross section the resonantly scattered
light gives a contribution which is of the same order of
magnitude as the contribution of the elastic light. This
stronger interaction will also have a strong eKect on the
sub-Doppler cooling mechanisms [7) as it will shorten the
optical pumping time and will also lead to an increase of
the excited-state population hence again decreasing the
eKciency of the sub-Doppler cooling mechanisms. We
shall address these points in a forthcoming paper.
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APPENDIX

In this appendix we show how to perform the sum-
mation over the intermediate photon momentum for the
exchange of elastic scattered photons between the pair of
atoms. The summations for the inelastic contributions
are done in a similar fashion. To carry out the d k in-
tegration we use the Fourier expansion of the Gaussian

4&(p& +h, (k „& —k)). Substituting Eq. (38) into Eq. (35)
yields

(p&, g)( grge~g(r)~ ggrp))g gie) = f d rxexp ——{p~ + k „r) re pe(re)exp)eke r)

d3k
x V exp[ —ik (r —r"~)]

(27r) '
x(p", , gl(p, , glS„-(r}lg,p, + h(k —k, ))lg, p, + h(k.„,—k)). (AS)

The integration over the intermediate photon momentum can now be carried out without further ado. If we use the
relations

1
lim
g'xxo ((dr, —tdg) + M

= —17rh(kdI —kdjg) + P (A2)

and [19]

~

~
dpi, .- sin k

{I—ni, sng, ) exp[ —ik (r —r&)] = {I—el„- „-„~ e~; „-„~
4x

+(I 3el"—
I

sin k
xl

( k2lr" —rAl2 kslr —r~ls p

and neglect terms of the order»~„~, or higher, the integral over the intermediate photon can be evaluated to give

d'k
V g (k)[d~ (I —nq ns) . d~] — exp[ —ik (r rA)]-

(27)')s (di, —(de + ie (dz, + )d)g —ie

—3 (kdL, l - - exp[ —ikl, Ir —r~ I]
I [d~ . (I —e~;—;.

)
e~;—;.~)

. da] (A4)
(~o p I r rA

The principal part of the integral over dk is equal to [20]

k~ k sin kR kiP dk + — x = vr —cos kL,B.
k —kL, ki, +k kR R (A5)

Here rA represents the vector &om the center
width of this wave packet is much smaller than
Expanding Eq. (A4) to first order in )" yields

of the wave packet representing particle A in position space. The
a wavelength so that in the far-field limit we always have lr| )) lr~l

f d3k - - 1 1
V g (k)[dg. (I —n), )3ng) dg]

{2~)s ML, —@PI + z6 GAL, + cdA —x6
exp[ —ik . (r —r~)]

3—3 t' kdI, ') - „-exp[+iki. r]= exp[ikl. e. . rg] p l l
[dg. {I—e )Re ) dg] . (A6)

ki, r
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It should be noted that the expansion of the tensor part also yields terms of the order one in "" but their contribution
I~I

averages to zero when the integral over d r~ is done. Combining Eqs. (36), (Al), and (A6) and integrating over dsr~
gives

3 i .~'
(Pf & gl(@» gls(r)lg~ @'~)lg, @~) = &g(4.t)("A ' &Ao, ) . g(kL )(da 6I )-7

I(h+ip) 2 ((up)

x [dg . (I —e„ e„) . d~) @g(p& + (k~„t —kL,e„))
- exp[+ik, r]

IT
x exp [+ikL, r] (2z i)b(E; —E „&),

which proves Eq. (39).
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