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Low-frequency approximations for both spontaneous and stimulated bremsstrahlung processes are de-

rived that are applicable to cases in which an electron is scattered from an atom at an energy near the

threshold for excitation of the target. Existing approximation procedures are modified to properly ac-

count for the strong energy dependence of the cross section, in the form of cusps or rounded steps,

caused by the opening up of a new channel. These modifications preserve an essential feature of stan-

dard versions of the low-frequency approximation in that the physical, field-free scattering amplitude ap-

pears as input to the calculation. An estimate of the error in the Feshbach-Yennie approximation [Nucl.
Phys. 37, 150 (1962)] for spontaneous bremsstrahlung is obtained through an evaluation of that contribu-

tion to the matrix element corresponding to radiation by the projectile following a virtual excitation of
the target. To illustrate the effect of the anomalous energy dependence in a domain containing the

threshold, as well as the significance of the above-mentioned correction to the Feshbach-Yennie approxi-
mation, calculations are described for a model system; the model is defined by a parametrization of the
field-free scattering amplitude that reproduces the correct threshold behavior. A closely analogous

treatment is given of laser-assisted scattering near a reaction threshold. A sum rule is derived for this

external-field process which, in its simplest form, reproduces a recently conjectured approximation and

provides higher-order corrections to it.

PACS number(s): 34.80.Qb, 03.80.+r, 03.65.Nk

I. INTRODUCTION

Some time ago, Feshbach and Yennie [I] provided a
generalization of Low's version [2] of the soft-photon ap-
proximation for spontaneous bremsstrahlung that allows
for the rapid energy dependence of the scattering ampli-
tude near a resonance. In a closely analogous develop-
ment, the Kroll-Watson approximation for scattering in a
low-frequency external field [3] was extended to account
for resonant scattering [4,5]. All such approximations
are based on the dominance of soft-photon emission and
absorption in initial and final states of the scattering pro-
cess, and require as input a knowledge of the physical
(on-shell) field-free scattering amplitude. While it would
be very useful to have estimates of the errors in these ap-
proximations, it is generally believed that this would re-
quire off-shell scattering information and hence would be
difficult to obtain. These approximation techniques for
treating bremsstrahlung during resonant scattering can
be applied to elastic and inelastic scattering near a reac-
tion threshold; here too the field-free amplitude shows a
rapid energy dependence. This is a process that has tak-
en on added interest recently, and has been studied, for
laser-assisted excitation, both experimentally [6,7] and
theoretically [8,9]. As will be demonstrated in detail in
the following, the theory can be carried further for
threshold scattering than was possible for scattering near
a resonance. In the former case an estimate can be de-
rived, expressed explicitly in terms of the physical field-
free scattering amplitude, for the effect of radiation in
those intermediate states corresponding to (virtual) exci-
tation of the target to the newly opened channe1. The
derivation proceeds in two steps. We first identify the

matrix element that represents the error in the earlier
versions of the low-frequency approximation, and we
then perform an asymptotic evaluation of this matrix ele-
ment in configuration space. This latter procedure is
based on the observation that for virtual excitation near
threshold the dominant contribution comes from great
distances, where the integrand is slowly varying; this
leads to a near singularity in the matrix element that en-
ables us to separate it cleanly from the background.

The spontaneous bremsstrahlung problem is analyzed
in Sec. II. A numerical estimate of the error term is ob-
tained in a model based on a parametrization of the field-
free scattering amplitude that incorporates the correct
unitarity property and threshold singularities. The close-
ly related external-field version of the theory is taken up
in Sec. III A. The low-frequency approximation thus ob-
tained provides the basis for a sum rule, derived in Sec.
III B, for the total laser-assisted scattering cross section.
The form of this sum rule is very similar to one which
was postulated earlier [8] as a simple extension of the
Kroll-Watson formula [3],and was shown to lead to good
quantitative agreement with experimental results [6,7].
The sum rule derived here provides a theoretical basis for
this analysis as well as a means for including higher-order
corrections. Some of the details of the calculation de-
scribed in Sec. II are separated form the main text and
placed in two appendices.

II. SPONTANEOUS BREMSSTRAHLUNG

A. Preliminaries: potential scattering

To provide the background for the discussion to fol-
low, we begin with an outline of the Feshbach-Yennie
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theory and, in the course of doing so, we identify the ma-
trix element that contains the leading correction to the
Feshbach-Yennie low-frequency approximation. At this
stage the structure of the target plays no essential role
and, to simplify notation, we consider scattering by a
static potential (taken to be of short range to avoid com-
plications associated with the Coulomb tail). Structure
e6'ects are included in the treatment given in Sec. II B.

The amplitude for the scattering of a particle (an elec-
tron, say) of mass p and charge e in a potential V(r), ac-
companied by the emission of a photon of frequency co, is
represented in the dipole approximation as a.m(p', p),
where a is a (real) unit polarization vector and

effects of spin are ignored for simplicity. ) We need not
specify at this point whether or not the collision has in-
duced a real target excitation, but in any case virtual ex-
citations do occur. The initial energy of the system,
E =p /2@+8, is assumed to lie close to the excited-
state target energy 8&, in which case threshold singulari-
ties in either the elastic or inelastic amplitude may be ex-
pected to play a role in the analysis. These singularities
are generated, in a configuration-space approach,
through the slow variation of the wave function in the
asymptotic domain of channel P. The form of the wave
function in this region is

m(p', p)=&u' ~ '~r~u'+'& . (2.1)

Here u'*' is a field-free scattering solution corresponding
to incident momentum p and outgoing-wave (+) or
incoming-wave (

—) boundary conditions. The wave
function may be decomposed as

ii~+~ -(2 ) 3~~yg&—'(+p&r&, p )exp(+ip&r&)/r&,

(2.5)

i u,' —'
&
=

i p & +
i u,'*.„' &,

with the scattered wave given by

(2.2a)

(2.2b)

I

icomFv= — p +2(p' —p) t(E,r)
@co B1

+ +2(p' —p) t(E co, r) . (2.4)—
@co 81

Here t(E, r) is the on-shell field-free transition ampli-
tude expressed in terms of the energy and momentum-
transfer-squared variable r=(p' —p) . A terin of first or-
der in the frequency has been ignored in arriving at the
approximation (2.4). For completeness, a derivation of
this result (which has a difFerent form than that given
originally in Ref. [1]) is provided in Appendix A. Note
that the terms involving derivatives with respect to ~
need to be retained, to the required accuracy, only if the t
matrix is strongly energy dependent. In many cases the
third term on the right in Eq. (2.3) will be comparable in
magnitude to terms neglected in the Feshbach- Yennie ap-
proximation, and it will therefore be consistent to ignore
it. Exceptions arise when near singularities appear in the
integral; such a situation is examined in the following.

B. Multichannel scattering

We consider a transition taking the system from chan-
nel a, corresponding to the target in its ground state with
energy 8, and the projectile incident with momentum

p, to a final state with channel label a'. (Dynamical

Ho represents the field-free Hamiltonian, E =p /2p,
and g is a positive infinitesimal. Then, for p Wp, we have

m(p', p) = &p'~r~u,'+.„' &+ & u,',', ~r~p &+ & u', ,', ~r(u', +. „' & .

(2.3)

In the Feshbach-Yennie approximation the first two
terms on the right-hand side are replaced by mFY where,
in units with R = 1,

where r& is the coordinate of the free electron in channel
P, and y& is the excited-state target function. (The Pauli
principle, ignored here, may be imposed on the transition
amplitude by taking suitable combinations of direct and
exchange matrix elements). The projectile momentum,
satisfying pl3/2@=E —8&, will be imaginary for an ini-
tial energy lying below threshold; in that case signs are
chosen so that the exponential in Eq. (2.5) is decaying.
(The necessary analytic continuation of the scattering
amplitude below threshold is illustrated in the model cal-
culation described below. ) The relation between the
scattering amplitude and the conventionally defined t ma-
trix is f& = p(2n)—t&~

In an asymptotic evaluation of the correction term, we
arrive at a decomposition

(2.6)

where the dominant contribution, obtained by replacing
the wave functions by their asymptotic forms in channel
P and integrating over the coordinates of the bound-state
wave function as well as over the radial coordinate of the
projectile, is readily found to be

C (p~., p ) =(pii+pIi) (
—2m)

X 0 r ~.& p~. ,
—p&r r &~ p&r, p

(2.7)

The reciprocity relation f&
' (p', p)=f', &'(p, p') was

used in obtaining this result, and the superscript (+) on
the scattering amplitude is left implicit in Eq. (2.7) and in
the following. From the relation pIi /2IJ, =E ~

—8&, with
E =E —co, along with the similar definition of p& given
above, we see explicitly that the magnitude of the correc-
tion term is enhanced near threshold by the presence of a
nearly singular factor multiplying the integral in Eq.
(2.7). The fact that it is the physical scattering amplitude
that appears in the angular integration suggests that
deriving numerical estimates of the correction term could
be facilitated by using experimental data, or results of
theory, for the field-free system. The model calculation
described below provides an illustration of such a pro-
cedure.

The angular integration in Eq. (2.7) may be performed
with the aid of the partial-wave expansion
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fp (Pp, P }=g (21+1)P&(Pp Pa)fpa I(E. ) .
1=0

(2.8)

fp ((E ).
= pph—p I(E ).p', (2.9)

where, with the kinematic energy dependence of each
channel element separated off, the remaining element

hp .
&

is finite and in general nonzero at threshold [10].

The partial-wave amplitudes near threshold may be
represented as

I + 1/2 1+1/2
pa;1 pa P p pa;1P a (2.10)

Only the s and p waves will be retained; as indicated by
the powers of momentum appearing in Eq. (2.9), contri-
butions from higher partial waves are suppressed. The
correction term then becomes

(For simplicity the angular momentum quantum numbers
have been taken to be the same for entrance and exit
channels. ) The relation between the scattering ampli-
tudes and the S matrix then takes the form

ir0C ~ a=, [ppp .ah .po(E, co)h—p , (E .) ppp' —ah p. ,(E, co)h—
p 0(E .)] .

(Pp+P p)'
(2.11)

It is consistent to retain this correction term since, by vir-
tue of the near singularity, it is nominally of lower order
than the terms neglected in the Feshbach- Yennie approx-
imation. It would not be diScult to provide a more expli-
cit definition of the term "order" in the present context,
taking into account the existence of two small parame-
ters, the photon frequency and the interval between the
initial energy and the threshold value. Perhaps a better
feeling for the significance of the correction term can
come from numerical exploration, an example of which is
described below.

C. A simple model

The matrix element of interest, in an approximation
which accounts only for terms that contain near singular-
ities, is of the form m ~ -=(m ~ )Fv+C ~, where the first
term represents the multichannel version of the
Feshbach-Yennie approximation reviewed in Sec. II. Let
us suppose that the on-shell scattering amplitude is ex-
panded in partial waves and that, for simplicity, only the
first two terms are retained. The result is written out in
Appendix A. A model is defined by the choice of
partial-wave scattering amplitudes. To guarantee unitari-
ty we make use of the matrix representation

I

mate bremsstrahlung matrix element has been chosen the
doubly differential cross section, summed over photon
polarization states, is obtained as

2 I

(2.14)

where ro is the classical radius of the electron, and Kc is
its Compton wavelength.

The bremsstrahlung cross section, normalized to the
dimensionless form shown in Eq. (2.14},was calculated in
the present model (as defined more explicitly in Appendix
B) for a range of incident momenta near threshold, and
for the case of elastic scattering through an angle of 60',
the result is plotted in Fig. l. A single cusp seen in the
field-free cross section is doubled here since the photon
(assumed to have an energy of 0.025 a.u. ) can be radiated
either before or after the collision. The Feshbach-Yennie
approximation to the bremsstrahlung amplitude, the mul-

0.38

0.36

1+iR1
1 —IRE

(2.12)

Q 034

b

8 032

with the reactance matrix R1 chosen to be real and sym-
metric. It is known, moreover, that the matrix R1 may be
put in the form

0.3

0.28

I + 1/2g I + 1/2
P 1P (2.13) 0.26

where the elements of E1 remain finite as any of the chan-
nel momenta tend to zero and are even functions of these
momenta [10]. This suggests a parameterization of the
scattering matrix in the form of an efFective-range expan-
sion [11],with expansion coefficients which could, for ex-
ample, be chosen to match experimental data. In the
schematic model considered here we make a somewhat
arbitrary choice for the leading term in the expansion for
each element and discard the remaining terms. The ex-
plicit choice appears in Appendix B. Once the approxi-

1.22 1.23 1.24
Momentum (a.u)

1.25 1.26

FIG. 1. Doubly differential cross section for single-photon
bremsstrahlung, given by the approximation shown in Eq. (2.14)
of the text as obtained in a schematic model, plotted against the
momentum of the incident electron in the neighborhood of an
excitation threshold. The scattering angle is 60, the energy of
the emitted photon is 0.025 a.u. , and the excitation energy is
0.75 a.u. The first cusp corresponds to elastic scattering fol-
lowed by photon emission, and the cusp at higher energy arises
from photon emission before the collision.
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V

-2
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y ( A;t)= e—xp(g T)y exp( iB—t) (3.3a)

of the field-free wave function y exp( iB—t), which we
assume to be known to sufficient accuracy, from the
Coulomb gauge to the field gauge. Here

the frequency of the field is small compared to a charac-
teristic 1evel separation of the target, as will be assumed
here, an approximate dressed-target wave function can be
obtained, accurate to first order in the frequency [5,12].
It takes the form of a gauge transformation,

-8

1.20 1.21 1.22 1.23
Momentum (a.u. )

1.25

X —
1

lC
g T=—A(t) g q

j=1
(3.3b)

FIG. 2. Correction, expressed as a percentage, to the
Feshbach- Yennie approximation to the model doubly
differential cross section. The amplitude of the correction term,
arising from the threshold singularity, is shown in Eq. (2.11) of
the text.

tichannel version of that shown in Eq. (2.4), contains a
first-order term involving a derivative of the t matrix
which, for the parameters of the present model, makes a
negligible contribution to the calculated cross section.
Inclusion of the correction term shown in Eq. (2.11) has
a small effect, though still exceeding the first-order
correction generated by the standard Feshbach-Yennie
approximation. A plot of the correction to the
differential cross section, expressed as a percentage, ap-
pears in Fig. 2. The correction to the total cross section
is negligible owing to the cancellation of an interference
term upon angular integration.

with the vectors q representing the coordinates of the
target electrons in channel a. In this approximation [13]
we have

I@ (t) & =exp i I—' dt' Ip& lg ( A; t) &,
2p

(3.4)

where p(cot ) =p —(e Ic ) A(t). (Channel subscripts on
momentum variables are omitted here to simplify nota-
tion. )

The transition amplitude for the laser-assisted collision
satisfies the variational identity [12]

(3.5)

III. EFFECT OF REACTION THRESHOLDS
ON LASER-ASSISTED SCATTERING

A. Low-frequency approximation

We consider the scattering of an electron by a neutral
atom in the presence of a monochromatic, linearly polar-
ized laser Seld of frequency co, with vector potential, in
the dipole approximation, taken to be A(t)=acoscut
The time-dependent Schrodinger equation is of the form

(3.la)

with

I=
2p

2
eiV ———A(t) + V .J (3.1b)

The wave function may be decomposed as
O'*'=N +4'*.„', with the incident wave satisfying

8H —i—N =V&a a a ~ (3.2)

where V is the interaction between the incident electron
and the target in channel a. It is not possible in genera1
to solve this equation since the state of the target in the
presence of the field is not known precisely. However, if

where 4'+' is a trial wave function. Approximations are
introduced through the replacement of the exact scat-
tered wave 4',', by a trial function O' .,', . This intro-
duces an error in the approximate transition amphtude
that is bilinear in the errors in the two trial functions, and
we remain with a variational approximation for the tran-
sition amplitude. We shall evaluate this approximation
using a particular choice of trial function flexible enough
to properly account for the strong energy dependence of
the scattering near threshold. A function of this type was
introduced in previous studies of resonant scattering in a
low-frequency laser field [5,14]. An evaluation of the first
term on the right in Eq. (3.5) was given in Ref. [5] and
the results will be reviewed briefly. Of particular interest
here is the contribution coming from the second term,
the variational correction, which is nominally of first or-
der in the error in the trial function. For scattering near
a reaction threshold it may be expected, in analogy with
the spontaneous bremsstrahlung problem analyzed in
Sec. II, that a rnagnification of the error beyond its nomi-
na1 order could be induced by near singularities in the iri-

tegral representing the error. This is borne out by the ex-
plicit form of the result derived below.

To proceed, we look for trial functions of the form

(3.6)
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g =g 7+i —A(t) r,. .
C

(3.7)

The function F „must account for the simultaneous in-

teractions of the electron-atom system with the external
field and of the electron with the target. To describe this
latter interaction we introduce the off-shell wave function

where E „=E +n co+6, with the continuum level shift

given by b =e a /4pc and with
tained by replacing u'*' in Eq. (3.11)by its scattered 1v-ave

component. Some indication of the accuracy of the trial
function can be gained by inserting this function into the
Schrodinger equation; one finds that

N
H i ——q"+'(t) = —eE(t) g r.1p'+.„'(t), (3.12)

j=1

with the electric-field vector given by

lu'.*'(p E) &
= lp & IX.&+ lu.'*„,'(p E) & (3.8) E(t}= sincot .boa

(3.13)

with

u'*.„'(p,E))=(E+iri Ho—) 'V lp) ly ) . (3.9}

The external-field interaction is accounted for by the fa-
miliar Volkov phase factor

8&„(P)=nP+p&sing —y sin2$, (3.10)

where p =ep a/p. ciao and y=b, /2'. In terms of these
quantities we define

lF'*„')= f exp[i8 „(P)]lu',*'[p(P),E „]).

(3.1 1)

Before developing the approximation procedure any fur-
ther, we pause to comment on several features of this tri-
al function. We first observe that the trial function ob-
tained from Eqs. (3.6) and (3.11) reduces to the incident
wave 4 when the wave function u'*' in Eq. (3.11) is re-

placed by its plane-wave corn onent. Accordingly, the
trial scattered wave function t *.,', is identified as that ob-

T~ ~
=2m+—5(E. ~ E~+sto)(—T"',+ T'. '

) . (3.14)

Each term in the sum corresponds to a process in which a
net number s of photons are emitted (or absorbed for s
negative). The leading term

The form of the remainder term on the right in Eq. (3.12)
suggests that the validity of the trial function is restricted
to the low-frequency domain and to moderate field inten-
sities. Specifically, we shall assume that the parameter p
defined above is of order unity or smaller and that y is of
first order; then terms appearing in the derivation that
are proportional to cop& and coy are taken to be of first
and second orders, respectively [15],with terms of second
order ignored. (We note that the experimental studies of
laser-assisted excitation [6,7] were performed with fields
in the range of "moderate" intensities as defined above. )

When the exact scattered wave appearing in the second
term on the right in Eq. (3.5) is replaced by the trial func-
tion introduced above, an approximation for the transi-
tion amplitude is obtained which can be put in the form

00 d dT'1. = y f f exp[ —i8v, „(p')+i8~„(p)]t ~ [p'(p'), p(p);E „], (3.15)

involving the off-shell t matrix

t ~ (p', p;E}=(p'l(y I[V +V .(E+iri Ho) 'V ]I—p&ly &, (3.16)

J „(p&,y }=f exp[i8&„(P}]
0 277

using the relation

(3.17)

2
d

cosgexp[i8 „(P)]
0 2&

+1(pp y )+J— —1(pp y ) .

appeared in an earlier study [5]. We briefly review the
procedure followed there for reducing this expression to
one involving the physical t matrix. As a first step, the
off'-shell t matrix in Eq. (3.15) is expanded in powers of
the initial and final mom enta about their zero-field
values. Two linear terms appear, one proportional to
cosP and the other to cosP'. The phase integrations may
then be evaluated in terms of the generalized Bessel func-
tion

p„=p+" a, p,
' „=p'+"pn co, , p,(s +n }a)

pa p'. a
(3.19)

to first order, and this places the t matrix on shell. Then,
with the t matrix expressed as a function of the energy
and momentum-transfer variables, the result of the calcu-

Since we are evaluating a first-order correction term and
the argument y of the generalized Bessel function is of
first order, we may, to the required accuracy, introduce
the approximation J „(p,y) —=J „(p,0)=J „(p) on the
right-hand side of Eq. (3.18), which then becomes—(2n/p&}J „(pz) by virtue of the recursion relation
satisfied by the ordinary Bessel function. Note that this
remains well defined in the limit of vanishing momentum.
Examining the coeScients of the terms involving the
momentum gradients, and assuming for the moment that
p' is not small, one sees that the field-free momenta have
effectively been shifted to the field-dependent values
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lation may, to first-order accuracy, be summarized con-
cisely in the form

Xt [E „(p,'+„—p„) ) . (3.20a)

t..I:E... (p,'+.—p. )')

I+6,r t ~ [E „r]I (, ,g, (3.20b)
BT

To allow for greater generality, the t matrix appearing
here should be written as

near threshold, in which case the final momentum is very
small and the form shown in Eq. (3.20a) breaks down.
%e remark that if the t matrix is slowly varying as a
function of the energy the term proportional to b ~ in Eq.
(3.20b) may be ignored since it leads to a correction of
second order. (This is evident from an examination of the
more general form of the correction term, given in Eq.
(3.19c) of Ref. [5].) It is readily verified that Eq. (3.20a),
as amended by Eq. (3.20b), reduces in the weak-field limit
to a multichannel version of the Feshbach-Yennie ap-
proximation.

The variational correction term appearing in Eq. (3.14)
is evaluated, with the aid of Eq. (3.12), as

tI)r=(p,'+„—p„) —(p' —p) . The result then
remains well defined and valid for an excitation process

Ta'as i
2

a (Ma'as —1™a'as+i ) &2c

where

(3.21)

(X)
2 d 2f f exp[ i8—, „(,P')+iep„(P)](u', ', [p'(P'), E,, „]r& Itt'+. „)[p( (I)),E „]). (3.22)

The matrix element appearing on the right is recognized
as the off-shell extension of the correction to the low-

frequency approximation for spontaneous bremsstrah-
lung, analyzed in Sec. II. A closer correspondence is
made when the amplitude is expanded in powers of the
momenta about their zero-field values, in the manner de-
scribed above. For the case of elastic scattering, with
both initial and final momenta bounded away from zero,
the shifted momenta thereby introduced are just those
defined above in Eq. (3.19), and this places the free-free
matrix element on the energy shell. The analysis leading
to Eqs. (2.6) and (2.7) then applies directly, and we arrive
at the approximation

t

on-shell amplitude C ~ a in terms of scalar invariants
and expands in powers of those invariants involving the
final-state momentum, in close analogy with the pro-
cedure indicated in Eq. (3.20b). (The scalars may be tak-
en to be the momentum transfer squared and p,'+„a, for
example. ) Terms of second order are ignored and the
first-order terms are converted, with the aid of the Bessel
function recursion relation in the manner described
above, to a well-defined form in which the small denomi-
nator p'. a no longer appears. Thus no diSculties are en-
countered in applying the result to inelastic scattering
near threshold.

B. Cross-section sum rule

Ma'as + 1
= r J—

( s + n ) (Pp' 7' )J—( n k 1)(Pp 'Y )

a'a(ps+n&pn+) ) (3.23)

The total cross section summed over all final states of
the field, and integrated over all directions of the emer-
gent electron, is given by

The physical interpretation of the correction term defined
in Eq. (3.21) is apparent. That term describes a process
in which the electron in the initial state exchanges n pho-
tons with the field, then either emits a photon [corre-
sponding to the upper sign in Eq. (3.23)] or absorbs one
(corresponding to the lower sign) in an intermediate state
of virtual excitation; in the final state the system ex-
changes photons with the field of such a number to corre-
spond to a net transfer of s photons. The matrix element
describing the intermediate-state radiative interaction is
just that which appears as the correction to the
Feshbach-Yennie soft-photon approximation, and is eval-
uated, as shown in Eq. (2.7), in terms of the on-shell
field-free scattering amplitude. A method for represent-
ing this amplitude in a way that properly includes the
threshold singularities is described in Appendix A [16].

For inelastic scattering near threshold, Eq. (3.23) must
be modified to remove the spurious near singularity ap-
pearing in the expression given in Eq. (3.19) defining the
shifted final-state momentum. To do so one expresses the

0 = g f d p'6(E E+sto)—
(3.24)

2

~a'u = (2~) P (1) (1,2)(o. ~ +o. ' ), (3.25)

where the first term on the right is the result obtained by
ignoring the first-order amplitude T'. ' in Eq. (3.24), and
the cross term between this amplitude and T"', is
represented by the second term in Eq. (3.25). It will now
be shown that

(1) 2
a'a g —n (Pp& V )~a'an (3.26a)

where

This expression may be simplified considerably when the
transition amplitudes are replaced by their low-frequency
approximations, as derived above [17]. We write
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~2 2
p
2p 2p

(3.26b)

X t..[p'(4'»p. 'E..] . (3.27)

This was obtained from Eq. (3.15) by expanding the t ma-

trix in powers of the initial momentum about its field-free

value, and performing the integration over the angle P in

the manner described above in the derivation of Eq.
(3.20). Consider the formula for the cross section (r(," as-

sociated with this amplitude, with the absolute square ex-
panded as a double integral over (}I) and [t)' and a double
sum over n and n'. With the substitution s =s' —n the
argument of the energy-conserving 5 function becomes
E ~ p„/2p B—+s'co. —To perform the sum over s' we

expand the 5 function in a Taylor series in powers of s't0

and make the replacement (ros')"—+( —c[)p cosg')" for
each term appearing in the expansion. This is justified
using a procedure of repeated integrations by parts, with
terms of second order consistently ignored. After resum-
mation of the Taylor series the 5 function appears with
the argument p' (P')/2p+B ~ p„/2p B.—The re—la-

tion

$ = 00I

e" '~ ~ '=2m 5($—[I)') (3.28)

is now used to reduce the double integral over the phase
angles to a single integral over P. After the variable
change p'((t))~p' the remaining phase integral is per-
formed as

i(n' —n)P

0 277
(3.29)

which leads directly to the result shown in Eq. (3.26).
The result just obtained may be interpreted along the

following lines. The summation over final states has, by
closure, effectively removed traces of final-state electron-
field interactions. The factor J „ in Eq. (3.26a}
represents the probability for an exchange of n photons
with the field in the initial state, and this is followed by a
field-free scattering event at the appropriately shifted en-

ergy E +neo. An extension of this picutre allows us to
anticipate the form taken by the contribution o"' '. This
arises from the interference between two amplitudes.
One of them, J „(p~,y)t(p', p„;E „), represents the n

is proportional to the measurable field-free scattering
cross section. An equation of this form (or rather a ver-
sion excluding first-order corrections) was proposed in
Ref. [8] as an extension of the Kroll-Watson low-

frequency approximation. A verification, such as that
given here, is required since the Kroll-Watson approxi-
mation is based on the assumption of smooth energy
dependence and hence does not apply to the problem of
scattering near reaction thresholds.

The derivation of Eq. (3.26) begins with the representa-
tion

where C ~ is the on-shell correction to the Feshbach-
Yennie approximation for single-photon bremsstrahlung
introduced earlier in Eqs. (2.6) and (2.7}, with p' con-
strained by the condition E ~ =E +neo. (Including only
the correction term at this stage avoids double counting,
since the Feshbach-Yennie contribution has effectively
been accounted for in the leading term. ) Explicit calcula-
tion (details are omitted here} making use of methods al-

ready discussed provides us with the approximation

o"' '= g J dp'5(E ~ E n—ro)J —„(p,y)

X2Re[t(p', p„;E,„)C', „J . (3.31)

In summary, we have obtained a low-frequency approxi-
mation for the total cross section, allowing for an arbi-
trary number of photons emitted or absorbed, which is
given by Eqs. (3.25), (3.26), and (3.31), and expressed in

terms of physical field-free scattering parameters.

IV. SUMMARY

As commonly understood, the validity of a low-
frequency approximation for bremsstrahlung is based on
the dominance of the contribution to the transition am-
plitude arising from soft-photon emission or absorption
taking place either before or after the collision. Radiative
interactions during the collision are generally of higher
order in the frequency and cannot be expressed in terms
of measurable field-free scattering parameters. The
bremsstrahlung process in which the scattering energy
lies- close to an excitation threshold of the target
represents an exception to the rule, and this provides an
opportunity to explore and enlarge the domain of validity
of the approximation procedure. Such a program takes
on added interest now that laser-assisted collisions, and in
particular near-threshold excitation processes [6,7], are
within reach of experimental study. We have found that
the amplitude for emission or absorption of a soft photon
during the collision is enhanced near a reaction threshold
by the appearance of a near singularity in the matrix ele-
ment; the integral over the asymptotic domain of projec-
tile coordinates in intermediate states is slowly conver-
gent when the energy carried by the projectile is close to
zero. The fact that the dominant contribution to this
intermediate-state correction term comes form the
asymptotic region of configuration space, where the form
of the wave function is known in terms of physical
scattering parameters, allows us to evaluate it in a simple

photon exchange process followed by the field-free

scattering. The other [see Eqs. (3.21) and (3.23)] allows

for the correction in which one of the photons is emitted
or absorbed in an intermediate state of the scattering pro-
cess, with the others exchanged prior to the scattering.
The possibility of emission or absorption requires that
one take a superposition of amplitudes of the form

ieco
C,. „—: a. [J („+„(p~,y)C . (p', p„+, )

2c
—J („,)(p, y) C ~ (p', p„()), (3 30)



1472 LEONARD ROSENBERG

and convenient manner. We began, in Sec. II, by consid-
ering the spontaneous bremsstrahlung process and de-
rived an expression which, when added to the Feshbach-
Yennie low-frequency approximation [1], leads to im-

proved accuracy. In a schematic model adopted here for
illustrative purposes, based on an effective-range analysis
of the field-free scattering matrix near threshold, the im-

provement was found to be small. An extension of the
approximation procedure to the problem of scattering in
a laser field, as described in Sec. III, was based on a varia-
tional formulation along with a suitable choice of trial
function that takes into account both the strong
electron-field and electron-target interactions. The
higher-order contribution arising from threshold singu-
larities appears as a variational correction which we
found could be expressed in terms of the analogous
correction appearing in the low-frequency approximation
for spontaneous bremsstrahlung. The expression obtained
for the total cross section, summed over all final states of
the field, takes on a particularly simple form which, in
lowest order, is similar to that which had earlier been
postulated [8] as an extension of the Kroll-Watson ap-
proximation and is now justified by a method that is more
generally applicable. Moreover, the higher-order correc-
tions obtained here should be useful in developing more
refined comparisons between theory and experiment.
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APPENDIX A:
FESHBACH- YENNIE APPROXIMATION

+a)&p'ir~u,'+,) &, (Al)

where we used the energy conservation condition

Ep Ep co in obtaining the last term. With the com-
mutator evaluated in terms of the momentum operator,
the left-hand side of Eq. (Al) becomes (ip'/p) & p'iu~+. „' &.

This may be reduced further by expressing the scattered
wave as

~u'+. „'&=(E +ir}+V /2p} 'V~u~+'&,

from which we find, using the definition

t(p', p;E, ) = & p'I vlu(, +'
&

for the off-shell field-free transition amplitude, that

(A2}

(A3)

A straightforward procedure for deriving Eq. (2.4) of
the text begins with the identity

& p'i [r, (HO —E, )]u,'+.„' &
= —

& p'ir Vip &
—

& pi Vriu,'+.„' &

&p'lu'+. „'&=—t(p', p;E ) .(+)
CO

(A4)

With the replacement r~ —i 7 in the first two terms on
the right in Eq. (Al), we obtain, after gathering results,
the relation

p t(p', p;E, ) = —iV,.t(p', p;Ep)+a)&p'iriu', +)
& .

PN

(A5)

Upon addition of these two equations, ofF-shell contribu-
tions to the t matrix cancel. This is most easily demon-
strated by expressing the t matrix, in terms of the scalar
variables

E=p /2' ' r=(p' p} k=E p /2p
(A7)

as t (E,r, g, g'); the physical amplitude is then identified as

t(E,r):t(E, r, 0,—0}. On the left-hand side of Eq. (A5),
we set (=0 and g' =E —p' /2@ = co and write

t(E, r, O, co)

a
=t(E&,r)+co, t(E&, r, 0, (') +0(co ) . (A8)

g' =0

We ignore the second-order correction term. (Note that
the dimensionless parameter that appears in this expan-
sion is the product of the frequency and the logarithmic
derivative of the t matrix with respect to the off-shell en-

ergy parameter. The requirement that this quantity be
small does not involve the assumption that the frequency
is small compared to the scattering energy. ) On the right
in Eq. (A5) we have

Vp =(Vpr)
~

+(Vpg'), =2(p' —p)a= a 'a
81 8 Br p 8

(A9)

When similar transformations are carried out in Eq. (A6}
and the two equations are added, we arrive at the approx-
imation shown in Eq. (2.4).

In the model calculation described in the text the
Feshbach-Yennie approximation was evaluated using a
field-free scattering amplitude based on representation
(2.10) of the S matrix and containing only s and p waves.
The multichannel version of approximation (2.4) then
reduces to

In a similar way we have

p t(p', p;E ~ )= iV—t(p', p;E ~ )+co&u~.,', ~r~p& .
Phi

(A6)

2(2mpco) (m ~ )Fv=p' [h ~ .0(E )+3p'.p h ~ . , (E }cos8]—p [h .0(E —co)+3P' p h ~ . , (E co)cos8]—

—3(p' —
p )[h . , (E )

—h ~ . , (E —co)] . (A10)
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APPENDIX B:
EFFECTIVE-RANGE APPROXIMATION

R pp. t =p p'+'(Btct —At),

R =R =p'+' (B [1+c ])'
(BI)

Here P labels the channel in which the target is in its ex-
cited state; the excitation energy was taken in our model
to be 0.75 a.u. [Factors ofp,'+'r are treated as constants
for simplicity and are absorbed in the definition of the
matrix Kt of Eq. (2.13).] In principle, an effective-range

In Ref. [11],a convenient parameterization of the reac-
tance matrix was given that correctly displays the thresh-
old singularities in accordance with Eq. (2.13) of the text.
Three real parameters are required. A complex scatter-
ing length at = At iB—t (with Bt positive as demanded by
unitarity) is chosen to represent the elastic scattering in
channel P, and a parameter ct is identified with the ma-
trix element R .

&
for elastic scattering in the ground

state. The remaining elements of the reactance matrix
and the scattering matrix are then determined from Eq.
(2.12). One finds that

aa; I

aP;1

Pa

Pa;t

ic—t+pp'+'(Bt+ Atci)

(i +ct )dt

(Bi[1+et ])'r
'+'~ (i +ci)diPa

(&2)

(B3)

and

2(i At+Bi )
(&4)

where dt = I+ipp'+'ttt Af.actor of —2 was included in
Eq. (33) to correct a typographical error in Ref. [11].

expansion of the parameters ttt and ct could be intro-
duced [11],based on whatever experimental or theoreti-
cal information is available concerning the field-free
scattering cross section. In this illustrative example we
have simply replaced these parameters by constants,
chosen somewhat arbitrarily as co =Bp = 30=1.0 with
the parameters for the p wave reduced by a factor of 10.
The parametrization of the scattering matrix takes the
form
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