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The electronic structure of atomic clusters is studied as a function of the geometrical parameters
and number of atoms N in the clusters. Self-consistent electron wave functions and energies are
calculated for the clusters with closed and open shells for N ranging from 4 to 40 and for the
various radii of positive cluster cores. These calculations are done both for the homogeneous and
inhomogeneous jellium models of the cluster core. The equilibrium values of jellium core radius have
been obtained using ab initio Hartree-Fock calculations for the valence electrons. The importance
of the role of nonlocal exchange interaction in the creation of the equilibrium cluster structure is
also shown. An adiabatic type of collective vibrational mode is predicted . Vibrational frequencies
and amplitudes are calculated for the "magic" number clusters. The influence of the geometrical
parameters on the physical properties of clusters is discussed.

PACS number(s): 36.40.+d

INTRODUCTION

The problem of ab initio electronic-structure calcula-
tions for the atomic clusters is important now, because
experimental methods of cluster spectroscopy can give
detailed information about energies and dynamical prop-
erties of ground and excited cluster states. The great
interest in the atomic cluster physics is associated with
the discovery of the electron shells and "magic" num-
bers of atomic clusters [1—4]. There is close analogy
between atomic clusters and other Gnite Fermi systems
such as atomic nuclei or many-electron atoms. The elec-
tronic cluster structure traditionally is calculated us-

ing the functional-density method with local-density ap-
proximation (LDA) for the electron exchange interaction
[2—5]. As a rule, LDA calculations give accurate values of
total electronic energies of ground state, but are not so
successful in the description of dynamic properties of 6-
nite Fermi systems [4,6]. The comparison of the nonlocal
exchange Hartree-Fock (HF) calculations with the results
of LDA methods has been done in [6] for the excitation
spectrum and oscillator strength of sodium atomic clus-
ters. There it was shown that the results are sensitive to
the approximation of the electron-electron interaction.

In the present paper we have studied the parametric
dependencies of the cluster electronic structure on the
cluster core radius R for the homogeneous and inhomo-
geneus positive-core charge distribution. For the simplest
homogeneous jellium approximation the electron Hamil-
tonian depends only on a single parameter R. Usually,
the solid state parameter of internuclear distance is used
to obtain the magnitude of the cluster core radius R. It
is expressed as Rg ——N f' ao where N is a number of
atoms in the cluster and ao is an internuclear distance in
the bulk material, which consists of the same atoms. Due
to the difFerent physical conditions near the &ee-cluster

boundary and inside the bulk material the internuclear
distances in the small clusters can be different &om the
bulk internuclear distances ao. We calculated the R de-
pendencies of the cluster total energy and obtained the
equilibrium position Ro as a function of the number of
atoms. It is important in these calculations that we used
the Hartree-Fock approximation for a description of the
cluster valence electrons, as it gives more accurate size
dependences of the cluster characteristics than other ap-
proximate methods.

We found collective oscillations which do not exist in
nuclei and atoms. These are adiabatic oscillations of the
charge density of the positive-core ions, which look like
the core radius vibrations near equilibrium position Ro.
And variable R plays the role of the collective coordinate
for this motion. The energies and amplitudes of core vi-
brations are obtained for the clusters with various num-
bers of atoms N . Size dependences are calculated for
the electron charge distribution, energies, and electronic
diamagnetic susceptibilities.

SELF-CONSISTENT ELECTRON ENERGIES
AND WAVE FUNCTIONS

The jellium approximation gives a possibility to apply
the advanced methods of many-body atomic theory to
the calculations of the electronic energies and wave func-
tions for the valence cluster electrons. It was done for the
closed-shell clusters and bulk material approximation of
the internuclear distance inside the core in a recent arti-
cle [6]. We present the results of the HF calculations of
the electronic structures for the clusters with various ge-
ometrical core parameters and number of atoms changed
&om N = 4 to N = 40 . The dependences of total clus-
ter energies on W(N, R) have been obtained for both the
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clusters with closed and open electron shells. The ac-
curate magnitudes of the total cluster energies TV were
calculated using minimization of W(N, R) with respect
to the core cluster radius B .

Let us briefly describe the procedure of the calculation
of the total cluster energy W(N, R) . If we neglect the
kinetic energies of the positive ion motion inside the clus-
ter core, total cluster energy 6' is equal to a sum of the
electronic E,((N, R) and the positive core electrostatic
energies E, :

functions Q; and orbital energies e;(R):

where ho is a single-particle Hamiltonian for the Hartree
approximation:

(5)

W(N, R) = E,(R) + E,((N, R),

3N2
E,(N, R) =— (2)

and v(r) is a cluster core potential

r&R
r &R. (6)

E,i (N, R) = (II,i (N, R)), (3)

where () is the mean value of the valence cluster electron
Hamiltonian with respect to their many-electron wave
functions. The main computational problem is the cal-
culation of the 8 dependence of the many-electron wave
function. Using HF approximation we obtain a system of
integrodifferential equations for the single-electron wave

I

The system of Eq. (4) is solved numerically using stan-
dard procedure of atomic HF calculations. All orbital
wave functions and energies are functions of R, and the
cluster core radius is the only physical parameter for the
electronic Hamiltonian. The total energy of the cluster
valence electron E,((R, N) is obtained according to the
HF method and, of course, it is a function of the core
radius R:
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FIG. 1. Size dependences of single orbital energies e, (B)
for the % = 34 cluster: (a) HF approximation with nonlocal
exchange interaction; (b) Hartree approximation.

As an illustration of such R parametric behavior, the
size dependences of single-electron energies are shown
in Fig. 1(a) for the cluster consisting of 34 atoms
(1s, lp, ld, 2s, and 1f levels in the quantum well nota-
tions [2]). The single-particle eigenenergies e; as func-
tions of core radius R are given for a wide interval of

R. For the purpose of comparison, in Fig. 1(b) we

present the energies of single-particle orbitals calculated
for Hartree approximation (HA). It is shown that the
nonlocal exchange interaction influences not only the
magnitude of the single-particle energies, but it also
changes the relative energy gaps between orbital energy
levels and the parametric dependences of e, (R). For
example, parametric "velocities" ~&R for the i = ld, 28
strongly depend on the exchange interaction and, of
course, this strongly influences the R dependence of elec-
tron polarizability of clusters.

For the HA we found the energy orbital 1f 2s crossing-
at R 15 [Fig. 1(b)]. A similar crossing effect was found
for these orbitals in LDA calculations [4]. The nonlocal
exchange interaction causes the avoidance of the level
crossing for the orbitals with difFerent types of symmetry
[Fig. 1(a)]. This means that there is strong exchange
interaction between orbitals with different angular mo-
menta (for example, interaction between 1f 2s orbitals-
in the N = 34 cluster). This effect strengthens the elec-
tron angle correlations in the large radius clusters and it
should be taken into account in the problem of the cor-
rect determination of electronic orbital configuration or
mixture of configurations for the ground state.

Information about R dependence of single-particle or-
bital wave functions is available now, and these functions
are used as a basis set for the calculations of the cluster
response to the external fields [5,6]. We obtained the R
dependence of the orbital functions gl for various val-
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ues N and R. Positions of the maximums of the radial
wave functions for the single-electron orbitals depend on
the magnitude of the core radius. The large separation
between maximums of single-particle electronic HA or-
bitals showed considerable shell effects [Fig. 2(a)], but
after inclusion of the nonlocal exchange interaction these
maximums have become closer to each other [Fig. 2(b)].

Nonlocal exchange interaction makes the single-
particle orbitals more compact and absolute values of
the single-electron energies are increased. Nevertheless,
we found that magnitude of the total electronic energy
practically does not depend on the exchange interaction.
The total energy of the cluster valence electron E,~ (R, N)
is calculated by using the HF method and it is a func-
tion of the core radius R. In Fig. 3 the total electron
energies per atom E,~(N, R)/N are shown for the HF
and HA calculations for the clusters with N = 8 and
N = 18. One can see that the influence of the exchange
interaction on the magnitude of total electron energy is
weak and the difference between HF and HA energies is
less than 3'%%uo. The total electronic energies calculated in
LDA also are close to HF and HA results [2,5]. A more
significant difference arises between results of HA, LDA,
and HF methods in calculations of amplitudes of phys-
ical processes such as optical absorption and dynamical
polarizability of atomic clusters [5,6]. Since these approx-
imations give suKciently different single-particle orbitals,
which form the basis set for the many-body perturbation
theory, it is not surprising to observe significant differ-
ence between the three methods for calculations of the
physical processes to which they pertain.
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FIG. 2. Radial orbital wave functions for the cluster with

N = 18 atoms: (a) HA; (b) HF approximation.
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Additional information about the electronic wave func-
tion could be obtained from the diamagnetic susceptibil-
ity y of atomic clusters. At present we are not aware of
any such experimental mesurements of the diamagnetic
susceptibility of the sodium clusters. Although y does
not change dramatically due to the approximation used
to compute the exchange interaction, it would be possi-
ble to use experimental data to establish the validity of
the approximations by comparing the experimental val-
ues with the theoretical predictions for y(N) resulting
in each case. In Fig. 4 we show the magnitude of dia-
magnetic susceptibility y per atom as a function of N for
the HF and HA calculations. The difference between the
results is several percent and it increases for the clusters
with the larger numbers of atoms.

The total cluster energy per atom to(N, R)
W(N, R)/N is a function of the core radius R and it has
a minimum at the magnitude Ro, which differs &om the
bulk material approximation of the core radius Bg. We
show in Fig. 5 the R dependences for the to(N, R) of the
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FIG. 4. Diamagnetic susceptibility per atom y of sodium
atomic cluster with di8erent numbers of atoms N. Dark cir-
cle—HF and open circl- HA calculations.
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FIG. 3. Total electronic energies E,~(N, R) for the clusters
with N = 8 and N = 18. Solid lin"-- HF calculation, dashed
line —HA.
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In this case even small variation of electronic energies,
which arises due to the exchange interaction approxima-
tion, could give considerable relative variation of the total
energies w. The w-function maximum is very sensitive to
the inclusion of the exchange interaction. An illustration
of this fact is shown in Fig. 6 where the total cluster

clusters with N = 18 and N = 34. The equilibrium value
of the core radius Rp and magnitude of the minimal clus-
ter energy mp are very sensitive to the electron exchange
interaction. This behavior is expected, because near the
equilibrium position Ro the electron E,&(N, R) and core
E,(R) energies essentially compensate each other and the
absolute value of total energy is much smaller than both
electronic and core energies:

energy per atom w = w(N) is calculated for the Hartree
and HF approximations with the bulk material magni-
tude of cluster core radius. These calculations were done
for the clusters with open and closed shells. The value
of (—w) plays the role of the atomic binding energy and
according to our HA calculations this binding energy is
negative for the clusters with N & 23. This means that
these clusters are unstable without electronic exchange
interaction. Nonlocal exchange interaction reduces the
total cluster energies and makes the cluster with N & 23
also stable.

The value of binding energy (—m) increases by several
percent for the calculations with equilibrium core radius
Bp. This effect was also found in the clusters with closed
and open shells. Additional minimization of the total
cluster energy has been achieved by using inhomogeneous
distribution of the core charge. For the Fermi-like charge
density distribution g(r) [6],

g( ) = go (I + xp [(r —R) /P] )

we calculated total cluster energies as the functions of R
and difFuseness parameter P. Figure 7 shows the total
energy of the cluster with N = 8 and illustrates that the
minimization with respect to inhomogenity parameter P
gives the reduction of total energy about 5 —7%%up. The
magnitude of the equilibribium difFuseness parameter P
indicates the length of the inhomogeneous part of the
charge distribution for the clusters with different core
radii B. The rectangular points in Fig. 6 are the results
of double minimization of the total cluster energies m

for the magic clusters N = 8, 18, 20 and the cluster with
open electronic shell N = 19.

One of the results of our calculations is the avoidance
of the magic number rule for the clusters with N = 18
and 20 atoms. HF calculations give the minimum energy
m for the cluster with open shell N = 19, but not for
the neighbor clusters with closed shells N = 18, 20. This
effect does not exist in HA and LDA [2] calculations and
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FIG. 6. Total cluster energy m(N, R) per atom for the HF
and HA calculations as a function of the number of atoms N
in the cluster.

FIG. 7. Total energy m of the cluster with N = 8 atoms as
a function of diffuseness parameter P for the different cluster
core radius R.
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the avoidance of magic numbers is a result of nonlocal
exchange interaction.

ADIABATIC CORE VIBRATIONS

The R dependences of the total cluster energy W =
W(N, R) provide an opportunity to resolve the problem
of the adiabatic modes for the colletive motion of the
cluster core nuclei. Each calculated curve W(N, R) has
a smooth minimum as a function of the cluster core ra-
dius R, for example, W curves for the HF calculations in
Fig. 5. This minimum arises as a result of the competi-
tion between two factors: the Coulomb repulsion between
positive-core ions producing the expansion of the cluster
core volume, and the electron-ion attraction compressing
the cluster core. The balance of these factors gives the
minimum of the total cluster energy W(N, R = Rp) at
some magnitude of the core radius Ro. The energy of
the cluster ground state is equal to the equilibrium value

W(N, Rp) only for the classical description of the motion
of the core ions, but the quantum systems oscillate near a
position of classical equilibrium. The &equency and am-
plitude of these small oscillations depend on the effective
mass of the collective motion of ions and curvature of the
corresponding potential curve near minimum. In the case
of the spherical jellium model the R dependence of the
total cluster energy W(N, R) plays the role of the poten-
tial curve for the dynamic variable R. The cluster core
radius is an external parameter for the electronic part
of the cluster Hamiltonian and simultaneously is the co-
ordinate of collective motion of the core ions. (Simple
examples of such parametric oscillations are the vibra-
tions of the internuclear distance in diatomic molecules
or adiabatic collective motions of the atomic particles in
the acoustic phonon modes in solids. ) These R vibra-
tions are equivalent to the small quantum. oscillations of
the core volume and it is possible due to the compressibil-
ity of the cluster's jellium core. This type of low energy
collective motion is realizable for the low-temperature
clusters, when the other degrees of &eedom are &ozen.
The typical values of temperature will be discussed after
numerical calculation of the vibrational energies.

The kinetic energy operator K for the small vibrations
of the collective coordinate R can be obtained using the
adiabatic approximation, when the typical "radial" vi-
bration velocity ~dR/dt~ is much smaller than the typical
electron velocity in cluster shells. The Schrodinger equa-
tion for the cluster core vibration wave functions („(R)
can be written as

f 1 8'
+ W(N, R) —W(N, Rp)

~
(„(R)

2M ~R'

= K„(„(R), (10)

where M = 5MO is the effective mass of the adiabatic
vibrational mode for the cluster core with mass Mo and
K is the vibration energies counted from the minimum
of total cluster energy W(N, Rp). These equations for
the eigenfunctions and eigenenergies of the core vibra-

TABLE I. Characteristics of adiabatic vibrational mode.

K„(meV)

2.80
8.41
14.01
19.6
25.2

2.07
6.2

10.34
14.47
18.60

Rg (a.u.)
N=8
8.86
8.75
8.68
8.62
8.57

N =18
12.17
12.1
12.03
11.99
11.95

Rg (a.u.) h (%)

9.17
9.28
9.37
9.44
9.50

3.4
6.0
7.7
9.4
10.3

12.42
12.5
12.57
12.62
12.67

2
3.4
4.4
5.2
5.86

tions are resolved numerically. In Table I some charac-
teristics of the spherical symmetric core vibrations for
N = 8 and N = 18 are shown, such as K„—the vibra-
tion energies for the ground and excited states; Rq 2

—the
positions of classical turning points for the R coordinate;
b = ~R2 —Rq~/Rp —relative value of deviation from the
equilibrium position. The magnitude of h/2 is in analogy
with the amplitude of classic core radius vibrations. It
should be noted that the smooth minimums of the to-
tal cluster energies (Fig. 5) transform into pronounced
minimums of the oscillator potential for the vibrational
motion due to very large magnitude of the effective mass
M. This gives a possibility to calculate the positions of
the classical turning points with sufBcient accuracy.

For the clusters with N = 8 and 18 the excited energies
of vibration modes are close to the simple oscillator model
with the vibration &equencies Ru = 65 and 48 K, respec-
tively. The magnitude of the relative deviation b is small
for the ground state of the vibrational mode (2 —3%%up),

but it is as high as 10 —12% for the excited states with
vibrational quantum numbers n (8 —10) . This fact
is important for the analysis of the experimental spec-
trum of atomic clusters. The modern molecular-beam
techniques provide the production of the metal-cluster
beams with the "inner" cluster core temperature T about
500 K [3,7]. This means that in real experimental condi-
tions there are high excited adiabatic vibrational modes
of cluster core with n = T/her (8 —10) for N = 8
or 18. In this case the amplitudes of the radius thermal
vibrations are sufficiently large (10—15 '%%up of cluster core
radius) and for the correct description of various cluster
processes it is necessary to use quantum statistical meth-
ods. This applies both to the electronic and the nuclear
core subsystems of the atomic cluster. It is possible to
study the spectrum of collective vibrations of the clus-
ter core for low-temperature cluster beams (T ( 100 K),
when only the lowest vibrational modes are excited. It
seems that at low temperatures the cluster core vibra-
tions could strongly influence the electron-electron inter-
action in analogy with Cooper pair effects for the bulk
materials, and core vibrations could play the role of the
bulk material acoustic phonons [8]. Of course, renor-
malization of electron-electron interaction in small metal
atomic clusters needs a more detailed investigation.
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