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Collisionless fragmentation of nonrotating model n-atom metal clusters (n =12, 13, and 14) is studied
using isoergic molecular-dynamics simulations. Minimum-energy paths for fragmentation are mapped
out as functions of the distance between the centers of mass of the fragments. These paths provide infor-
mation on the fragmentation energies for the different fragmentation channels. Fragmentation patterns
(distributions of the fragmentation channel probabilities) and global and channel-specific fragmentation
rate constants are computed and analyzed as functions of the internal energy and of the size of the clus-
ters. The trends derived from the dynamics are compared with those obtained using the RRK and TST
statistical approaches. The dynamics of the fragmentation process is analyzed in terms of characteristic
quantities such as the distance between the centers of mass of the fragments, their relative translational
energy, and their interaction energy, all considered as functions of time.

PACS number(s): 36.40.+d

I. INTRODUCTION

Fragmentation, or dissociation, of energized clusters
(including the ejection of a single atom, i.e., evaporation,
as a particular case) is a process common to many cluster
experiments [1-9]. In some cases fragmentation is an un-
desirable phenomenon that complicates the interpreta-
tion of the experimental data [2]. In others [3-9] it is
taken advantage of to make inferences about the relative
stability of clusters, the binding energies, and the flow
and redistribution (localization) of the energy in a cluster.

One of the parameters affecting the time scale of clus-
ter fragmentation is the excess energy, i.e., the energy
above the fragmentation barrier. In cases with no frag-
mentation barrier, the excess energy is that above the
minimum energy of the separated fragments. Upon frag-
mentation, the excess energy is partitioned among the
internal (vibrational), rotational, and translational de-
grees of freedom of the fragments. Lifetimes of the clus-
ters, kinetic-energy release distributions, and information
on binding energies can be extracted from data obtained
in collision-induced dissociation [3,4,9] and photodissoci-
ation [5-8] experiments. The knowledge of these can
then be combined with statistical theories [10—15] of uni-
molecular decay of energized species to arrive at esti-
mates of the fragmentation energies. The accuracy of
these estimates, however, is limited because the distribu-
tion of the internal energy of the clusters usually is not
known and the values of most of the parameters used in
the statistical models are known only approximately.
Even if one were able to correct for these shortcomings,
the statistical theories would still provide no information
on the dynamics (mechanisms) of the fragmentation pro-
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cess. Such information can be obtained from molecular-
dynamics (MD) simulations. These simulations can also
be used to test the validity of the statistical models
[16,17].

Molecular-dynamics simulations [16-33] have been
utilized extensively to investigate a wide variety of
structural and dynamical properties of clusters, which in-
clude their isomers and isomerization transitions, phases
(e.g., solidlike and liquidlike) and phase changes (e.g., a
meltinglike transition), etc. These simulations were car-
ried out for systems with van der Waals [16-21], co-
valent [22], ionic [23-25], and metallic [26—-33] cohesion.
In contrast, the fragmentation of clusters has been the
subject only of a limited number of MD studies, almost
all of which considered Lennard-Jones systems
[16,17,33-37]. Evaporation (ejection of single atoms)
emerged in these studies as the only dissociation channel.
No dynamical description of a possible multichannel
fragmentation has yet been given. Experiments on metal
cluster ions [5], however, furnish evidence for such a
phenomenon. Multichannel fragmentation of atomic nu-
clei has been studied extensively using statistical theories
[38,39]. Limited application of these theories to clusters
has also been considered [16,17,40,41]. However, the
phenomenon of cluster fragmentation, in general, and the
dynamics (mechanisms) characterizing it, in particular,
remain largely a terra incognita.

In this paper we present results of a MD study of the
collisionless fragmentation of model (M), [(M) stands for
“metal”’] clusters,

(M), —(M),+(M),_, , (1)

where n =12,13,14 and i ( <n /2) is the size of the small-
er fragment. For a given n, i labels the different fragmen-
tation channels. (The reader will easily make a distinc-
tion between this and an alternative use of i as a label of
the individual atoms.) An intriguing finding is that, in
contrast to Lennard-Jones systems [16,17,34-37], the
model (M), clusters mimicked by a potential specified
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below, fragment preferentially into products larger than
monomers. In fact, evaporation of monomers appears to
be the least probable channel. (For a discussion of the
robustness of this finding, see Sec. IV.) The fragmenta-
tion patterns of the clusters and their dissociation rate
constants (global and channel-specific) are calculated as
functions of the cluster energy and size. The dynamics of
the cluster fragmentation is analyzed by monitoring the
short-time-averaged internal kinetic energy of the n-atom
system, the relative kinetic energy and the interaction en-
ergy of the fragments, and the separation between the
centers of mass (c.0.m.’s) of the fragments, all considered
as functions of time.

Obviously, the dynamics and the outcome of the frag-
mentation process depend on the potential describing the
interaction between the atoms in the cluster. The semi-
empirical potentials used in numerical simulations are
usually fitted to measured properties, at least some of
which may be (and in most cases indeed are) size depen-
dent. Therefore, in the case of clusters, the validity of
these potentials is, in principle, limited to a certain clus-
ter size or sizes. It has been suggested [30] to incorporate
explicitly the size dependence into semiempirical interac-
tion potentials in order to achieve a higher degree of their
flexibility and, consequently, adequacy. Since the frag-
mentation phenomenon by its very nature implies simul-
taneous consideration of systems (clusters) of disparate
sizes, it constitutes an especially difficult test for a fitted
potential. In practice, the properties of the bulk and, less
often, also of the diatomic molecule of an element are
used most frequently to fit the parameters of a potential
since experimental data for these are most readily avail-
able.

The emphasis of this study is on the analysis of the dy-
namics of the fragmentation process as defined by the po-
tential chosen to mimic a cluster. The results are then
compared with predictions of statistical models. We em-
ploy a semiempirical Gupta-like potential [26,30] that in-
corporates many-body effects known to play an impor-
tant role in metallic cohesion. The details of the poten-
tial, the computational procedure, and the theoretical
background are discussed in Secs. II and III. The numer-
ical results and their analysis are given in Sec. IV. We
conclude with a brief summary.

II. THEORETICAL BACKGROUND AND
COMPUTATIONAL PROCEDURE

The goal of this study is to analyze structural, energet-
ic, and dynamical aspects of the process of fragmentation
of clusters as defined by their size and total energy. The
clusters are mimicked by an n-body potential that is
based on Gupta’s expression [42] for the cohesive energy
of bulk metals. The attractive part of the interatomic in-
teraction is based on the second moment approximation
to the tight-binding model. It is this part that incorpo-
rates all the n( >2)-body effects. The repulsive part is a
sum of pairwise Born-Mayer terms. In reduced units of
energy V* and interatomic distances r; the potential is
written as [26,30]
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where the parameters A4, p, and q depend on the material
(element). We adopt the values p =9 and g =3, which
have been used for transition metals [43]. The reduced
energy V'* and distance r;} are defined as
|4 rij
V¥=—, ri=—, 3
U r; "o (3)

where V' and r;; are the corresponding values of the ener-
gy and distance in absolute units, 7 is the equilibrium
nearest-neighbor distance of the bulk metal in absolute
units, and U plays the role of a unit of energy. The value
A =0.101036 is obtained by maximizing the (converged)
cohesive energy of an fcc metal at the equilibrium value
of its nearest-neighbor distance.
Introducing the reduced time ¢*

t, of time ¢ is defined by

=t/t,, where the unit

to=roVm/U , (4)

one obtains the classical equations of motion for the
atoms of the system in the form

d’rf v
dt*? or}

where r} is the position vector of atom i in reduced units.
In Eq. (4), m stands for the mass of an atom. It is implied
in Egs. (5) that the mass of an atom in reduced units m *
is equal to 1. Equations (5) eliminate the explicit depen-
dence on U, which means that the qualitative features of
the dynamics defined by the Gupta-like potential, Eq. (2),
are U independent. Equations (5) are solved using the ve-
locity version of the Verlet algorithm [44]. The initial
coordinates and momenta of the atoms in the cluster are
chosen to yield zero total linear and angular momenta.
The time step of Az*=10"2 assures conservation of the
total energy even in the longest runs (107 steps) well
within 0.01%.

The quantities we use to characterize the fragmenta-
tion of a cluster of a specified size and total energy in-
clude the following.

(1) Channel fragmentation energy E(i), which is
defined as the height of the barrier (“transition state”)
along the minimum-energy path connecting the
configuration space of the parent cluster to that of the
fragments of the channel i. In case such a barrier is ab-
sent, E,(i) is the difference between the energy of the
most stable structure of the parent cluster and the sum of
the energies of the most stable structures of the frag-
ments. This latter case is the one of the so-called loose
transition state. Classically, the fragmentation energy is
the threshold value of the internal energy below which
the cluster never fragments and above which it fragments
with probability 1. (Exceptions are those cases when the
motion of the cluster is trapped in the plane orthogonal
to the fragmentation path.) One should note, however,

, i=1,...,n, (5)
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that even at energies substantially higher than the frag-
mentation energy one may have to wait a very long time
to actually observe the fragmentation of the cluster.

(2) Fragmentation-channel probability 2;,

p=—" (6)

where N, is the total number of clusters considered for a
fixed total energy and size and N, is the number of these
clusters that fragment into channel i. In simulations we
use the definition

P=—", (6)

where N, is the total number of simulation runs (trajec-
tories) that lead to fragmentation of the cluster within a
specified interval of time (“observation time”), and N i0 18
the number of these trajectories that result in fragmenta-
tion into channel i:

The reason for introducing an observation time in numer-
ical simulations is the fact mentioned above that certain
initial conditions may lead to prohibitively long survival
of the cluster. In our study the length of the observation
time interval is 107 steps. Of course, the definitions (6)
and (6') are equivalent only if the probabilities 7; are time
independent (see below).

(3) Interaction energy E;,, defined as

nt
E (D=V,()—[V()+V,_/(0)], (8)

where V, (1), V(t), and ¥, _;(t) are the potential energies
of the n-, i-, and (n —i)-atom systems, respectively. Be-
fore the fragmentation, the n atoms form the parent clus-
ter. The i- and (n —i)-atom systems are the ones that be-
come the fragments of the dissociated cluster. In order to
follow the time evolution of E;, along a phase-space tra-
jectory corresponding to the fragmentation of the cluster,
one has to know both the fragmentation channel i and
the identity of the atoms (specified by their numerical la-
bel) in each of the fragments. Of course, the fragments
and the identity of the atoms in them are known only
after the breakup of the cluster. The test for fragmenta-
tion involves monitoring the interatomic distances and
identifying i- and (n —i)-atom systems such that the
atoms within these systems remain bounded, as judged by
the corresponding interatomic distances, whereas the sep-
aration between the atoms belonging to different systems
becomes arbitrarily large. In order to calculate E, ,(¢), as
well as other time-dependent quantities that presume
knowledge of the identity of the fragments before the ac-
tual fragmentation of the cluster takes place, one must
recompute the trajectory, or at least a part of it. It is
clear from definition (8) that E;, —O0 as the cluster frag-
ments.

(4) Kinetic energy of the relative motion of the frag-
ments (“kinetic-energy release”) E, .,

Ejra()= =+ =—PX1), 9)

where P; and P, _; are the total linear momenta of the i-
and (n —i)-atom fragments, respectively, measured with
respect to the c.o.m. of the n-atom system (P,=—P, _;),
M; and M,_; are the masses of the fragments,
P=P,=P,_;, and py=MM,_,/(M;+M,_,) is the re-
duced mass of the fragments.

(5) Time-dependent survival probability 7(¢),

1 %
P(t)y=—3 6(1y;— 1), (10)
No S
where 0 is the Heaviside step function, 7; is the survival
time of the cluster, i.e., the time the cluster lives before it
undergoes fragmentation, along the trajectory i, and
No(=N,) is the same as in Eq. (6). (The definition of the
instant of fragmentation is given below.)
(6) Global fragmentation rate constant k defined by the
equation
aNW Ny, (an
dt
where N (t) is the number of surviving parent clusters at
time ¢ [N (¢t =0)=N,]. Assuming that k does not depend
on time, Eq. (11) implies the relation

P(t)y=e X, (12)

which allows one to calculate k by fitting In[P(2)] to a
linear function. Since ?(t) depends parametrically on the
total energy of the cluster, k is a function of this energy,
i.e., it is the microcanonical rate constant.

(7) Channel-specific (time-independent) rate constant k;
defined by the equation

dN,(1)
dt
where N;(t) is the number of surviving parent clusters at
time ¢ that are destined to fragment into channel i. Sum-
ming both sides of Eq. (13) over i, taking into account
that 3, N,;(t)=N(t), and comparing with Eq. (11), one ar-
rives at

k=3k, . (14)

=—kN(t), (13)

Another relation between the rate constants can be ob-
tained by combining Egs. (11) and (13):

d _
LN —k,N(0]=0,, (15)

i.e.,
kN, (t)—k;N(t)=C . (16)

Taking into account that N;(t=o)=0 and
N (t =0 )=0, one obtains C =0. Incorporating Eq. (6)
into Eq. (16) evaluated at # =0, we arrive then at

k; =Pk . (17)
Substitution of Eq. (17) into Eq. (16) leads to
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P ()=P,; , (18)

where P;(¢)=N;(t)/N(t) and P;=P,;(t =0) is defined by
Eq. (6). This proves that the fragmentation-channel
probabilities are time independent.

In order to analyze the energy dependence of the frag-
mentation of clusters we have computed the probabilities
and rate constants at different values of the internal (al-
ternatively, total) energy. The initial conditions for tra-
jectories corresponding to a chosen energy were generat-
ed from phase-space coordinates recorded along a trajec-
tory at energy lower than the desired one by 0.05-0.5 %.
The coordinates were recorded every 5000th propagation
step, which was adequate for losing the “memory” of the
trajectory. The momenta of the atoms were scaled to ar-
rive at the desired total energy of the cluster. The ade-
quacy of sampling of the relevant part of the energy shell
with a set of initial conditions generated in this way was
tested by generating another set of initial conditions for
the same energy from phase-space coordinates recorded
along a trajectory at energy lower by 5%. Within the sta-
tistical error, the two sets of initial conditions produced
identical results. The convergence of the results was test-
ed by varying the number of the initial conditions at fixed
values of the total energy (see Sec. IV).

III. STATISTICAL MODELS

An alternative to the dynamical analyses is the use of
statistical models [10-15]. In fact, these models have
been favored as the approach of choice in studies of uni-
molecular, i.e., collisionless, processes, including frag-
mentation. The basic assumptions of the statistical mod-
els are that (1) global (as opposed to detailed) features of
physical processes are defined primarily by the energetic
characteristics of the system, and (2) the energy available
to the system is randomized rapidly between its active
(i.e., coupled to the relevant for the process of interest)
degrees of freedom.

The simplest statistical approach to unimolecular pro-
cesses is the RRK [10,12,13] (Rice-Ramsperger-Kassel)
model, which assumes that all the degrees of freedom of
the system are vibrational and all are strongly coupled.
It states that the system undergoes a unimolecular pro-
cess (e.g., an isomerization or a fragmentation into a
specified channel) when and if the energy localized in a
specified vibrational degree of freedom becomes equal or
larger than a certain threshold value (E;). The rate con-
stant k (E) of the process is proportional to the probabili-
ty of such a localization and is given by [12]

s—1
1— =%

k(E)=v z

) (19)

where E 2 E, is the total energy of the system, s is the
number of its degrees of freedom, and v is a frequency
proportionality constant.

A more elaborate approach is the transition-state
theory (TST) (for a review see, e.g., Ref. [45]), which for
unimolecular processes is known as the RRKM (RRK-
Marcus) scheme [11-13]. The TST approach introduces
a “‘transition state of the system,” which is defined as a

(6n —1)-dimensional dividing surface separating the
“reactant(s)” and the ‘“‘product(s)” parts of the phase
space. (The conservation laws reduce the dimensionality
of the relevant parts of the phase space and of the transi-
tion state.) The “reaction” takes place when and if the
phase point of the system, moving along a one-
dimensional manifold called the reaction path, crosses
the transition state. The rate of the reaction is defined as
the rate of reaching or, what is assumed to be equivalent,
crossing the transition state by the phase points originat-
ing in the reactants part of the phase space. The TST ex-
pression for the microcanonical rate constant k (E,J) is
(12]

1 WiEJ
h p(EJ)

where WT(E,J ) is the total number of microstates in the
transition state accessible to the system with the total en-
ergy E and magnitude J of the total angular momentum,
p(E,J) is the density of states of the system in the reac-
tants part of its phase space, and 4 is Planck’s constant.

One of the complex issues of the TST theory is the
choice of the transition state [45]. This choice is especial-
ly problematic in cases when the reaction paths do not
possess a barrier and one has to deal with so-called loose
transition states (for a discussion see, e.g., Refs. [13,15].
As is shown in Sec. IV, the fragmentation of the model
clusters considered here is, in fact, such a case. We select
the distance between the c.o.m.’s of the fragments as the
reaction coordinate and place the transition state at that
value of this coordinate at which the fragments become
free, i.e., their interaction energy, calculated from
configurations generating the minimum-energy path (see
Sec. IV), becomes zero. More precisely, we consider the
fragments as free when the absolute value of their in-
teraction energy becomes smaller than a predefined small
positive quantity. This implies that the transition state
corresponds to a finite separation between the fragments.
The calculation of the total number of microstates
W*(E,J ) is based on the scheme described recently by
Smith [14]. This scheme incorporates the orbital and ro-
tational motions of the fragments compatible with the
fixed total energy and magnitude of the total angular
momentum of the system of n atoms. The derivations
and details will be given elsewhere. Here we present the
result only for the case of nonrotating parent clusters and
channel / =2, which is of primary relevance for the mod-
el potential considered in this study (see Sec. IV):

3/271/271/72
n! 7 IV 1 2

010, £ (I, +1,+1p)"" T ¢

i

k(E,J)= (20)

wliEJ=0)=

i=1

X[E—Ey(2)F 3. 21)

Equation (21) is obtained under the following conditions.
The transition state of the system is comprised of a dimer
and an (n —2)-atom fragment, assumed to be a spherical
top, which do not interact. The internal vibrations in the
fragments are assumed to be harmonic and decoupled
from the rotational and orbital motions of the fragments.
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In describing the orbital motion, the two fragments are
treated as point masses. In Eq. (21), I, is the moment of
inertia of the spherical top [(n —2)-atom fragment], I, is
the doubly degenerate moment of inertia of the dimer,
and I, is the doubly degenerate moment of inertia of the
two point-mass fragments. I, I, and I, are defined, re-
spectively, in the principal axes frames corresponding to
these three systems. o; and o, are the symmetry numbers
of the (n—2)- and 2-atom fragments, respec-
tively, s =3n —6, v:-' (i=1,...,s—5) are the vibrational
frequencies of the fragments, E,(2) is the fragmentation
energy of the channel i =2, and #i=h /2m. The harmonic
density of states p(E,J =0) of the nonrotating parent
cluster is given by [12]

= =n—! 1 —1 s—1
pEy =0 =1L g,

7 [17v;

i=1

(22)

where o is the symmetry number of the parent cluster
and v; (i=1,...,s) are its vibrational frequencies. The
n! in Egs. (21) and (22) is a consequence of considering
the atoms distinguishable, as is customary in classical
treatments. Note, however, that the rate constant
k(E,J), Eq. (20), does not depend on whether the atoms
are viewed as distinguishable or indistinguishable.

As is well known [12,13], for unimolecular reactions
the TST equation (20) reduces to the RRK equation (19)
with

IIv:
v="21 : (23)
IIvi

i=1

when J =0 and all the degrees of freedom of the reactant
and of the transition state are harmonic vibrations. This
suggests identifying the frequency factor v of the RRK
model as a characteristic frequency of the system.

IV. RESULTS AND DISCUSSION

Fragmentation of a cluster, as any dynamical process,
depends on the topology of the potential-energy surface
defining the forces acting on the atoms and on the total
energy of the cluster. An important characteristic of the
potential-energy surface is the minimum-energy path
(MEP) connecting those parts of the configuration space
which are of relevance for the dynamical process of in-
terest. The MEP(’s) of interest to us is (are) the one(s)
which connects the basin(s) of a parent cluster to that
(those) of the fragments. The MEP’s for fragmentation
depend, in principle, on the isomer of the parent cluster
and/or of its fragments, and, of course, different MEP’s
correspond to different fragmentation channels. In fact,
a cluster and/or its fragments may undergo isomerization
transitions along a minimum-energy path. As a conse-
quence, mapping out the MEP’s is a nontrivial problem.
An additional difficulty is the computational complexity
stemming from the high dimensionality of the potential-
energy surface.

We are interested in MEP’s because we want to evalu-
ate the fragmentation energy of the clusters. Therefore
our goal is to find for each channel the path that connects
the point of the configuration space corresponding to the
lowest-energy structure of the parent cluster to that of
the fragments and which possesses the lowest barrier to
the fragmentation. It may turn out that this path has no
barrier at all. In cases, when one finds MEP’s with
nonzero barriers, the search for the lowest barrier may be
quite laborious and tedious. On the contrary, finding a
single path with no barrier is sufficient to define the frag-
mentation energy.

It is natural to parameterize the MEP’s for fragmenta-
tion in terms of the distance S between the centers of
mass of the fragments. (The S parametrization may not
be adequate in all cases because a MEP may, in principle,
contain segments which lie entirely in the subspace or-
thogonal to S.) A way to generate an S-parametrized rep-
resentation of a MEP is to carry out fixed-S constrained
minimizations of the energy of the n-atom system on a
grid of values of S. In practice, it is convenient to start
with the two fragments in their lowest-energy structure
separated by a large S and to perform the constrained en-
ergy minimizations on a grid of decreasing values of S.
Details on mapping out the MEP’s, including a discus-
sion of the possible pitfalls and the ways to circumvent
them, will be given elsewhere.

Figure 1 illustrates a MEP obtained through S-
constrained minimizations for the case of fragmentation
of a 13-atom cluster into a dimer and an 11-mer. (In this
and the subsequent figures we use reduced units, which is
indicated by attaching the superscript ‘“*”’ to the symbols
of the physical quantities.) The lowest-lying minimum of
the graph (labeled as I) corresponds to the most stable
icosahedral structure of the 13-atom cluster. The plateau
on the right-hand side of the graph (labeled as V)
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FIG. 1. An S*-parametrized minimum energy path V%, and
interaction energy EJ}, for the fragmentation (M),
—(M),+(M),,. The interaction energy is calculated from the
(constrained) minimum-energy configurations corresponding to
the minimum-energy path. Five of these configurations labeled
by roman numerals are shown ia Fig. 2. Here and elsewhere the
superscript * means that the quantities are expressed in re-
duced units.
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represents the two free (noninteracting) fragments in
their most stable configurations (see Fig. 2). The interac-
tion energy of the fragments calculated from the S-
constrained minimum-energy configurations of the 13-
atom system and of the fragments is shown in Fig. 1 as
well. As it should, the interaction energy approaches
zero at large separations of the fragments (‘“large” means
S 2 3ry). One can introduce a definition of “the fragmen-
tation point” along a MEP based on the criterion that the
absolute value of the interaction energy becomes less than
a predefined small positive quantity. (A definition of “the
instant of fragmentation” is given below.) It is clear from
Fig. 1 that the fragmentation of the 13-atom cluster into
channel i =2 takes place without a barrier. We have
determined that the same is true for the 12- and 14-atom
clusters and for all the other channels i =1, 3, 4, 5, 6, and
7 as well. (An alternative approach is to add the rota-
tional energies to the MEP’s, which produces centrifugal
barriers; see discussion below.) Thus the fragmentation
energies are calculated from the minimum-energy struc-
tures of the parent and fragment clusters (see Fig. 3).
These fragmentation energies are shown in Fig. 4. The
feature to notice is that the energy needed to eject a
monomer from (M), and (M), is higher than the ener-
gies of fragmentation into other channels. In contrast,
for (M),, the energy required to evaporate one atom is
higher only than the energy of fragmentation into chan-
nel i =2. In order to calibrate the fragmentation energies
one may compare them with the melting energies of the
corresponding parent clusters. In distinction from the
bulk matter, clusters melt over a range of energies of
finite size [19,30]. The values of the energies (in reduced
units) limiting the melting range from above (these ener-
gies are measured from the bottom of the potential well
corresponding to the most stable isomer of each cluster)
are ~0.74 for (M),, ~1.33 for (M),;, and ~1.28 for
(M)4. The fragmentation rate constants depend on the
energy of the clusters. In order to obtain adequate statis-
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tics of the fragmentation processes on the time scale of
our simulations we had to consider energies considerably
higher than either the fragmentation or the melting ener-
gies. Therefore in these simulations the clusters are frag-
menting from a fully developed liquidlike state.

We present first some results on the dynamics of the
fragmentation process. In Fig. 5 the short-time-averaged
kinetic energy of a 13-atom system is shown as a function
of time. Two nonoverlapping branches of the graph are
clearly distinguishable despite the relatively large fluctua-
tions in them. The large fluctuations are consequences of
the liquidlike state of the system. Since the total energy
is conserved, the abrupt change from the high-kinetic-
energy branch to the low-kinetic-energy branch at
1 =~2.6X 10" steps reflects a rapid increase in the potential
energy of the melted (M),;. The increase in the potential
energy is caused by the fragmentation of the cluster into
a dimer and an 11-mer. The time evolution of the short-
time-averaged kinetic energy serves, thus, as a sensitive
indicator not only of isomerization and meltinglike tran-
sitions [19,29,30] in a cluster, but also of its fragmenta-
tion.

Complementary information on the process shown in
Fig. 5 is presented in Figs. 6 and 7. Figure 6 displays the
instantaneous kinetic energy of the relative motion of the
(M), and (M), fragments and their instantaneous in-
teraction energy as functions of time. Since the total
linear momenta P; and P, _; of the separating fragments
may not lie along the line of their c.0.m.’s, the kinetic-
energy release is, in general, the sum of the energies of
the orbital rotation of the fragments, due to the com-
ponents P;, and P, _, perpendicular to the line of the
c.0.m.’s, and of their relative translational motion, due to
the components P; and P,_,, along the line of the
c.o.m.’s (see Fig. 8). The interaction energy shown in Fig.
6 is calculated from configurations generated along a tra-
jectory and should be distinguished from the type of the
interaction energy shown in Fig. 1. As the fragments

FIG. 2. Minimum-energy configurations of the 13-atom system corresponding to different values of S*. The roman numerals es-
tablish the correlation with Fig. 1. Configurations I and II are true minimum-energy isomers.
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1 (C2v) 12 (CSV)

13 (In)

14 (C3V)

FIG. 3. The most stable structures and their symmetries of the (M),, n =2-14, clusters. The energies of these clusters in reduced

units are:
—13.398, respectively.

separate with time their interaction energy approaches
zero. The instant of fragmentation along a given trajec-
tory can be defined as the time at which the absolute
value of the interaction energy becomes less than a
predefined small positive quantity. As the fragments be-
come free, the kinetic energy of their relative motion be-
comes constant.

Figure 7 depicts the distance S between the c.0.m.’s of
(M), and (M),, as a function of time (cf. Fig. 8). As the
fragments become free this distance becomes a monoton-
ic function of time. The equation of the segment of the
graph corresponding to the free motion of the fragments
is

S(t)= sg+%\/(sgpg—1,g)(t—¢0)
1 172
+—2P(2,(I~TO)ZJ , 24)
u

where 7, is the instant of fragmentation, S, =S (¢ =7),
Py=P(t=r7y), and L, is the magnitude of the constant
orbital angular momentum L, of the free fragments,

L,=S,XP,, . (25)

—1.211, —2.160, —3.187, —4.170, —5.215, —6.209, —7.193, —8,200, —9.222, —10.234, —11.292, —12.463, and

In Eq. (25), S, is the distance vector from the c.o.m. of
the (n —i)-atom fragment to the c.o.m. of the i-atom
fragment at t =7, and P,;=P;(t =7y). In the limit of
large times, S(¢) is approximated well by a linear func-
tion [cf. Fig. (7)]. Obviously, when L =0, the entire
kinetic-energy release is the kinetic energy of the relative
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FIG. 4. Fragmentation energies (in reduced units) for (M),,
n=12-14.
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FIG. 5. Short-time-averaged kinetic energy per atom as a
function of time for the 13-atom system undergoing fragmenta-
tion into a dimer and an 11-mer. The averages are calculated
over 500 steps, which corresponds to 3-5 vibrations of the
(M),3.

translational motion of the fragments and
Py
S()=Sy+—(—1y) . (26)
U

We emphasize again that at the energy considered the
fragmentation of the cluster is a rapid process (~ 500
time steps). The qualitative changes in the graphs of
Figs. 5-7 occurring synchronously at ¢t ~2.6X10* time
steps are all consequences and signatures of this process.
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Figure 9 shows the distributions of the fragmentation-
channel probabilities for (M),, n =12-14, parent clus-
ters at different total energies per atom. These probabili-
ties are calculated using 200 (for » =12 and 14) and 400
(for n =13) trajectories per energy. Tests have shown
adequate convergence of the results obtained with as few
as 200 trajectories. The prominent feature of these distri-
butions is that they peak at channel i =2. The evapora-
tion of monomers is practically absent and the probabili-
ties decrease monotonically with i for i>2. For the
ranges covered, the size and the energy of the clusters
seem to have no major effect on the distributions. One
can also examine the possible relation between the
fragmentation-channel probabilities and the fragmenta-
tion energies for a cluster of a given size. The smallest
fragmentation energy for i =2 correlates with the largest
probability of fragmentation into this channel for all the
clusters considered. The largest fragmentation energy for
i =1 in the case of n =12 and 13 correlates with the
negligibly small values of the corresponding probabilities.
However, this latter correlation does not hold for the 14-
atom cluster. Similarly to the 12-mer and the 13-mer, the
14-mer prefers not to evaporate atoms despite the fact
that its evaporation energy is the second smallest of all its
fragmentation energies. The oscillating, as a function of i
(for i 22), fragmentation energies do not correlate with
the monotonic decrease of the corresponding channel
probabilities.

One is tempted to compare the probabilities of Fig. 9
with those following from the RRK treatment in spite of
the fact that the latter does not include the possible orbit-
al and rotational motions of the fragments. The RRK

1 T e B S B e B B ' T T 0.6
2 . 1 04
A R o
".‘-.";"”;.f - | m
A e i 0.0 = *
-« i i -
L |02
¥ :
oy, ! 04
J:' - . jf
ST B S R 1 1 . | i L J _06
2.5 2.7 2.9 3.1

Time (10" time steps)

FIG. 6. Interaction energy and kinetic energy of the relative motion of the (M), and (M), fragments as functions of time. Both
are calculated for configurations along the same trajectory that generates Fig. 5.
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FIG. 7. Distance between the centers of mass of the (M), and
(M), fragments as a function of time. The graph is calculated
along the same trajectory that generates Figs. 5 and 6.

fragmentation-channel probabilities are calculated using
Egs. (17), (14), and (19) [Eq. (19) defines the channel-
specific rate constants] and assuming that the frequency
factor v is the same for all the channels. The distribu-
tions of these probabilities are presented in Fig. 10. For
each parent cluster, they are in direct correlation, or
rather anticorrelation, with the corresponding fragmenta-
tion energies. The monotonic increase of the smaller and
decrease of the larger fragmentation-channel probabilities
with the increase of the cluster energy reflects the fact
that in the limit of very high energies the RRK rate con-
stants, Eq. (19), tend to the same limit for all the frag-
mentation channels of a given parent cluster. As a conse-
quence, the distribution of the RRK fragmentation-
channel probabilities becomes more uniform as the ener-
gy of the cluster is increased.

The global fragmentation rate constants are obtained
from linear fits of the logarithms of the time-dependent
survival probabilities P(¢), Eq. (12). These probabilities,

as calculated from the dynamical simulations, are shown
for the case of the 13-atom parent cluster in Fig. 11. The
rate of decay of the survival probabilities is indeed ex-
ponential and it increases with the energy of the cluster.
Figure 12 displays the global fragmentation rate con-
stants for the 12-, 13-, and 14-atom clusters. As expected
(e.g., from the RRK model), the rate constants increase
monotonically with the energy of the clusters. When
considered as functions of the total energy per atom, the
rate constants, at least for the energy range covered,
show only a relatively weak dependence on the cluster
size, and the 12-mer and the 13-mer emerge as, respec-
tively, the least and the most resistant to fragmentation.
As has been discussed above, in general there is
no consistent and systematic correlation between the
fragmentation-channel probabilities (and, consequently,
the channel-specific fragmentation rate constants), on the
one hand, and the corresponding fragmentation energies,
on the other, all considered as functions of the fragmen-
tation channel of a cluster of a given size. Next we ad-
dress the question about the possibility of such a correla-
tion between the fragmentation rate constants and the
fragmentation energies considered as functions of the
cluster size. In a direct way this question can be
answered for the individual fragmentation channels. The
fragmentation rate constants for the dominant channel
i =2 are shown in Fig. 13. When considered as functions
of the total energy per atom, they display the same trends
as those exhibited by the global rate constants, Fig. 12,
and they correlate with the corresponding fragmentation
energies in the sense that larger rate constants corre-
spond to smaller fragmentation energies (cf. Fig. 4). In
order to carry out a similar analysis for the global frag-
mentation rate constants one would have to introduce an
effective (averaged over the channels) fragmentation ener-
gy of a cluster. The same ordering of the fragmentation
rate constants as in Figs. 12 and 13 was obtained by
Weerasinghe and Amar (WA) in their study of evapora-
tion (single-atom ejection) from 12-, 13-, and 14-atom
Lennard-Jones clusters at higher energies [16,17]. Both
the dynamical and the phase-space theory calculations of

FIG. 8. Schematic of fragmentation of an
n-atom cluster (A4), into (A4); and (A4),—;
fragments. P stands for the linear momenta, j
for the rotational angular momenta, and L
(perpendicular to the plane of the figure) for
the orbital angular momentum of the frag-
ments (see text). O is the center of mass of the
n-atom system, S =R;+R, _;.
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WA, however, indicate a crossover between the evapora-
tion rate constants of the 12- and 14-atom clusters as the
energy of the clusters is decreased. The low-energy tails
of the graphs in Figs. 12 and 13 are also suggestive of the
possibility of such a crossover. We will address this point
in greater detail in future publications.

It is of interest to compare the dynamical simulation
results regarding the dependence of the individual
channel-specific rate constants on the size of the parent
cluster with the corresponding predictions of the RRK
model. It would not be meaningful to consider the RRK
channel-specific rate constants for parent clusters of
different sizes at the same value of the total energy per

Probability

TTTTTPYTT YT TTTT)

C:.

[TTTTTTTE T TTTY T O

|

Fragmentaton Chann

FIG. 9. Fragmentation-channel probabilities calculated from
molecular-dynamics simulations for (M),, n =12-14, clusters
at different total energies (per atom). For each cluster the ener-
gies are defined with respect to the bottom of the potential-
energy well corresponding to its most stable geometry.
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atom or per degree of freedom. The reason is that the
dependence on the cluster size enters the RRK expres-
sion for the rate constant, Eq. (19), not only through the
number of the degrees of freedom s but also through the
value of the threshold energy E, and, in princple, that of
the frequency factor v. Assuming that v has the same
value for the different parent clusters (which is not a
severe assumption—see the discussion below) and intro-
ducing a=E/E,(i|ln), where E(iln) is the i-channel
fragmentation energy of an n-atom cluster, one can
rewrite Eq. (19) in the form

s =1

27

which retains the dependence on the cluster size only
through s. In order to compare the dynamical simulation
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FIG. 10. The same as Fig. 9 but calculated from the RRK
model.
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FIG. 11. Survival probability of the (M),; cluster as a func-
tion of time. The graphs are obtained from dynamical simula-
tions at the same energies as considered in Fig. 9.

results for the channel-specific rate constants with the
corresponding RRK results calculated using Eq. (27) one
has to reproduce the former as functions of a. The a
dependence of the fragmentation rate constants for i =2
derived from the dynamical simulations is shown in Fig.
14. One notices the change in the ordering of the rate
constants for the different parent clusters as compared to
that in Fig. 13. Our main goal, however, is to answer the
question: Does the ordering in Fig. 14 coincide with the
one following from the RRK model calculations? The
answer to this question is “no,” at least for the range of
a’s covered by the dynamical simulations. This is evident
from the inspection of Fig. 15, which displays the RRK
results obtained using Eq. (27) with v=0.9¢,'. This
choice of the value of v is based on the following con-
sideration. For metals the frequency of the diatomic mol-

6.0 [T T T T T T T T T T T T T
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FIG. 12. Microcanonical global fragmentation rate constants
for (M),, n =12-14, parent clusters as functions of the cluster
energy per atom. The graphs are obtained from dynamical simu-
lations. The energies are defined as explained in the caption of
Fig. 9. The unit ¢, of time is defined by Eq. (4).
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FIG. 13. The same as Fig. 12 but for the channel-specific
fragmentation rate constants of the processes (M),
—(M),+(M), _,.

ecule and the corresponding Debye frequency of the bulk
are not very different. For example, for nickel they are
0.99X 10" and 0.94X10'* Hz, respectively [46,47].
Since the rate constants are indeed insensitive to small
variations in the frequencies, one can assign a single
characteristic frequency to a metal system irrespective of
its size. Our choice of the value of v is based on the mag-
nitude 0.94¢, ! of the Debye frequency of nickel, where
to, Eq. (4), is calculated using U =3.77 eV, appropriate
for bulk nickel.

Finally, in Fig. 16 we compare the rate constants for
the fragmentation of a 13-mer into a dimer and an 11-
mer obtained using dynamical simulations with those of
the RRK and TST approacnes. The TST results are cal-
culated applying Egs. (20)-(22). The transition state is
chosen at the separation 3.36r of the fragments at which
the interaction energy between the dimer and the 11-mer,
as calculated from their S-constrained minimum energy
structures, becomes smaller than 0.001 (reduced units).
Based on the consideration discussed above, the same
value 0.9t ! is assigned to all the frequencies v; and v:-r.
Although the 11-atom fragment is liquidlike at the ener-

3.0 [ L T S B S A B A B
[ M), *
25 1
M),
‘-O 2.0 L -
ic_; M), "
§ 15 .
(72} N
g R
o L ’.. . ]
e 10 P
©
ac r -
0.5 -* ’ ]
L e - a- "
0.0 P el L i . |
2.2 2.4 2.6 2.8 3 3.2 3.4
o

FIG. 14. The same as Fig. 13 but plotted as a function of a
(see text).
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FIG. 15. The same as Fig. 14 but calculated from the RRK

model. Notice the difference in the range of a as compared to
that in Fig. 14.

gies considered, its (time-)averaged structure is assumed
to be a spherical top. Taking into account that the
effective sizes of the 11- and 13-atom clusters are very
close, we obtain the moment of inertia I, of the (M),
fragment from that of the equilibrium icosahedral struc-
ture of (M),; by rescaling the mass. The moment of iner-
tia I, of the dimer is calculated at its equilibrium intera-
tomic distance. The symmetry number of the dimer is 2
and those of the 11-mer and the 13-mer are 11! and 13!,
respectively, since these clusters are liquidlike [48]. Be-
cause the moment of inertia I, of the orbital motion is
considerably larger than I; and I,, wi(E,J=0), Eq. (21),
and, consequently, the TST rate constant are only weakly
sensitive to the precise value of I;, which, in turn, de-
pends on the choice of the position of the transition state.

It is quite remarkable that over the energy range con-
sidered the different approaches give approximately the
same rate of change of the rate constant with the energy.

10° -
TST
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‘%‘ L]
% MD
g 10* . .
(@) .
% .
« 6
10
RRK
10°®
0.18 0.19 0.2 0.21 0.22 0.23
E'/Atom

FIG. 16. Microcanonical channel-specific rate constants for
the process (M);;—(M),+(M),; calculated from dynamical
simulations (MD) and the RRK and TST statistical approaches.
The energies are defined as explained in the caption of Fig. 9.

The TST values are larger than those derived from the
dynamics, which is consistent with the fact that the TST
defines an upper limit for the rate constants. Replacing
the harmonic densities of states for the parent cluster and
the fragments by the more adequate anharmonic densities
would most probably lead to lower values of the TST rate
constant. The reason is that the anharmonic density in-
creases with energy faster than the harmonic one [17] and
it is reasonable to expect that the difference between the
two is larger for a system with a larger number of degrees
of freedom. Thus replacing the harmonic densities of
states by the anharmonic ones would result in a larger in-
crement of the density of states for the parent cluster
than for the fragments. The effect could further be
magnified by that the internal energy at which one evalu-
ates the densities of states is higher for the parent cluster
than for the fragments.

The values of the RRK rate constant calculated assum-
ing s =3n —6 are lower than the corresponding values
obtained from the dynamics. Again, it is consistent with
the common experience that the RRK model underesti-
mates the rate constants unless one introduces an
effective number of (“active”) degrees of freedom which is
smaller than the actual one. The fit of the RRK formula,
Eq. (19), with v=0.9¢,! and E%(2[13)=1.02 (reduced
units) to the values of the rate constant obtained from the
dynamical simulations yields s = 19.

The metal clusters are mimicked in this study by a
model potential. Since we express this potential in re-
duced units of energy and distance, the results yield qual-
itative and relative, rather than absolute, quantitative in-
formation. In order to convert the results into absolute
quantities one would have to have a single value of the
“unit of energy” U appropriate for the cluster and frag-
ment sizes considered. The original parametrization of
the potential, Eq. (2), does not provide for this. (An ap-
proximate estimate of the order of magnitude of the
physical quantities in the absolute units can be obtained
using the above-mentioned values of U and v appropriate
for bulk nickel.) We are currently examining alternative
parametrizations.

The emphasis in this study is on the qualitative
features of the dynamics of cluster fragmentation, as
defined by the model potential used, and on the compar-
ison of the results obtained from the dynamical simula-
tions with the implications of the statistical models. The
general conclusion one derives from this comparison is
that although there seems to be a partial agreement be-
tween the results of the two approaches, this agreement is
not a systematic and consistent one. It is not only the en-
ergetic characteristics, as implied by the RRK model, or
the energetic and entropic (density of states) characteris-
tics, as defined by the TST approach, but also the dynam-
ical factors that affect and govern the phenomenon of
cluster fragmentation.

The results of both, the dynamical and the statistical,
treatments depend on the built-in (explicitly or implicitly)
approximations and/or assumptions. One of the approxi-
mations built into the dynamical simulations is the poten-
tial energy function chosen to mimic the cluster cohesion.
An important question in this respect is how sensitive are
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the results to the parameters of the potential. We will ad-
dress this question in future publications. Here we note
only that some of the results, for example, the pattern of
the fragmentation channel probabilities, may, in fact, be
quite sensitive. It is the comparison of the theoretical
predictions with the appropriate experimental data, when
available, which will ultimately allow for “tuning” of the
cluster potentials. Theoretical studies of the cluster frag-
mentation yield information on the implications of a
chosen potential that is complementary tc that extracted
from the investigation of the structural forms of and
phases and phase changes in these systems.

An assumption used in the TST treatment is the loca-
tion of the transition state. An alternative to the ap-
proach used in this study is to add the rotational energies
to the MEP and to place the transition state at the posi-
tion of the effective barrier, provided such a barrier exists
(we are currently exploring this option). A change in the
position of the transition state will, in general, change the
value of the threshold energy E|,, which in turn may, and
usually will, affect the rate constants.

V. SUMMARY

In this study we describe dynamical and statistical ap-
proaches to multichannel fragmentation of atomic clus-

ters. These approaches are applied to model metal clus-
ters. The fragmentation phenomenon, as a function of
the cluster size and energy, is characterized in terms of
fragmentation-channel probabilities and rate constants
(global and channel-specific). The comparison of the re-
sults obtained from the dynamical simulations with those
following from the statistical models indicates that
dynamical effects may play an important role in cluster
fragmentation. The analysis of the distribution of the
available energy between the fragments will be given sep-
arately. Future presentations will also examine the ques-
tion about the sensitivity of the results described here to
the details of the potential-energy surface chosen to mod-
el the interatomic interactions in a cluster.
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FIG. 10. The same as Fig. 9 but calculated from the RRK
model.
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FIG. 2. Minimum-energy configurations of the 13-atom system corresponding to different values of $*. The roman numerals es-
tablish the correlation with Fig. 1. Configurations I and II are true minimum-energy isomers.



FIG. 3. The most stable structures and their symmetries of the (M),, n =2-14, clusters. The energies of these clusters in reduced
units are: —1.211, —2.160, —3.187, —4.170, —5.215, —6.209, —7.193, —8,200, —9.222, —10.234, —11.292, —12.463, and
—13.398, respectively.



FIG. 8. Schematic of fragmentation of an
n-atom cluster (A4), into (A4); and (A),_;
fragments. P stands for the linear momenta, j
for the rotational angular momenta, and L
(perpendicular to the plane of the figure) for
the orbital angular momentum of the frag-
ments (see text). O is the center of mass of the
n-atom system, S =R, +R, ;.
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FIG. 9. Fragmentation-channel probabilities calculated from
molecular-dynamics simulations for (M),, n =12-14, clusters
at different total energies (per atom). For each cluster the ener-
gies are defined with respect to the bottom of the potential-
energy well corresponding to its most stable geometry.



