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Regge-pole description of rainbow scattering by means of the phase-integral method
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In the present paper we study the effects in the rainbow differential cross sections of using higher-
order phase-integral residues in the pole sum of the scattering amplitude. We have recently found that
already in the first-order approximation the uniform residue formula, derived by Froman and Froman,
provides an important means for an accurate calculation of the rainbow differential cross section where

reliable numerical quantum methods are not available. From the present investigation it is clear that the

use of higher-order approximations is not the crucial step to further reveal the rainbow structures in the
cross section. For that purpose, it is instead essential to increase the purely numerical precision (in any

order) of the uniform phase-integral residue calculations.

PACS number(s): 34.40.+n, 03.65.Nk, 03.65.Sq

I. INTRODUCTION

The Regge-pole theory of atomic and molecular
scattering was introduced two decades ago [1—4] and has,
since then, gradually increased the understanding of
prominent features of differential cross sections. The
theory has recently been reviewed by Thylwe [5] and
Connor [6]. It has been particularly successful in the
analysis of diffraction effects and resonance structures in
differential scattering cross sections. The strength of the
Regge-pole theory in the cases mentioned is the appear-
ance of just a few significant terms in the pole contribu-
tion to the scattering amplitude. The analysis of the
structures in the differential scattering cross sections is
then easy to do and leads to simple modified semiclassical
interpretations; see Refs. [5] and [6], for details. The ap-
plication of the semiclassical Regge-pole theory to rain-
bow collisions [7—10] has for a long time been shown to
be less success. Only for very light particles with a weak
long-range part of the interaction potential was the
differential cross section accurately obtained. With larger
reduced mass of the collision partners and larger well

depth of the interaction potential the number of impor-
tant terms in the pole sum increases. Although in some
cases up to 50 poles, calculated both with numerical
quantum and semiclassical methods, were included in the
calculation the correct differential cross section could not
be reproduced. It was soon realized that strong cancella-
tions between exponentially large terms were present in
the evaluation of the pole sum and that the residues were
not accurately obtainable by methods existing at the
time; see Ref. [9].

Pajunen [11] found a procedure based on the Priifer
phase function which indicated that the residue calcula-
tions could be more accurate than previous results with
accurate Regge-pole positions. Recently, Frornan and
Froman [12] and the present authors [13,14] showed that
the previous phase-integral residue formula is consider-

ably improved by explicitly treating the two relevant
complex turning points as lying at an arbitrary distance
from each other, i.e., also allowing them to lie close to-
gether, but well isolated from other transition points. As
demonstrated in Ref. [13] the residues were sufficiently
accurate to drastically improve the semiclassical Regge-
pole calculations of the rainbow scattering cross section
already in the first-order approximation.

In the present paper, we go beyond the improved semi-
classical Regge-pole theory just described and presented
in Ref. [13], and study the effects in the diff'erential

scattering cross sections of using higher-order phase-
integral approximations for the residues and positions of
Regge poles. It should be pointed out, however, that the
semiclassical (and improved semiclassical) approxima-
tions used in the Regge-pole theory involve two asymp-
totic methods: the saddle-point method and the first-
order (nonuniform or uniform) phase-integral method.
The latter method is applied not only for calculating the
positions and residues of the Regge poles, but also for cal-
culating the phase shift and Legendre functions of com-
plex degree appearing in the expression for the scattering
amplitude. Hence, we could not be certain to arbitrarily
improve the differential cross section by merely improv-

ing the accuracy of residues alone. The idea to focus our
rainbow study on the residue calculations alone is, how-
ever, motivated by the well-known presence of strong
cancellations in the pole sum, where the residues are key
quantities. Nevertheless, as explained in Sec. IV, the
present investigation shows a remarkably simple recipe of
how to improve the calculation of supernumerary rain-
bow features in the differential cross sections of Regge-
pole theory.

Although we expected to be able to show that the
much more accurate higher-order phase-integral calcula-
tions of pole positions and residues could cure the inaccu-
rate Regge cross sections at lower scattering angles, it
turned out that the use of first-order uniform phase-
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II. BRIEF REVIEW OF REGGE THEORY

We write the radial Schrodinger equation in the form

+R (r)/=0, (2.1)

where, according to conventional notations,

~( ) I z 2P V( )
I(I+1)

r
(2.2)

The quantity V(r), which is the physical potential for
two spinless particles, is assumed to satisfy the condition
(for the Coulomb case see [15])

lim r V(r) =0 .
p~ oo

(2.3)

The wave function, which is to be a regular solution of
the differential equation (2.1) fulfills, aside from a normal-
izing factor, the asymptotic condition [16]

integral calculations is sufficient for that purpose. The
key to the resolution lies rather in the performance of
high-precision calculations, either using the Froman-
Froman residue formula, or using some numerical quan-
tum method which seems to be very difficult to do for ex-
tremely large pole residues.

In Sec. II we review the basic Regge-pole theory and
the approximations used in the present calculations. Sec-
tion III contains a description of the ion-atom and atom-
molecule collision systems investigated with the analytic
potential parameters explicitly given. The results are dis-
cussed in Sec. IV and conclusions are given in Sec. V.

lf (8)=—g (I +—,')(S, —1)P&(cos8) .
ik(

(2.7)

exp[ —im(I + —,
' )]

gg(I)= —
—,
' f g(I)

C sin(n. l)
(2.8)

It is a well-known problem, however, especially for
heavy-particle scattering at relatively high energies, that
the partial-wave representation converges very slowly.
For potentials with a Coulombic tail the partial-wave
series is even divergent [15]. To this effect the complex-
angular-momentum (CAM) formalism introduced by
Regge [20—22] seems to be adequate, at least for a large
class of potentials.

When the Regge condition is imposed the regular solu-
tions of (2.1) are set to behave as purely outgoing waves
at infinity [22]. This condition is characteristic for the
quasibound states of the colliding particles, and it is
fu1611ed if either the energy E or the angular-momentum
quantum number l takes on complex values. With I al-
lowed to take on complex values, the wave functions
satisfying the pure-outgoing-wave boundary condition
correspond to poles (Regge poles) of the S matrix as is
evident from Eq. (2.4). The quantities associated with
these Regge states are the Regge poles I and the corre-
sponding residues r, where m is a non-negative integer
that distinguishes between the di8'erent poles of the
scattering matrix.

To express the scattering amplitude in an integral form
[23], one introduces the Watson transformation which in-
volves the residues of 1/sin(n. l) for a complex variable I.
The underlying formula for the transformation is given

by (e.g., Ref. [26])

1I(r)-exp i kr ———I
2

—S&exp i kr ——l r~+ 00, (2.4)

where g (I) is an analytic function in the neighborhood of
the non-negative real I axis and C is the contour sur-
rounding the non-negative real I axis in the clockwise
sense. With the scattering matrix S& now being a con-
tinuous function of the complex variable I, henceforth
denoted as S(l), the scattering amplitude f (8) can there-
fore be written as

where the function

S& =exp(2i5&) (2.5)

(I + —,
'

)[S(I)—1]P&(—cos8)
(2.9)

is the scattering-matrix (S-matrix} element and 5& is the
phase shift dependent on both the angular-momentum
quantum number I and the energy E( =k vari /2p) of the
relative motion of the interacting particles. A detailed
analysis concerning (2.4) and (2.5) within the framework
of the phase-integral technique developed by Froman and
Froman [17],is given in [18]and [19].

With the knowledge of this S-matrix element the
differential cross section I(8) relevant in the analysis of
scattering data can be obtained through the scattering
amplitude f (8) as

(2.6)

where 0 is the scattering angle. The partial-wave repre-
sentation of the scattering amplitude, expressed in terms
of the Legendre polynomials of discrete values of I, is
given by

where the identity exp( i~l)P&(cos8)—=P&( —cos8) has
been used and P&(

—cos8) is now the Legendre function
of complex degree I.

A. Basic formulas in the Regge-pole theory

f(8)=fp(8)+ fg(8}, (2.10)

By deforming the contour of integration in Eq. (2.9)
one can include the residues of the scattering-matrix
poles. No other singularities are assumed to be present in
the half plane Rel & —

—,'. The scattering Bmplitude may
thus be reproduced by a sum of terms containing pole po-
sitions l and associated residues r, known as the pole
sum fz(8},and the remaining integral, also known as the
background integral f~(8). In this way Eq. (2.9) can be
written as
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where

m " (i +l)r,„f (8)=
k g . P, (

—cos8)
k o sin~1

is the pole sum, and

( l +—,
'

)[S( l ) —1 )Pt ( —cos8)

(2.1 1)

(2.12}

The Regge representation has been proven useful in the
interpretation of structures in the differential cross sec-
tions as being caused by certain interfering physical phe-
nomena in the collision processes; see Ref. [6].

For a more general, exact CAM representation of the
scattering amplitude, namely, the subamplitude-pole rep-

resentation, see Refs. [19]and [15].

is the background integral with I being a new contour ly-

ing to the left of the Regge poles in the right half plane
Rel ) ——'.2'

The actual path of integration in (2.12), with considera-
tion of the properties of S(l) for various potentials, is dis-
cussed in detail by Thylwe [5] and by Connor [24]. For
practical purposes it starts along the positive imaginary
axis of I + —,', passes a saddle point and terminates in the

fourth quadrant of the complex l plane such that
Rel —++ ~ and Iml~ —~. Here, we give only the
essential formulas pertaining to the background integral
given in [25] and [15]. For a singular potential of the
Lennard-Jones type an exact expression for the back-
ground integral is

B. Approximate formulas

(t2)
y= f q(r)dr =m+ —,', m =0, 1,2, . . . ,

77
(2. 1 5)

where q(r) is given by the asymptotic expansion of order
2%+ 1:

N

q(r)=Q(r) g Y2„.
n=0

(2.16)

The first term Q(r) is the base function [corresponding to
the reduced classical momentum R ' (r)] specified by

In the higher-order phase-integral approximations the
Regge-pole positions I can be calculated from the gen-

eralized Bohr-Sommerfeld formula

fs(8) = ——f (i +—,
'

)Q&' '(cos8) exp[2i5(l)]dl, (2.13) Q (r)=R(r)— 1

4r
(2. 17)

Q'„'(x)=
—,
' P„(x)+—Q„(x) (2.14)

where the so-called regenerative-wave angular function
[26] Q', '(x) expressed in terms of the first and second
kind of the Legendre functions is

The relevant higher-order corrections terms Yz„ in (2.16)
are given by Eqs. (3.15a)—(3.15c} and (3.19) in Ref. [17].
Furthermore, t, and t2 are the relevant transition zeros
of Q (r), and integration is performed along a closed con-
tour surrounding t, and t2 (with a cut joining them) in

the positive sense. The corresponding residues are [12]

rm

f(yo, . . . , y2~)exp 2i lim w(r) —kr+(l+ —,)—r~+ oo
2 2

2@iBy /Bl
(2.1 8)

where f (yo, . . . , y2+) is the correction function that al-

lows the transition zeros to lie arbitrarily close to each
other with

also appearing in (2.11), we use only its leading (first-

order) asymptotic form ( ~1 sin8
~

~ ~ )

and

(t2)
yz„= f, ,

Q(r)Y2„dr

w(r}= —,
' f q(r}dr,

(2.19)

(2.20)

P, (
—cos8)-

1/2

m(l +—,
'

) sin8

X cos (l + —,
' )(m.—8)—— (2.21)

I, being a contour in the complex r plane which starts at
'2

the point corresponding to r on the lower Riemann sheet
encircling t2 as well as the associated zeros of q(r) in

(2.16} and ending at the point r itself. We remark that,
for the first-order approximation, the above integrals be-
come line integrals on suitable paths.

Formulas (2.15) and (2.18) are used in the first-order as
well as higher-order phase-integral calculations of l and
r in the pole sum (2.11). As for the Legendre function,

which is given in [27], where the accuracy is also dis-

cussed in detail.
To single out and investigate the improvement of the

differential cross section by improving the accuracy of
the positions and residues with higher-order phase-

integral calculations, we keep the background integral
calculations strictly in the first order.

Hence, the regenerative-wave angular function is ap-
proximated by
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Q&' '(cos8)—
1/2

2~(l +—,
'

) sinO

differential cross sections from the partial-wave series, us-

ing an average of 8000 accurate phase shifts.

A. The H+ +Ar System
Xexp i —(l +—')——

2 4
(2.22)

so that formula (2.13) becomes

By using the saddle-point method, one obtains for the
leading-order asymptotic representation of the back-
ground integral the expression [25]

r 1/2

L

Xexp[i[25(ls) —(ls+ —,
' )8]], (2.24)

where 5(l} is the semiclassical phase shift in terms of
which the scattering-matrix element in (2.5) is defined
with 5& replaced by 5(l). The quantity ls in the above
equation is the saddle point which fulfills

8=2d5(l)ldli( i
=8(ls),— (2.25)

where 8(l) is the usual classical deflection function, if the
first-order phase-integral approximation for the phase
shift is used, i.e.,

5(l)= lim J Q(r')dr' kr +(1+——,
' }—,

I'~ m 2
(2.26}

where the classical turning point t1 is, in a generalized
sense [since Q (r)AR (r)], the radius of closest approach
to the scatterer.

III. APPLICATION TO PARTICULAR POTENTIALS

We consider two scattering systems (H+ + Ar and K
+ HBr) in our analysis of the Regge theory, where in
each case the interaction potentials are of the Lennard-
Jones type. The H+ + Ar and K + HBr scattering have
been studied recently in model calculations in Refs. [11]
and [14]. In this investigation we take into account 25
Regge poles for each system to compute the differential
cross sections. The saddle-point method and the first-
order phase-integral approximations are used for the cal-
culation of the background integrals, while both the first
and fifth orders of the phase-integral approximations are
used, as described above, to calculate the pole sums.

The computational procedure is the same as in our pre-
vious paper [13]. With dimensions and energies ex-
pressed in units of A and eV, respectively, and with
%=6.465416717X10, the cross sections are given in
units of (A) . The scattering cross sections are calculated
in each system for three different energies converted to
units of eV. As a reference, we also computed the

exp l
4

fs(8)= ' . ' f (&+—')' '
k+2m. sin8

Xexp[i[25(l) —(i+ z')8]]dl .

(2.23)

Proton-argon scattering has been studied both theoreti-
cally and experimentally (see Toennies [28]). This sys-
tern, which has a small reduced mass and a relatively
strong long-range attraction in comparison with neutral
systems, shows pronounced rainbow oscillations with the
fast oscillations experimentally resolved even at quite
high center-of-mass scattering energies. In our study, we
have chosen a Lennard-Jones LJ(6,4) potential,

6 r 4
minr

r
rminV(r)=e 2

r
(3.1)

to represent the system. This potential has also been used
in Refs. [11] and [14]. As in Ref. [30] the radial
Schrodinger equation is initially transformed by the in-
troduction of the dimensionless parameters

2 =kr;„, K =E/e, R =rlr;„. (3.2)

For the radial Schrodinger equation (2.1) thus
transformed, the square of the base function is chosen in
accordance with (2.17), which yields

Q (r)=A 2 3
r6 r4

(1 + —,
'

)

2
(3.3)

so that, apart from the use of the uniform residue formu-
la (2.18), the first-order phase-integral approximation
would agree with previous semiclassical results. In Fig. 1

the plots of the scattering cross section for energies 15, 5,
and 3 eV and a plot of corresponding deflection functions
are given. From Figs. 1(a)—1(c) we see that no apparent
difference is observed in the differential cross sections be-
tween the first- and the fifth-order calculations for the po-
sitions and residues, except when the angle is small where
both of the Regge calculations start to deviate from the
partial-wave representation. Table I gives the values of
the pole positions and residues (in the first and fifth order
of the phase-integral approximation) at E =5 eV with the
parameters given in [31]. We notice, in particular, that
these residues are large compared to residues typical in
diffraction scattering [5].

B. The K+ HBr system

0V(r}=4m
r

(3.4)

is considered. As in the previous system, the transformed
dimensionless parameters are (see Ref. [30])

A =kcr, E =E/e, R =r/cr, (3.5)

This system, which has a larger reduced mass and a
weaker long-range attraction compared to the previous
one, has also been studied by Eu [29] and Connor,
Mackay, and Thylwe [30]. In the present paper, only the
real part of the potential, given by

12
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FIG. 1. (a)—(c) Logarithmic plots of the differential cross section I(8) against the scattering angle t9 in the H + Ar system
represented by the potential (3.1) at energies (a) E =15, (b) E =5, and (c) E =3 eV. The solid curve represents the partial-wave re-
sults, the broken curve represents the fifth-order, and the dotted curve represents the first-order phase-integral calculations. It is seen
that the plots coincide except at small scattering angles. The insets are magnifications in the plots I(0) vs 9 to reveal the differences
between the partial-wave and the fifth- and first-order phase-integral results for small scattering angles. (d) Plot of corresponding
deflection functions e(l) against the r=al variable l, where the dotted curve represents the deflection function corresponding to the
energy E = 15, broken curve to E =5, and solid curve to E = 3 eV.

TABLE I. Positions and residues for the potential (3.1) calculated by the first- and fifth-order phase-
integral approximation at F. = 5 eV for the parameter values given in [31],
@=6.97235 X 10 ' /1. 60219 X 10 " eV, r;„(denoted by r in [31]) =1.3123 A, and
@=1.63178X10 '/1. 66057X10 ' u. The truncated numerical entries in l and r correspond to the
first-order calculations while the quantities just below them are of the fith order.

10

20

24

Rel

97.4984
97.496 528 74
96.7054
96.703 582 45
93.7098
93.708 161 18
90.5619
90.560 376 21
88.2959
88.294 614 93
86.9784
86.977 289 80
86.5473
86.546 353 99

Iml„,

12.3961
12.396 371 67
14.0227
14.022 984 00
20.8748
20.875 320 67
30.1100
30.110637 42
39.8219
39.822 660 73
49.6679
49.668 728 74
57.4415
57.442 338 13

Rer

3.503 x 10'
3.456203 692 7 x 10'

—2.3020 X 10
—2.298 955 871 4X 10

1.228 X 10"
1.223 9917907x 10"
7 444 ~' 10~

7.485 185 481 2 X 10'
8.844 X 10"
8.741 624 769 3 X 10"
3.487 X 10'
3.454 719033 1 X 10'"

--9.23 X 10
—8.220114657 2 x 10'

—1.4110x 10'
—1.4149509717x 10"

1.749 X 10
1.760 141 387 5 X 10

—1.264 X 10'
—1.269 1188199 x10"-

1.2686 x 10"
1.265 789 108 9 X 10"

—3.222 279 X 10'
—3.222 178 159 8 X 10'
—1.1210X 10"
—1.1204841994 x 10"

4.8048 x10'
4.798 208 4101x 10'
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and the corresponding base function is IV. DISCUSSION OF RESULTS

Q (R)=A —4
A 1 1

g» g6
(I + —,

' )~

R

Figure 2 shows the plots of the cross sections for energies
of 0.3, 0.1, and 0.035 eV as well as the deflection func-
tions corresponding to these energies. The slowly vary-
ing rainbow pattern is similar to that in Fig. 1 in this
more massive system, but the fast oscillations clearly in-
dicate that the real parts of the Regge poles are large be-
cause of the reduced mass. Again we see that the first-
and the fifth-order results are in close agreement except
at small scattering angles, where both Regge calculations
start to deviate from the partial-wave results. The angu-
lar width of the deviation is considerably smaller, howev-
er, in this case. Pole positions and residues at E =0.1 eV
are calculated and given in Table II. We observe in Table
II that the largest residues are about five orders-of-
magnitude smaller than in Table I.

We have already shown in a previous paper that
without the use of the residue formula due to Froman
and Froman [12] the semiclassical calculations of the

Regge differential cross sections would fail completely to
describe the rainbow oscillations, while this formula in

the first-order approximation provides an important
means for accurate calculation of the rainbow differential
cross section. In the present investigation we find that
the much more accurate higher-order phase-integral resi-
dues (cf. Ref. [14])do not further improve the differential
cross sections to the extent that we had expected. The
higher-order phase-integral calculations simply do not re-
veal further supernumerary rainbow features in the
differential cross sections.

To explain the results we first study Tables III and IV
which illustrate the contribution of individual Regge
poles in the pole sum. In Table III the first- and fifth-
order individual terms and some of their partial sums at
two different angles, 8=22 and 32' are given. It is im-
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FIG. 2. Same as Fig. 1 but in the K + HBr system represented by the potential (3.4) at energies (a) E =0.3, (b) E =0.1, and (c)
E =0.035 eV. Figure 2(d) shows the plot of the deflection functions with dotted curve corresponding to E =0.3, broken curve to
E =0.1, and solid curve to E =0.035 eV.
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TABLE II. Positions and residues for the potential (3.4) calculated by the first- and fifth-order
phase-integral approximation at F. =0. 1 eV corresponding to the parameter values given in [31],
a=4.0X 10 '/1. 60219 X 10 " eV, a (denoted by r in [31]) =4.0 A, and @=4.377
X 10 /1. 66057 X 10 u. The truncated numerical entries in I and r correspond to the first-order
calculations while the quantities just below them are of the fifth order.

0.

10

15

20

24

Rel

186.3363
186.332 980 95
185.4888
185.485 522 68
182.6329
182.630004 24
180.4288
180.426 19104
179.7828
179.780 518 61
180.5087
180.506 706 51

181.8683
181.866 504 75

Iml, „

19.1346
19.135064 03
21.8672
21.867 777 87
33.2037
33.204 539 28
47.9405
47.941 626 05
62.7654
62.766 741 94
77.2048
77.206 243 92
88.2764
88.277 872 69

Rer

—1.7870 X 10
—1.792 365 6621X10'

1.208 X 10'
1.216 556 609 2 X 10'

—3.087 X 10'
—3.124059008 0 X 10"
—4.19X 10'
—4.035 379 151 2 X 10
—4.985 X 10
—4.944 687 398 9 X 10

5.312 X 10'
5.264090 508 9 X 10'

—4.37109X 10'
—4.370 602 182 7 X 10'

Imr

—4.597 X 10'
—4.522 211 014 9 X 10'

1.5336 X 10'
1.530 134678 3 X 10'

-8.1483 X 10'
—8.136732 1186X 10'

3.7644 X 10'
3.763 057 395 1X 10'
1.00853 X 10'
1.008 641 521 3 X 10'

—1.4707 X 10'
—1.469 248 873 9 X 10'
—4.304 X 10-'

—4.285 758 489 3 X 10

mediately clear that individual contributions are very
large, becoming larger at smaller scattering angles, so
that strong cancellations have to be mastered in the
correct calculation of the pole sum, which is several or-
ders of magnitude smaller than the individual terms.
Considering now that terms in the pole sum correspond-
ing to the first-order phase-integral approximation are ac-
curate to about one percent, one would expect that the
inaccuracy of the pole sum would be much longer than
the correct value of the pole sum. However, in various
test calculations, we find that the trailing decimals,
which, in a sense, are not correct, cannot be simply
neglected. They obviously play a significant role in the
cancellation. In our scattering calculations all the root
searching routines and quadratures are computed with a
tolerance of 10 ' . If this precision is not set, then our
calculations of Regge-pole cross sections would start to

diverge from the partial-wave results at larger scattering
angles.

Table III also shows that the number of terms in the
pole sum must be larger the smaller the scattering angle
needed in the calculations. To make the pole sum con-
verge to the partial-wave value at 0(22 we would have
to include more pole contributions.

Similarly, in Table IV we show the first- and fifth-order
individual terms and some of their partial sums at 0=7
and 10. Individual terms in the pole sum are large also in

this case, but the scattering angles are much smaller here.
The Regge calculations cover a larger angular range of
the differential cross section because the residues of the K
+ HBr scattering are smaller than those in our H+ +Ar
scattering.

We shall not attempt to explain, in this paper, how the
trailing decimals can be relevant for the description of

TABLE III. Partial sums of the pole amplitude (2.11) for which fp™=" l(g) =f~(6), where m is the

highest pole number included in the calculation of the cross sections for the potential given in {3.1) at
0=22' and 32'. While the truncated numerical entries are calculated with the first-order phase-integral
approximations, the quantities just below them are those with the fifth order.

m Refp '(22')

0 —5.462 X 10"
—5.511 512 954 5 X 10

2 1.30 X 10
1.351 903 7204 X 10

5 2.1187X 10'
2.118021 3260 X 10'

10 7.7978 X 10
7.811 396 813 5 X 10'

15 —5.3271 X 10'
—5.331 991 529 5 X 10'

20 —5.64539 X 10-'

—5.646072 715 4X 10
25 24

1.731 735 5940

Imfp' '(22')

—8.9173X 10'
—8.908 192 393 3 X 10

1.0055 X 10
1.006 368 459 5 X 10

—4.505 X 10
—4.600 621 658 5 X 10

4.278 X 10'
4.245 953 998 0 X 10

—3.128 X 10'
—3.106 127 563 7 X 10'

—91.9
—89.869 720 24

3.24
3.461 061 482 5

Refp' '(32')

—7.5669 X 10'
—7.547 3111991X10'

6.4040 X 10
6.397 938 951 6 X 10'

—4.501 X 10
—4.518 548 827 3 X 10'
—2.944 X 10
—2.954 790 932 5 X 10'

4.5757 X 10
4.577 196021 2 X 10

—2.8429
—2.840 859 447 3
—2.9216
—2.919439 119 1

Imf p™(32')

6.695 X 10
6.743 302 270 8 X 10

—3.065 X 10'
—3.099 947 262 1 X 10'
—3.343 X 10
—3.323 5960490X 10
—2.931 X 10'
—2.916 802 813 OX 10'

1.946 X 10
1.926940924 3 X 10'

—0.904
—0.890045 3192
—0.888
—0.873 092 5704
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TABLE IV. Partial sums of the pole amplitude (2.11) for which f~ "'(8)=fp(0), where m is the highest pole number included

in the calculation of the cross sections for the potential given in (3.4) at 6=7 and 10'. While the truncated numerical entries are cal-

culated with the first-order phase-integral approximations, the quantities just below them are those with the fifth order.

10

15

20

25

Ref] '(7 )

4.633 X 10'
4.649 120 322 3 X 10

—1.833 X 10
—1 ~ 849 399489 8 X 10
—2.2890 X 10
—2.293 939 549 3 X10'

2.1905X 10'
2.196683265 5 X 10'
7.075 X 10'
7.122 301 9159 X 10

—37.1
—35.966 676 71
—25
—23.482 964 58

Imfp™(7')

1.705 X10'
1.684 349 002 3 X 10

—2.7744 X 10
—2.768 798453 4X 10
—8.822 X 10
—8.715 865 332 3 X 10

1.933X10'
1.922094 629 3 X 10
1.6576X 10'
1.652434 531 7 X 10

—42.0
—41.433 364 27

6.43
6.857 898 076 2

Refp™(10')

—1 ~ 151X 10
—1.158085 247 0 X 10

2.251 X 10
2.297070717 8 X10'
3.209 X 10'
3.220 931 602 OX 10

—1.350X 10'
—1.3549869615X10'
—1.907 X 10'
—1.924 191278 1 X 10
—6.642
—6.790 767 924 8
—6.760
—6.910203 900 9

Imf' '(10 )

—9.905 X 10'
—9.860992 302 9 X 10

8.36605 X10'
8.365 036 282 5 X 10'
2.165 X 10'
2.149 540113OX 10'

—1.486 X 10'
—1.478 9314840X 10'
—5.0901 X 10
—5.075 823 277 6X 10

9.255
9.122 996002 0
8.567
8.436 920 056 2

the overall rainbow scattering phenomenon. The ex-
planation, as we see it, must be closely related to the ana-
lytic form of the underlying S-matrix formula, which is
similar in different orders of approximation.

V. CONCLUSION

The pole positions and associated residues, calculated
in the first and fifth orders of the phase-integral tech-
nique, have been used to compute the scattering cross
sections for two, atomic and molecular, scattering sys-
tems. As shown in Ref. [13] the new phase-integral for-
mula (for Regge-pole residues) which allows the relevant
transition zeros of the base function to lie arbitrarily
close to each other, while other zeros or poles are as-
sumed to be sufficiently far away from this cluster, makes
a dramatic irnprovernent in the calculation of the cross
sections.

The calculations in Ref. [13] were based on the first-
order phase-integral approximations. From the present
investigation we conclude that with higher-order phase-
integral approximations, no further rainbow oscillations
are revealed. On the other hand, one can expect that the
higher-order phase-integral calculations of Regge-pole
positions and residues do provide numerically more accu-
rate values for the differential cross section than the first-
order ones for scattering angles where they converge to
the partial-wave result, but the improvement is not large
enough to show up in the plots.

We would like to emphasize that if the first-order cal-
culations based on the Froman-Froman formulas are to
be carried out, sufficiently accurate evaluation of the
poles and residues is important. The trailing terms in the
positions and residues, which would seem to be unreli-
able, are also important and prove to contain (inherently}
some physical information.

A consequence of our subtle result on "trailing figures"
is the following: Let us say that we have a numerical
method that is reliable and we choose a tolerance corre-

sponding to six significant figures in the residues. These
residues are far better than the first-order phase-integral
residues even if the first-order residues are calculated in
double precision and are very accurate first-order results.

Now we like to compare the corresponding differential
cross sections and discover, to our surprise, that the
first-order phase-integral cross section reveals much more
of rainbow oscillations than the one with quantum nu-
merical residues. Before the quantum numerical cross
section diverges (i.e., before the scattering angle becomes
too small) it is more accurate than the first-order phase-
integral cross section (although one cannot see it in the
graph), but when it finally diverges the pole sum cancella-
tions require numerical figures beyond the first six posi-
tions. These trailing figures are random in the numerical
quantum residues (that is the reason for the "diver-
gence") but they are not random in the first-order phase-
integral residues.

We conclude that the trailing figures in the first-order
phase integral residues are important for the success of
the corresponding differential cross section. Somehow
the trailing figures in the terms of the pole sum are "syn-
chronized" in such a way that cancellations are success-
ful.

Finally, we would also like to hint that, with the in-
clusion of more terms in the pole sum, together with a
suitable increase in the precision of the calculations, one
could get better accuracy towards small scattering angles,
if the correct residue formula is used.
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