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We investigate analytically multipole and retardation eKects on Rayleigh scattering of photons
from the ground state of a hydrogenic atom. Our approach, which goes beyond the usual form-
factor approximation, simplifies the full nonrelativistic point-Coulombic amplitude considerably.
We are able to express this simplified full multipole, fully retarded result as simple corrections to
the nonrelativistic dipole amplitude. We demonstrate that these corrections are important, and
larger than relativistic eKects, for photon energies near the K-shell photoionization threshold. They
are essential for accurately determining the angular distribution of scattered photons in this regime.
We present numerical comparisons with relativistic S-matrix calculations that confirm the validity
of our approach in this region for elements of low to moderate nuclear charge. For photon energies
well above the K-shell threshold we show that retardation corrections are adequately given by the
form factor, which has a greater variation with angles than the anomalous scattering factors. For
still higher energies, we demonstrate that the full nonrelativistic result fails due to spurious poles
in the imaginary part of the amplitude.

PACS number(s): 32.80.Cy

I. INTRODUCTION

We seek to elucidate the nature of higher multipole and
retardation contributions in Rayleigh scattering, study-
ing the case of scattering from the K-shell electron of
a hydrogenic system. By retardation contributions we

mean the evaluation of multipoles beyond their long-
wavelength limit. We evaluate these contributions si-

multaneously for all multipoles, for Axed orders in ko.Z
(where k is the photon energy divided by the nonrela-
tivistic ground state binding energy). The approach that
we use is nonrelativistic and follows logically from earlier
work of Gavrila [1] and Gavrila and Costescu [2]. Making
the dipole approximation to the point-Coulombic nonrel-
ativistic Kramers-Heisenberg-Wailer (KHW) matrix ele-

ment, Gavrila derived an expression and presented results
for the scattering &om the ground state of a hydrogenic
atom in terms of the Gauss hypergeometric function [1].
Gavrila and Costescu subsequently extended this result
by including retardation and all multipoles, deriving a
matrix element expressed in terms of Appell functions
[2]. The resulting expressions were not evaluated numer-

ically because relativistic corrections were expected to be
of the same order as the higher multipole and retarda-
tion contributions. In fact we show that multipole and
retardation contributions are more important than rela-
tivistic effects for photon energies above the photoioniza-
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tion threshold, but in a nonrelativistic domain, particu-
larly for the determination of the angular distribution.
The present work is based on the results of Gavrila and
Costescu [2]. As the formalism is purely nonrelativistic,
efFects arising from relativity such as spin flip are not con-
sidered. Furthermore, we make use of a series expansion
which limits the validity of our results to photon ener-

gies and angles k sin 2
& &. The highest energies are

therefore restricted by the condition k ( (2/aZ) when

all angles are to be considered; higher energies can be
discussed for forward scattering. We particularly wish to
study the importance of higher multipole and retardation
corrections in obtaining the shape of the angular distribu-
tion, as the nonretarded dipole result exhibits symmetry
about 90' not found in the full result.

Fully relativistic numerical second-order S-matrix cal-
culations of Rayleigh scattering have been reported by
several authors [3—5]. These calculations include higher
multipoles as well as retardation and relativistic contri-
butions. However, the relative contributions of these cor-
rections are not given explicitly in such an approach.
Using the code of Kissel et aL [5], Roy and Pratt [6]
examined the validity of the nonrelativistic and relativis-
tic dipole treatments (their relativistic dipole results in-

cluded retardation whereas their nonrelativistic results
did not) for forward scattering and determined that a
dipole treatment is useful below threshold and very near
but above threshold. They found that a relativistic ap-
proach is necessary primarily for elements of high nuclear
charge and that, for these high-Z elements, relativistic
corrections can be roughly included by shifting the non-

relativistic energy levels (i.e. , defining k as the ratio of
the photon energy to the relativistic ground state en-
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ergy). At higher energies, both the relativistic dipole and
the nonrelativistic dipole treatments fail, even for for-

ward scattering. Florescu et al. [7] investigated in more
detail the importance of relativistic corrections to the
dipole approximation below threshold, deriving a rela-
tivistic dipole approximation which retained all pq/2 and

p3/2 intermediate states in the propagator. Their results
confirm that relativistic effects are indeed important be-
low threshold. These conclusions may be roughly under-
stood for low photon energies in terms of (i) the param-

Z 2

eters ", = ( 2) k and (ii) (nZ), which characterize
the magnitude of relativistic corrections, and by the pa-

rameter 4, which, as we show subsequently, may(aaz)

be used to characterize the magnitude of higher multi-

pole and retardation effects for given scattering angle.
At k = 2 all these parameters are the same, while for
k ) 2 (( 2) multipole and retardation (relativistic) pa-
rameters are larger. In Fig. 1, retardation corrections are
larger than relativistic corrections in the region below the
solid curve. The parameters that characterize relativis-
tic effects are smaller than the parameter which char-
acterizes higher multipole contributions and retardation
corrections for photon energies above twice the K-shell
threshold, though both grow with energy (and so a non-

relativistic approach cannot be used once the relativistic
parameters are large). Relativistic corrections are sig-
nificant for photon energies (nuclear charge) larger than
those given by the vertical (horizontal) dashed lines. As
will be discussed, our results are valid for all angles in
the region where the retardation parameter is less than
unity. This criterion is given by the lowest dotted curve.
The other dotted curves correspond to the largest value
of the retardation parameter considered in the numerical
examples that we present and to a very small value of
this parameter, where the dipole approximation should
be valid.

Retardation contributions are expected to become
larger with increasing photon energies. However, we show
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FIG. 1. The retardation parameter is equal to the relativis-
tic parameters on the solid curve and larger below it. The
vertical (horizontal) dashed line represents the photon energy
(nuclear charge) where the relativistic parameter equals 0.2.
The dotted curves represent the retardation parameter for
values of (clockwise from top) 0.05, 0.4, and 1.0.

that much of the retardation is given by the form factor
for energies well above threshold. At still higher energies
contributions &om spurious poles [8] near the electron-
positron pair production threshold in the nonrelativistic,
fully retarded amplitude degrade this amplitude (and our
results which are derived &om it). The effects of these
poles are known in photoeffect (which is related to the
imaginary part of the forward Rayleigh scattering ampli-
tude by the optical theorem). The nonrelativistic, non-
retarded dipole approximation to the K-shell photoeffect
due to Stobbe [9] may be written

256'. Pmc ) e 4v arctan-
(Jph = 0! Z

8 (fuu) 1 —e

where

v=(k —1)

The corresponding result including all multipoles and re-
tardation was obtained by Fischer [10]. It may be written

Oph = 256&2 f' mc2 ) e
—2v&

3 (~) 1 —e—2"
1

1 —
2 g +0! Z

(1 2)

where

2(k+ 1) '
y = arctan

2 —k + (knZ/2)

The poles near the pair production threshold in this
nonrelativistic retarded result cause substantial depar-
tures &om the nonretarded dipole result at high ener-
gies, where the nonretarded dipole result is known to
agree with calculations including retardation and relativ-
ity, implying a cancellation of these poles by relativistic
contributions. This observation applies to both screened
and Coulombic calculations of the total photoeffect cross
section [11]. In contrast with the total photoeffect cross
section, it is necessary to incorporate retardation effects
in the ground state photoelectron angular distribution for
all but the lightest elements down to the photoionization
threshold. The parameter characterizing these correc-
tions to the angular distribution is o.Z in the screened
case and v/c in the point-Coulombic case [12].

We seek to complement analytically the numerical
work of Kissel et al. [5] and of Roy and Pratt [6] in
the region above the photoelectric threshold. We derive
simple analytic formulas which include higher multipoles
and retardation corrections for the elastic scattering of
photons froxn a K-shell electron in a Coulombic field,
starting from the nonrelativistic results of Gavrila and
Costescu [2]. We expect good agreement with the re-
sults of a more exact treatment primarily for elements
of low or moderate nuclear charge, where relativistic ef-
fects on the ground state are less important. The point-
Coulombic approach that we use neglects screening and
is expected to work best for the K shell. (However, very
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near threshold differences between the screened and the
point-Coulombic results may be expected, as in the near
threshold behavior of the K-shell photoionization cross
section. ) The formalism of our approach, our analytic
results, and a discussion of the simple formulas obtained
are presented in Sec. II. In Sec. III a comparison of nu-
merical results obtained from these formulas with those
calculated using the code of Kissel et al. [5] in a point-
Coulombic potential and with results obtained using the
form-factor approach [13] is given. We also compare pho-
toelectric effect cross sections obtained from the imag-
inary part of our forward scattering amplitudes, using
the optical theorem, to the nonrelativistic results given
in Eqs. (1.1) and (1.2) as well as to the full multipole rel-
ativistic point-Coulombic results of Hultberg, Nagel, and
Olsson [14] and to the full multipole relativistic screened
calculations of Scofield [15].

II. FORMALISM

In a purely nonrelativistic formalism, where the elec-
tron is assumed to be a spinless particle, the matrix ele-
ment for the elastic scattering of photons may be written

(&1 ' e2)M + (el ' k2) (e2 ' kl)+ (2.1)

where Fq and F2 are the initial and Anal photon polariza-
tions and A:q and k2 are unit vectors in the directions of
the initial and final photon momenta. M and N are func-
tions of the photon energy, the scattering angle, and the
nuclear charge. Gavrila and Costescu [2] derived non-
relativistic retarded multipole expressions (valid for all
knZ) for M and X of a hydrogenlike system in terms of
two Appell functions I"q.

Q(r. knZ, O) = 512&

(r + 1) + r2(knZ) /4

(k Z) Fg(3 —;3,3;4 —;*y,*2)
X

3 —7

(2 5)

Here xq and x2 are de6ned by

2 2

(r —1)'+ r'(knz) /4

(r+1) +r'(knZ) /4
{2.6)

4r (knZ) sin'
2

(r + 1) + r (knZ) /4

and 0 is the photon scattering angle. One may recog-
nize Eq. (2.3) as the well known hydrogenic form factor
[13]. This means that a generalization of the real and
imaginary anomalous scattering factors, which include
their angular dependence, are determined by the real and
imaginary parts of the amplitudes P and Q.

It is possible to compute numerically the amplitudes P
and Q using Eqs. (2.4) and (2.5). However, in order to
achieve a better understanding of higher multipole con-
tributions and retardation effects in Rayleigh scattering,
we wish to obtain simple formulas which make clear the
energy, angle, and charge dependence of the amplitudes
and how P and Q depend on k and on nZ. Our proce-
dure is to expand the amplitudes P and Q in powers of
o.Z at fixed k, i.e. , at fixed ~. We may do this by first
using series expansions for the angular functions Fq that
occur in the invariant amplitudes P and Q (valid due to
the degeneracy of the second and third parameters in the
Appell functions); one obtains the expansions [2]

M = 0 —P(rg, knZ, O) —P(r2, knZ, O),

X = —[Q(rg, knZ, O) + Q(r2, knZ, O)],

(2 2) P(r; knZ, O) =
(r + 1) + r2(knZ) /4

(knZ) . 2 O
x Q(t + 1) — sin

4 2t=o

,F, (1, —1 —t —r, 3 —t —r; +p)
X

2+k —T

(2.7)

k = 2Ru/(nZ) mc,

where Ru is the photon energy and

0 = 1+ sin (2.3)
(knZ) . , O

sin
4 2

x ) (t + 1)(t + 2)—
t=o

2F~(l, —2 —t —r, 4 —t —r; ~p)
X 3+4 —w

Q(r;knZ, O) = (knZ)

{r+ 1)'+ r'{knZ)'/4 4

P(r, knZ, O) = 1287

(r + 1)
' + r'(kn Z) '/4

Fg(2 —r; 2) 2; 3 —r; x~, x2)X—
2 —7

(2.4)

(2.8)

Here 2' (a, b; c; u) is the Gauss hypergeometric function.
The series of Equations (2.7) and (2.8) converge for any

A: Zangle O when the condition "
4 ( 1 (or Ru ( nZmc )
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is met; note that they are even in (knZ) sin 2.
By comparing Eqs. (2.3) and (2.6)—(2.8) with the

dipole approximation expression of Gavrila [1], one may
see that the dipole approximation is equivalent to setting
o,Z to zero everywhere in the retarded results except in
k or r. In this case 0 and Q become one and zero, re-
spectively, and P becomes

We then apply recursion relationships for the Gauss
hypergeometric function. Keeping all terms of order
(nZ) and (nZ), both above and below the photoelec-
tric threshold, we obtain

M = 1 —Cp (k, o.Z) —
~

+ Cy (k, aZ)
~

sin
f(knZ)', i . , 0

2 ) 2

272
PDA(r) =

(r + 1)'(2 —r)
t (r —1)

X2Fg 1, —1 —~ 3 —~; 2 )
(r + 1) j

(2.9)

$3(knZ)+ (2.io)

which is the nonretarded dipole approximation result ob-
tained by Gavrila [1]. PDA depends only on k (or r),
whereas the full multipole, retarded result depends sep-
arately on k and on nZ.

N = —
~

Dp (k, nZ) + Dz (k, o.Z) sin — ~, (2.11)
2)

where the anomalous terms are given by the C; and D;
as

Cp (k, o!Z) = 1 —(o!Z) +
~

—k + 1
~

(nZ) [PDA (rz) + PDA (r2)])
+k(nZ) 1 ——(o.Z) [PDA (rg) —PDA (r2)] + (aZ) —(nZ),

4
(2.i2)

C, (k, oZ) = ——(nZ)' 1 —2 (k'+ 1) (nZ)' [1 —PDA (rg) —PDA (r2)]
5
k 2 23 2 4——(o.Z) 8 —25(nZ) [PDA (r&) —PDA (r2)] ——k (o.Z),
5 10

(2.i3)

C2 (k, nZ) = (12 (3k +2) [PDA (rz) + PDA (r2)] —59k [PDA (r&) —PDA (r2)] —4 (k + 6)), (2.14)

and, from Eqs. (2.7) and (2.8),

Dp ———Cg/2, Dg ———C2. (2.i5)

The other terms in Eq. (2.10) result Rom expanding the
form factor. As we have used Eqs. (2.7) and (2.8) our
results are valid for all angles only if k & 2/(nZ). Equa-
tions (2.10) —(2.15) are our main results, and we shall
show in Sec. III that they represent well exact numerical
S-matrix data.

We note that the leading retardation corrections in the
anomalous terms are proportional to the sum and diKer-
ence of the nonrelativistic point-Coulombic dipole am-
plitudes PDA, which have been shown by Gavrila [1] to
be signi6cant below the photoefFect threshold and above
the photoelectric threshold to nearly 10 times the non-
relativistic binding energy.

It is interesting to point out how symmetry require-
ments are operating in Rayleigh scattering. The time
reversal invariance of quantum mechanics implies that
the Rayleigh matrix elements and the amplitudes are
unchanged if the photon energy changes sign. In-
deed, rq (—k) = 72 (k) so P(rq (—k) ) = P(r2 (k) ) and
Q(rq (—k) ) = Q(rz (k) ). This means that the sums

P (ry, ko!Z) + P (r2, kl1Z) and Q (r„knZ) + Q (r2, knZ)
are invariant under the transformation k -+ —k.
This also means that P (rq, koZ) —P (r2, kaZ) and

Q (rq, knZ) —Q (r2, knZ) change sign under the same
transformation. Thus all of the coeKcients C; must
be even functions of k. Equations (2.12)—(2.14) show
explicitly that this happens. In fact, the dominant
terms, which are present separately in P (rz, kaZ) and
P (r2, kaZ), cancel when these amplitudes are summed
because they are odd functions of the photon energy.
Such cancellations must involve the dominant dipole and
some of the retardation corrections which are present in
P and in Q, but disappear from the sums of these am-
plitudes.

Finally we note that, at high photon energies (but still
where k & 2/nZ) [1], the sum

16 32 1+ i 32ivr
PDA (rl) + PDA (r2) — + +

PDA (r) and PDA (r ) PDA (r2) behave as —1/k. Thus the
coefBcients C; become independent of k and are smaller
than the corresponding form-factor contributions. This
means the anomalous scattering factors vary less with
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and

PDA (ri) + PDA (72) = ) S (
—2t) k

C=O

(2.16)

energy than the form factor. This explains the use of the
form factor with angle-independent anomalous scattering
factors in the characterization of Rayleigh scattering [16].
Thus, in the nonrelativistic high-energy limit, retardation
corrections are given adequately by the form factor.

As has been stated, our results are valid for any
k & 2/(n Z), so we can use them both above and be-
low the photoelectric threshold. Further simplification is
possible below the first resonance (k & 3/4) where we can
make use of expansions in k of the sum and difFerence of
PDA(rl) aild PDA(T2) So tllat

N = —Dp ——

2
(2.22)

It is worth noting that the main retardation term in
the forward scattering amplitude gives the well known
Langevin diamagnetic susceptibility [18]. Equation
(2.21) shows that, in the low-energy limit, the largest
correction due to retardation and hi~her multipoles for
forward Rayleigh scattering is (knZ) /8, which is small
compared with the dipole contribution 9k /8 and is also
smaller than relativistic corrections [which are s(knZ)
[19]]. While our results are valid for all angles, the cor-
rections to the dipole angular distribution are small in
this low-energy region as the leading corrections to the
dipole angular dependence are of higher order in k.

PDA (7i) —PDA (r2) = k + S(—2t —1) k", (2.17) III. NUMERICAL RESULTS

where S( r) are—the negative order sum rules obtained
by Dalgarno and Kingston [17] for r & 6 and by Gavrila

[1] for 7 & r & 10:

S(o) = S(-1) = 1, S(-2) = 9/8,

S(—3) = 43/32, S(-4) = 319/192, . . . .

k2
Cp(k, (nZ) ) = 1+ —9 —(nZ)

8
k4

319 —61(nZ) + —(nZ)
192 2

+0 k (nZ) (2.18)

Note that the use of Eqs. (2.16) and (2.17) eliminates
the need to calculate hypergeometric functions to obtain
the amplitudes.

To fourth order in k the result in the region below the
resonances is

-I
I
-I I

~JM;g~2 ——c ~e 2A~~ + e ~ c2 A~, (3.1)

where

A~~
——M cos 0 —X sin 0, Ag ——M. (3.2)

For unpolarized incident photons, the differential cross
section for Rayleigh scattering is given by an average over
incident photon polarization and a sum over scattered
photon polarizations:

— """'= —') ) ll;, ;.I' = '
(l&i, l

+ l&il )

For purposes of comparison with the results of Kissel's
S-matrix code [5] we rewrite the KHW matrix element M
in terms of the two complex invariant amplitudes A~~ and
A~, the subscript indicating that, if the photon polariza-
tion is initially parallel or perpendicular to the scattering
plane, it continues to have that, property after scattering.
We have

g, (k, (~Z) ) = — 1+ —k ——(knZ)
(knZ) 5 2 1

4 8 8

+0 k (nZ)

2

(2.19)

k Z
(2.2o)

k2
M == 1 —Cp ————— 9 —(o.Z)

192
319 —61(nZ) + —(nZ)

2
(2.21)

Equation (2.18) was obtained previously, using an inde-
pendent method, in connection with an extensive discus-
sion of electrical, magnetic, and toroidal polarizabilities
[»]

In the case of the K-shell Rayleigh forward scattering
at low energies, the amplitudes are

(3.3)

In Fig. 2 we present results obtained using Eqs. (2.10)—
(2.15) for the scattering of 1.38, 8.04, and 22.1 keV pho-
tons from the K-shell electron of an aluminum ion (un-
less otherwise noted, all quantities in this section are cal-
culated in a point-Coulomb potential). These energies
are 0.6 (below the first resonance), 3.5, and 9.6 times
the K-shell binding energy. We also give the nonrela-
tivistic point-Coulombic dipole results, the nonrelativis-
tic form-factor results, and results obtained using Kissel's
S-matrix code. At the lowest photon energy considered
here, below the photoionization threshold, the S-matrix
results are adequately reproduced both by our calcula-
tions and by the dipole result. This indicates that re-
tardation corrections are unimportant here, as discussed
above. The need for further multipoles and for retarda-
tion corrections is evident in the remaining cases consid-
ered for scattering from aluminum. For photon energies
3.5 and 9.6 times the photoionization threshold the dipole
result is no longer adequate for predicting the whole an-
gular distribution. While most of these multipole and



50 RETARDATION AND MULTIPOLE EFFECTS IN RAYLEIGH. . . 1395

80 ~
80

b
"U

40

"=(a) k = o.6
0 I I I I

100

80

60

40

(b) k = 3.5
Q

I I I I

80

60

40

so =(c) k = 96
0 I I I I I

0 50

I I I I
I I I I

I

f00
I

150

retardation contributions are given by the form factor at
the highest applied energy, the form factor is inadequate
in the near and below threshold cases. As expected rel-
ativistic contributions are not important in any of these
cases. The level of agreement between our approach and
the second-order 8-matrix may be seen in detail in Ta-
bles I and II. DifFerences between the approaches, which
are quite small in general, become larger at higher ener-
gies and also where the amplitudes are small (for example

FIG. 2. Comparison of Rayleigh scattering cross section
from our calculations (small dashed line), the nonrelativistic
dipole result (dots), and the hydrogenic form factor (large
dashed line) [13] with the second-order S-matrix code of
Kissel et al. [5] (solid line) for the K shell of aluminum at
photon energies of (a) 1.38, (b) 8.04, and (c) 22.1 keV.

at 90' in the amplitude Aii). These differences, though
small, reflect the onset of the overestimation of the am-
plitude due to the spurious poles discussed above. We
note that we have also compared our calculations with
screened S-matrix calculations (not given here). While
our results difI'er more &om these screened calculations
than &om point-Coulombic calculations at the same pho-
ton energy, difI'erences to the real part of the scattering
amplitudes remain small (( 5%) and relative difFerences
to the imaginary parts of these amplitudes are nearly
constant.

Figure 3 presents cross sections calculated within the
same approaches as in Fig. 2 for the scattering of 18.0
(k = 0.6), 40.3 (k = 1.3), and 90.5 (k = 3.0) keV photons
from the K-shell electrons of silver (Z=47). Below the
K-shell photoionization threshold, no approximate the-
ory accurately reproduces the S-matrix results, refiecting
the need to include relativistic efI'ects. Above threshold
the S-matrix results are most adequately reproduced by
our retarded results, particularly the asymmetric nature
of the angular distribution. As with scattering from alu-
minum, the form-factor result fails at low energy above
threshold. It reproduces some of the asymmetric nature
of the angular distribution and works best for increasing
photon energies.

These figures have shown that for low and intermedi-
ate Z, and for energies somewhat above the photoelectric
effect threshold, our results [based on Eqs. (2.10)—(2.15)]
are quite reasonable and are particularly useful in un-
derstanding the angular distribution of the scattered ra-
diation. For elements of high nuclear charge there is a
small region above threshold and far from the spurious
poles where our results are valid. However, as discussed
above, in this region and below threshold relativistic cor-

TABLE I. Comparison of the Rayleigh scattering amplitude AII obtained within our approach

(NR) to the relativistic S-matrix results of Kissel et al. [5] (REL) for photons of energies 1.38, 8.04,
and 22.1 keV incident on the K-shell electrons of aluminum.

k

0.6

3.5

9.6

0
30
60
90

120
150
180

0
30
60
90

120
150
180

0
30
60
90

120
150
180

NR
0.949
0.822
0.474

-5.4x10
-0.475
-0.823
-0.950
-1.120
-0.966
-0.550

3.13x10
0.539
0.923
1.061

-1.031
-0.867
-0.463

-3.7x 10
0.389
0.629
0.709

Real
REL

0.944
0.817
0.472

-5.3x 10
-0.473
-0.818
-0.944
-1.113
-0.960
-0.547

3.14x 10
0.537
0.918
1.055

-1.023
-0.861
-0.460

-3.7x 10
0.387
0.625
0.704

0.58
0.59
0.59
1.8

0.58
0.58
0.58
0.56
0.59
0.7
0.3

0.34
0.49
0.52
0.73
0.70
0.65
0.0

0.51
0.22
0.6

NR

0.128
0.110
0.061

-2.46 x 10
-0.064
-0.107
-0.123
0.017
0.014

7.44x 10
-1.0 x 10
-8.5 x 10

-0.013
-0.015

Imaginary
REL

0.125
0.107
0.060

-2.43x 10
-0.063
-0.104
-0.120
0.016
0.013

6.91x 10
-9.4 x 10
-7.8 x 10

-0.012
-0.014

2.0
2.1
2.2
1.2
1.6
2.0
2.1
7.6
7.9
7.7
7.0
8.9
7.3
7.6
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account of some relativistic corrections to the binding
energy. It cannot be expected to work too near to reso-
nance, where the detailed resonant structure may only be
described relativistically (this is because the shift that we

have applied, which is appropriate for the K shell, overes-
timates the shift of the I-shell binding energy). Because
neglected terms are of order k times the highest order
terms retained in our expansion, these terms are negligi-
ble only at low photon energies. This may be seen to be
true for k & 0.4 where our simple formulas are su%cient
to accurately describe the nonrelativistic result which dif-
fers from the relativistic prediction, as expected.

The optical theorem gives the following relationship
between the total photoefkct cross section and the imag-
inary part of the forward Rayleigh amplitude

4vrmc
t, = ———ll A (,0=0)l, (3.4)

FIG. 3. Same as Fig. 2, for the K shell of silver at photon
energies of (a) 18.0, (b) 40.3, and (c) 90.5 keU.

TABLE II. Comparison of the Rayleigh scattering ampli-
tude A~ obtained within our approach (NR) to the relativistic
S-matrix results of Kissel et aL [5] (REL) for photons of ener-

gies 1.38, 8.04, and 22.1 keV incident on the K-shell electrons
of aluminum.

0.6
9 NR

0 0.949
30 0.949
60 0.949
90 0.949

120 0.950
150 0.950
180 0.950

0 -1.120
30 -1.116
60 -1.105
90 -1.090

120 -1.075
150 -1.064
180 -1.061

0 -1.031
30 -1.002
60 -0.932
90 -0.847

120 -0.774
150 -0.726
180 -0.709

Real
REL
0.944
0.944
0.944
0.944
0.944
0.944
0.944

-1.114
-1.110
-1.099
-1.084
-1.069
—1.059
-1.055
-1.023
-0.995
-0.925
-0.841
-0.768
-0.721
-0.704

Imaginary
RELjo NR

0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.56 0.128
0.56 0.127
0.56 0.126
0.55 0 ~ 125
0.54 0.124
0.53 0.123
0.53 0.123
0.73 0.017
0.73 0.017
0.73 0.016
0.7 0.016

0.66 0.015
0.62 0.015
0.6 0.015

0.125
0.125
0.124
0.122
0.121
0.120
0.120
0.016
0.016
0.015
0.015
0.014
0.014
0.014

2.0
2.0
2.0
2.1

2.1
2.1

7.7

7.7

7.7

rections are at least as important as retardation correc-
tions. While we are not primarily interested in this re-
gion, in Table III we present (as a test of our simple
formulas) a comparison between our calculations using
the simple formulas [Eqs. (2.18) and (2.19)], the results
of Florescu et al. [7], and the S-matrix predictions for
forward scattering. Note that we follow the method of
Roy and Pratt [6], using k to denote the ratio of the pho-
ton energy to the relativistic Coulombic K-shell binding
energy in using the nonrelativistic theories. (We give the
nonrelativistic values of k for reference. ) This shift takes

10000 I I I I

l

I I »
l

I I I

()z 13

I I I I

l

I I I I

l

I I I

1000

500

1OO
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I

I
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10080605040 70 90

fi~ (keV)
FIG. 4. Comparison of photoeffect cross section from our

ca}culatious (small dashed line) to screened relativistic re-
sults of Scofield [15] (large dashed line) aud to the relativistic
Coulombic results of Hultberg et aL [14], for the K shell of

(a) aluminum aud (b) silver. Also shown are results obtained
using Eqs. (1.1) and (1.2).

where we have neglected the contributions of bound-
bound transitions to the inelastic photon-atom interac-
tion. In Fig. 4 we compare photoe8'ect cross sections
by inserting the imaginary part of the forward scatter-
ing amplitude given in Eqs. (2.10)—(2.15) into Eq. (3.4)
with the nonrelativistic dipole results of Eq. (1.1), with
the full nonrelativistic results of Eq. (1.2), with the rel-
ativistic Coulombic photoeKect calculations of Hultberg
et al. [14] and with the relativistic screened results of
Scofield [15]. While the calculations of Hultberg et al.
and Scofield are relativistic, we do not expect the re-
gion above the K-shell photoelectric threshold to be a
region where relativistic eKects dominate higher multi-
pole and retardation corrections. For aluminum, agree-
ment between all of the approaches is rather good. The
screened calculations agree reasonably well, confirming
expectations, at least for forward scattering, that screen-
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TABLE III. A comparison between results obtained using our simple formula (NRET), the non-
relativistic dipole approximation (NRDPA), and the relativistic S-matrix result (RMP) for the
forward scattering of photons at energies below threshold from lead (Z=82). Also shown are the
relativistic dipole results of Florescu et aL [7] (RDLWL) and the relativistic dipole result of Roy
and Pratt [6] (RDP) where available.

~keV

0.1
0.5
1.0
5.4

17.4
40.9
59.5

~NR

0.0011
0.0055
0.0109
0.0591
0.1905
0.4469
0.6504

k, )

0.00098
0.0049
0.0098
0.0533
0.1716
0.4021
0.5857

NRD

-0.00245
-0.0265
-0.183
-0.627

RMP

-0.00254
-0.027
-0.187

RDLWL

-0.00254
-0.0275
-0.191
-0.655

RDP

-0.00396
-0.0432
-0.323
-1.537

NRET
-1.05 x 10
-2.62 x 10
-1.05 x 10

-0.00307
-0.0332
-0.215
-0.553

ing efFects are not particularly large for K-shell scatter-
ing away from threshold (as we know for photoeffect at
these energies). The silver results agree fairly well at low
photon energies, but the results computed using our for-
ward Rayleigh amplitudes and Eq. (3.4) are substantially
larger at higher photon energies &om both the relativistic
(screened or Coulombic) calculations. Here the full mul-

tipole nonrelativistic approach with retardation reaches
the limits of its validity due to the spurious poles men-
tioned above. The nonrelativistic, nonretarded dipole
results agree reasonably well with the fully relativistic
results at all energies in this case, implying a cancella-
tion of the poles by relativistic contributions (as will be
demonstrated explicitly in a subsequent paper [8]). We
have calculated, but have not shown, results for lead be-
cause, at this high Z, the spurious poles in the retarded
result cause large discrepancies with the relativistic cal-
culations.

scribed by the dipole approximation. Above the pho-
toelectric threshold, corrections due to including higher
multipoles and retardation start to dominate relativistic
corrections. Here we find that our results are significantly
better than the form factor at low energies. The leading
retardation corrections to the dipole form factor (which
is unity) are of order (keZ2), which is of the order of
our corrections to the remaining terms of the nonrela-
tivistic amplitude (and angular distribution). We accu-
rately predict the asymmetric angular distribution. The
nonrelativistic retarded approach starts to fail at higher
energies, however, where spurious poles in the full non-
relativistic results cause our results to overestimate the
amplitude. As will be discussed in a subsequent paper,
these spurious poles are canceled when relativistic correc-
tions are included. As a result, the formalism presented
here is useful only for energies where the contributions of
these poles are not significant.
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