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Autoionization probabilities of doubly excited atoms with one electron in a large-l Rydberg state are
investigated through first-order perturbation theory in a single-configuration approach. In the frame-

work of the jk-coupling scheme, the formalism takes into account multipoles higher than dipoles in the
electronic interaction and exchange effects. Exchange effects are computed using the Froese method for
Slater integrals and are demonstrated to be significant as long as l & 5. The essential importance of fine-

structure transitions when the outer electron is in a large-l state is emphasized. Comparison with avail-

able experimental data shows that Slater integrals are reliably computed and that fair agreement is gen-

erally obtained for g states, while even strongly autoionizing f states are at least qualitatively represent-
ed. Correlation effects may explain some remaining disagreement with the measured autoionization
widths.

PACS number(s): 32.80.0z, 31.50.+w

I. INTRODUCTION

The study of doubly excited autoionizing atoms and
ions is an active field today both theoretically [1] and ex-
perimentally [2]. During the past decade, particular at-
tention has been devoted to alkaline-earth atoms with an
electron in a large-angular-momentum Rydberg state
[3—9]. The reasons for that are multiple. Such levels ap-
pear as especially stable and therefore fall into the class
of long-lived states in the continuum. They provide an
ideal framework for theoretical computation: since the
two active electrons are spatially separated, an ab initio
treatment seems possible. Besides, a series of recent
works has outlined the importance ofjine structure tr-an

sitions Using el.ectron spectroscopy, Sandner et al. [10]
have shown that the 6p3/2ns»2 (J =1) states of barium,
lying above the 6p&&2 threshold if n &11, autoionize at
60—70% towards this neighboring threshold. Accord-
ingly, Kachru et al. [11] noticed an enhancement of
(6d5/2nd ) J=4 width for n ~26, i.e., above the 6d3/2
ionization limit of Ba+. An analogous statement has
been made for the 7p3/2nd levels of barium by Pruvost
et al. [12]. One may ask whether such behavior also
holds for an outer electron in a large-l state. A clue in
this sense is given by several observations. In barium,
Bente and Hogervorst noticed that the scaled linewidths
of one of the 5d5/2nf J =5 series [13]and of the 6p3/2nh
series [7] dramatically increase when the fine-structure
transition becomes allowed. Lastly, the strong difference
in the autoionizing behavior of 5d»2nc (where nc means
"circular state, " n =I+1) and 5d3/inc observed by
Roussel et al. [14] has been interpreted by considering
the decay channel Sd»2nl ~5d 3/2c, l'. To account
theoretically for such transitions, one has to consider the
quadrupolar term in the electronic interaction. Since this
term is of shorter range than the dipolar one, the usual
approximation consisting in neglecting the wave-

functions overlap is less valid [6]. One has then to con-
sider exchange efFects. From a general point of view, it is
also interesting to provide a quantitative check of the
"long-range" (i.e., without exchange) approximation gen-
erally used in describing large-1 autoionization. As exper-
imental evidence for exchange phenomena in autoioniza-
tion, one may quote the fact that levels labeled in jk cou-
pling with the same momentum k but difFerent total
momentum J may have different widths [15]. The
influence of the multipolar contributions have been
stressed recently both theoretically [16] and experimen-
tally [17]; the effect of quadrupolar electronic interaction
in the presence of static electric and magnetic fields has
been analyzed recently by Chen et al. [18]. When consid-
ering higher doubly excited states such as the "double
circular" 4f5g states [19], one may suspect that transi-
tions of high multipolarity, for instance to the 7s limit,
contribute significantly to the autoionization process.

In Sec. II of the present paper, we outline the basic for-
malism for the large-l autoionization process in alkaline-
earth atoms including exchange in the jk-coupling frame-
work. Section III is devoted to the numerical method for
deriving Slater integrals involved in the autoionization
probability. In Sec. IV we apply the formalism to the au-
toionization processes of large-/ Rydberg states in barium
or strontium and compare our results with some available
experimental data in Sec. V. Concluding remarks are
given in the last section.

II. AUTOIONIZATION FORMALISM
FOR LARGE-l RYDBERG STATES

The basic formalism for the autoionization process of
alkaline-earth atoms in large-l Rydberg states has been
developed in several papers [5,6,20]. We outline here the
improvements with respect to previous theories, putting
emphasis on exchange effects, quadrupolar transitions,
and spin-dependent effects.
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We consider an atom with two active electrons. The
outer electron is termed the Eydberg electron and its
coordinates are referred through index 1. The inner elec-
tron is termed the ualence electron and its coordinates are
referred through index 2. One assumes that the outer
electron weakly penetrates the valence orbit. The
influence of the other electrons, referred to as core elec-
trons, has been considered in a previous paper [5]. In the
single-configuration description of autoionization adopt-
ed here, the Rydberg electron evolves from a bound hy-
drogenic state (n, l&) to a continuum state (sl ) while the
valence electron falls from the excited ionic state (nzlzj~ }

to a lower state (nplpj p) D.ue to its small overlap with
the core and the valence-electron orbit, the Rydberg elec-
tron may be described by Coulomb wave functions. Since
this electron is assumed to be in a large-l state, its veloci-

ty is low and all relativistic effects concerning it may be
ignored. Conversely, the valence-electron wave function,
though still described in a monoelectronic formalism, ac-
counts for core-polarization and core-penetration effects
[21]; the singly ionized spectrum is represented as accu-
rately as possible. As apparent from the above-
mentioned quantum numbers, relativistic effects for this
electron, i.e., spin, are included (e.g., spin-orbit splitting
is 1700 cm ' for the 6p state of Ba+).

For the slow electrons considered here, the relativistic
terms (Breit Hamiltonian) in the electronic interaction
are quite negligible and the autoionization originates only
in the I lr, z term. Asymptotically, the Rydberg electron
is subject to a potential —(Z —I)/r& (Z, net charge of
the core, is 2 for alkaline-earth atoms, but isoelectronic
sequences may also be considered through the present
formalism}. As in scattering theory, the additional in-
teraction seen in the reaction zone is 1/r&& —1/r, . The
Hamiltonian for two-electron atoms is written as (atomic
units are used throughout)

but the influence of the core polarized by the valence
electron can also be accounted for [5].

Special attention has to be paid to the coupling scheme
of angular momenta. This problem for one highly excited
electron has been discussed by several authors
[3,5,7,8, 15]. The valence electron strongly interacts with
the core; hence the spin-orbit effect for this electron dom-
inates all other interactions considered here. Conversely,
the electronic repulsion 1/r, 2 is generally stronger than
spin-orbit effects for the Rydberg electron. Thus the best
order in coupling angular momenta is the jk (or jl) cou-
pling defined as {[(l~s~)jul, ]ks, ]J [22]. Though the
above description is not symmetric in the electron ex-
change, it can be shown [23] that perturbation theory can
be applied in agreement with the Pauli principle, at least
up to first order. The properly symmetrized wave func-
tion for the initial state is

I+; & =2 '"[Iq;(1,2) &
—

I q;(2, 1) & ], (2.2a)

where the unsymmetrized wave function for electrons
(p, q) is

/p, (p q))=l([q:n, l,j„p:n,l, ]k,p:s, )JM) . (2.2b)

One assumes here, in agreement with the large-l hy-
pothesis, that l

&
Wlz, so that

I
(I/; ) is properly normalized.

The final state is

(2.3a)

with

(pf (p, q) ) = I( [q:nplpjp, p:cl ]k',p:s, )J'M' ) . (2.3b)

The autoionization probability will be derived from
Fermi's golden rule. One has

(2.4a)

H=H0+ V, (2.1a)
where the direct amplitude is

2 2
P1 P2

0
Z Z —1

(2.1b) 1A ~
= (qf(1,2) ——q;(1,2)

1
(2.4b)

1 1V=
"12

In practically cases, the potential acting on electron 2 is
not Z/r~, as in (2.1b), but some more complex function
describing the interaction with a nucleus surrounded by a
closed-shell core; the details of this potential are not
needed, provided one can get accurate enough eigenfunc-
tions for this Hamiltonian; this point has been discussed
in a previous paper [21]. Conversely, for the external
electron the potential is indeed assumed to be (Z —1)Ir, ,

and the exchange amplitude is

(2.4c)

The total angular momentum (J,M) is conserved
while, if exchange is included, the intermediate moment k
may not be constant, at variance with the previous theory
[5]. After recoupling of angular momenta, one gets for
the direct amplitude in the jk scheme

l t l, l0 t

0 0 0 0 0

l2 l

0 j2

0

jo j2

t l2

jo

X (nplpJp ElIr' /r'+' 5 p/r] Inplpjp, n)l) ) (2.5)
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with the notation

[a,b, ... ]=(2a + 1)(2b +1)... .

The exchange amplitude is written as

~jj ~MM g & «, ~oipio~r' /&'+' ~+zizjz &iii & U
f&0

with the angular part

(2.6)

(2.7a)

U= [I,li, lii, lz,j ii,j z, k, k']' j
1 t lz 1ii t 1 i

OOO OOO'

1

2 1z 1

1, Ii)

Jo
1

2

(2.7b}

The last symbol of the angular factor is a 12j symbol of
the second kind [24]. Details about its computation are
given in the Appendix.

III. NUMERICAL METHOD

with

t

y'"(ri)=ri f drzrzR, &(rz), , R„ i 1 (rz) . (3.1b)

This function can be rewritten as

y'"(r )=(2t+1) f dr z'"(r )r'+' r'+
ll

where the auxiliary function z'" is given by

z'"(r, )= drzrzR, &(rz)(rzlr, )'R„ i,,(rz) . (3.3)

The numerical method for exchange integrals consists
of 6ve steps.

(i) The calculation of the bound radial wave functions
of the parent ion R„ i

. (r) taking into account core polar-

ization; this step is performed by inward integration of
the Schrodinger radial equation using spectroscopic ener-

gies and tabulated core size and polarizabilities [26] as
developed in a previous paper [21]; core penetration can
be estimated using an extrapolated form of the wave

As developed in the preceding section, autoionization
amplitudes involve angular factors and radial elements in
the form of Slater integrals. The formulas for angular
factors are developed in the Appendix. The method for
computing Slater integrals is basically the one developed
by Froese and other authors [25]. The present implemen-
tation of it allows one to account for core penetration and
core polarization by the inner (or valence) electron be-

cause its wave function is a numerically derived wave
function for the parent ion, describing as well as possible
the interaction between core and valence electrons. The
corresponding effects due to the Rydberg electron are al-

rnost negligible.
For the exchange integral, one writes

&, sl, it plpj p I»', /r', +' liizlzj„n, 1, &

r)r)R„ I ~ r) y rt R„ I r), 3 1a

y'"(r i ) = ( s1
~

r'~ nz 1zjz & /r ', if r i )r~ (3.4}

since the above matrix element is constant and factors
out in the integral.

The direct autoionization amphtude was computed up
to now using the nonpenetration approximation where
r'& /r'&+' is replaced by rz/ri+' This appr. oximation,
together with discarding the exchange amplitude, is
called hereafter the long-range approximation. Here we

try to account for penetration and the long-range approx-

function [21].
(ii) The calculation of the continuum wave function

R,&. here the most numerically efficient method is also
integration of the radial Schrodinger equation, which is
stable when performed outwards because there is no clas-
sically forbidden outer region; normalization of this nu
merical function is done at the classical inner turning
point where the analytic formulas developed by Seaton
for the regular Coulomb wave function [27] are used to-
gether with a recursion relation on the 1 quantum num-

ber; the use of recursion relations may be necessary when
Seaton's method is not accurate enough, i.e., when the
turning point r (roughly proportional to lz) is too large.

(iii) The calculation of the integral giving auxiliary
function z

(iv) The calculation of the bound Coulomb wave func-
tion R I, since the outer-electron wave function is as-

sumed to be hydrogenic, this function is ef5ciently com-
puted using the 1 downward recursion relation and ana-
lytic formulas to initiate it.

(v) The calculation of the y'" function using the in-
tegral representation (3.2) and finally the calculation of
the Slater integral using formula (3.1).

As in our previous work, radial integration is per-
formed on a logarithmic mesh with an integration step
usually taken as 10 . Since the valence-electron wave
function has a small radial extension (assuming a low ex-
citation nzlzjz), the integration of z'"(r, ) is performed
on a domain small compared to the Rydberg wave-
function extension. Assuming that the valence wave
function cancels for r, greater than a certain rsvp (a little
larger than 2nz), beyond rM the function r', +'z'"(r, ) is

constant and, accordingly, the expression for y'" is also
very simple,
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imation can be tested. To perform the integration, one
decomposes the auxiliary function z'" in an asymptotic
part and a "short-range" part

rl
z'"(r, )= dr2r2R„ i i (r2)(r2/r&)'R„ I z ("2)

0 "o ohio

=
& npioj oIr'In212j2 & r i

—g'"(ri ),
(3.5a)

(3.5b)

where (nolojo~r'~nzlzjz& is a one-electron matrix ele-

ment and g'" is the integral of the same functions as in
z'" but taken from r, to infinity. The interest of this
decomposition is that the short-range part g'"(r, ) is zero

for r, greater than the (usually small) spatial extension rM

of the valence electron wave functions nolojo and n2l2j2.
Without this decomposition one should have integrated
(3.1) on a much larger interval, of the size of the Rydberg
wave-function extension. Then one can exhibit in the
direct Slater integral a factored contribution (up to now
the only one considered) and an "exchange-type" contri-
bution, as was done previously by Nikitin and Ostrovsky
[20]. Namely, introducing the decomposition (3.5b) in
the corresponding y'" function, one gets the direct Slater
integral

(eI npipjp lr', /r'+'
n, l„n 2lz jp &

= &nploj p~r In2l2j 2 && El ~r
' 'In &I& &

—(2t + 1) f dr, rI+ R,I(r, )R„ I (rl ) f dr', g'"(rI ) r &'+ (3.6)

In the integral over r„the effective lower bound is a frac-

tion of l, since closer to the origin the Rydberg wave

functions are negligible, and the effective upper bound is

the ualence wave-function extension r~ since beyond r~
the short-range wave function g'" vanishes. So the
second contribution to the direct integral involves (as is

the case for the exchange integral) the overlap region be-

tween inner and outer wave functions, assumed to be
small.

The comparison between the long-range part of the
direct integral [first term of (3.6)] and either the exchange
integral or the short-range part of the direct integral (3.6)

defines numerically the validity of the long-range approx-
imation. Some numerical values are given below.

The present method has been tested in various numeri-
cal cases. First, it can work properly even if the Rydberg
final state is in the discrete spectrum instead of the con-
tinuum. Some numerical values listed by Butler, Min-
chin, and Wybourne [28] have been checked successfully.
In the much more physically complex barium atom, the
exchange integral G' '(6p, 15f) is computed to be
1.687X10 atomic units (a.u. ) or 37.03 cm ' for the
6p&/2 parent level and 1.838X10 a.u. or 40.33 crn
for the 6p3/p level [according to the definition by Slater

TABLE I. Slater integrals for the (6p3/224g) autoionization widths in barium. The integrals in-

volved in the computation of the autoionization width of 6p, i,24g[k]J states of barium are listed with

respect to the final ionic state (threshold), angular l momentum of the ejected electron, and multipolari-

ty order t. The direct integrals are the sum of the long-range part —where r' /r'&+' is replaced by
r2/r1+ ' —and the short-range part.

Exchange integrals

Threshold l t Total

Direct integrals

Long range Short range

6$1/2

5d 3/2

5d 5/2

6P I /2

3 4
5 4
1 2
3 2
3 4
5 4

6
7 6
1 2
3 2
3 4
5 4
5 6
7 6
2 3
4 3
4 5

6 5

3.248 x
1.600x

—1.399x
2.941 x
1.981 x
7.164x
5.292 x
6.891 x

—1.445 x
3.048 x
2.052 X
7.173x
5.298 x
6.650 x
6.110x
3.356x
2.400 x
1.359x

10
1O-4
1O-4
1O-4

10
10 5

io--'
1O-'
1O-4
1O-4
1O-4

1O '
1O-'
1O-'
1O-4
1O-4
1O-4
1O-'

3 1

5 1

3 1

5 1

1 3

3 3
5 3
7 3
3 1

5 1

1 3
3 3
5 3

7 3
2 2
4 2
6 2

1.020 x
1.553 x
1.196x
1.273 x

—4.466 X
2.417x
4.287 X
2.421 x
1.295 x
1.348 x

—4.822 X
2.560 x
4.423 X
2.410x

—3.907 x
2.647 x
3.355 X

1O-4

10
1O-4

10
10
10-'
&o-4
1O-'
1O-4

10
10
1O 4

1O 4

1O-'
1O-4

10
1O-'

2.159x 10
1.578 X 10
1.795 x10-'
1.283 x 10
2.600 X 10
4.260 X 10
4.561 x 10
2.441 x 10-'
1.910x 10-'
1.358 X 10
2.623 X 10
4.450 x 10
4.696 x 10-'
2.430 X 10
1.072 X 10
2.738 X 10
3.384x10 '

—1.139x
—2.480 x
—5.992x
—1.008 X
—7.066 X
—1.842 x
—2.748 X
—2.003 x
—6.152x
—1.005 x
—7.445 X
—1.890x
—2.737 X
—1.927 x
—4.979x
—9.045 x
—2.831 x

1O-4
1O-'
10
1O-'
1O-'
1O-4
1O-'
10
1O-'
10
1O-'
1O-'
1O-'
1O-'
1O-4

10 '
1O-'
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or Cowan [22], G'"' is twice the exchange integral (3.1)
for the final state identical to the initial state]. Through a
fine-structure splitting analysis, Abutaleb et |21. [15] ob-
tained 37+2 cm ' in unexpectedly good agreement with
the present determination since the quantum defect of the
nf states, of the order of 0.3, indicates that the Coulomb
description for the outer electron is rather crude.

The Slater integrals involved in the computation of
(6p3/$24g) states of barium are given in Table I. One can
check that the largest values are obtained for the direct
integrals (6si/2eh ~r & /r & ~6p3/z24g ), (5djeh ~r & /
r' 16p3/224g), and (6pi/aegir' / r', 16p3 $/24g). The
dominant contribution among these three transitions will
be determined for each couple of angular mornenta k and
J by their respective angular factors. The transitions to
the 5d threshold are also possible through the octupolar
effect (t =3), but according to Table I the corresponding
Slater integrals are smaller, the same property holding
when angular factors are included. The short-range con-
tribution is negative in all the cases listed and usually
tends to reduce the long-range value. For the highest l
considered, physically the most important, the short-
range term is a small correction; however, for lower I this
term may be bigger than the long-range correction and
thus reverse its sign. If final I is observed, i.e., if angular
distributions are measured, the effect of short-range
terms may be important. As a rule, the exchange radial
integrals for g Rydberg states are smaller than direct in-
tegrals; taking angular factors into account, one also
verifies that exchange efFects are a rather small correction
on the total autoionization width. However, the above
statement about the contribution of the short-range
direct integral to partial autoionization width (or angular
distributions ) also holds concerning exchange terms.

IV. APPLICATION TO ALKALINE-EARTH ATOMS
AND DISCUSSION OF THE RESULTS

A. General trends

The above-discussed formalism has been applied to
barium and strontium atoms for l& values ranging from 3
to 10. The autoionization probabilities of the (6p3/224g)
[k =—,'] J= 5 state of barium towards the different chan-

nels are detailed in Table II, where the results in the
long-range approximation are also displayed. The dom-
inant decay channel is 5d5/2c. h but 6s»&eh and 6p»2cg
contributions are not negligible; the Sd3/p threshold is
less favored because of angular factors and because the
octupolar term reduces significantly the transition ampli-
tude to 5d3&2ch. One observes that some k-changing
transitions ignored in the long-range approximation are
present due to exchange effects, e.g., transition to 5d5/2f
[k'= —"],but they weakly contribute to the total width.
From this table one concludes that long-range approxi-
mation gives good values for the total width while partial
widths strongly depend on short-range effects.

The total widths of 6p 24l, [k [Jstates of barium for 1,
between 4 and 10 are listed in Table III. As was the case
in the long-range approximation [5,20], one notices a
strong decrease of the autoionization width versus the an-

TABLE II. Partial autoionization widths for the 6p3/224g
[k=9] J=S state of barium (atomic units). In the fourth

column one reads the autoionization probability for a given final
ionic state, ejected-electron momentum I, and final momentum
k'.

Threshold

6$1/2

5d 3/2

5d 5/2

6P]/2

5

5

Total
3

5

5

7

Total
3

5

7

3

5

7

Total
4
6

Total
Total width

9
2
11
2

(6S1/2)
9
2
9
2
11
2
11
2

(5d3/2 )
9
2
9
2
9
2
11
2
11
2
11
2

(5d5/2 )
9
2
11
2

(6P1/2)

Probability

6.088 X 10
7.161x10-"
6.095 X 10
1.702 X 10
8.214X 10
5.232 x 10-"
1.028 x 10
8.389X 10
5.878 x10-'
9.412x 10-'
5.952 x 10-'
1.186x 10-'
1.224X 10
3.483 x10-"
9.650x 10-'
6.149x 10-'
3.461x 10-"
6.149x 10-'
2.273 x 10-'

Probability
(long range)

6.323 X 10

0
6.323 x 10-'
1.108x 10-'
7.697x 10

0
0
8.805 x 10
1.696x 10-'
9.435x10 '
6.063 x 10-'
0
0
0
9.512x 10-'
6.850x 10-'
0
6.850x 10-'
2.357X10 6

B. Dependence versus n1

As is usual for unperturbed Rydberg series, the scaled
autoionization width n I varies smoothly with the ener-

gy
—1/n . This function is plotted in Fig. 1 for

6p3/2ng [k]J states in barium. One notices an abrupt in-
crease of the probability between n =8 and n =9, which

gular momentum I i. For instance, for I i )6 the autoioni-
zation lifetimes exceed 1 ns and are of the same magni-
tude order as or longer than radiative lifetimes. One
less-noticed fact is that, for a given I „such probabilities
are strongly dependent on the angular momentum k,
since the widths range over more than three orders of
magnitude if I, is 10. For example, in this case the com-
puted lifetimes vary from 4.8 ns for k =—", to 8.7 ps for
k= —", . This statement stresses the necessity to define

properly the angular-momentum coupling scheme. The
jk-coupling scheme seems the more appropriate for high
1„however, some departures from it may be observed for
low I, [15]. One also observes that, due to exchange
efFects, the J values corresponding to the same k
(J=k+—,') have slightly difFerent widths for moderate l i

..

up to 10' difference for g states, significantly more for f
states as shown below. However, for ll) 5, it appears
that such effect is quite negligible. Similar information is
provided by the relative variation between "exact" and
long-range calculated widths, which is given in Table IV
for the 6p 241, [k]J states of Ba; this quantity roughly de-
creases by one order of magnitude for each unit of l, .
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TABLE III. Autoionization widths for the 6p, 241, [k]J states in barium (atomic units). When written between two rows {e.g. , for
6p, ~&241, =6 [k = 'z' ] states), the autoionization probability is the same for J ——k —

z and J=k+ —,
' at the table accuracy.

I ——3
1

I

11=4

3.08 x10-"

3.00x 10 "

3.15 X 10-'

4.97X10 ' 6.41 ~10-"

4.99 X 10

6.29 X 10

1.20 X 10

6.36 X 10

2.48 x 10-"

5.06x 10-"

5.67 X 10

I, =—9

3.56X 10- "

1.33 X 10

11 =-10

2.79 X 10

2.94 X 10
1

I, + —,
'

1

1

I, + —',

I, +1
I, +1

I, +2
I, —1

2.95 x 10-'
2.12 X 10

2.27 X 10

3.21X10 "

2.90x10 '
2.37x10 '-

2.29x10 '
2.78X10 "

6.24 X 10

4.53 X 10

4.57 X 10

5.25X10 -'

5.16X 10
— '

4.40 X 10

4.38x10 '

4.74 X 10

8.38X10 "

8.39 X 10

I 11 X10 '

6.03X10 "

5.69 X 10

1.71 X 10

4.99x10 "

6.28x10 '

5.17X10 '

4.00x10-'

2.73 X 10

5.07 X 10

3.68 x10- '"

9.67x10 "

1.29 X 10

3.23 X 10

209xlo "

2.21X10- '"

5.04 X 10

1.64 x10- '-'

9.62 X 10
I, +1 2.92x10-" 4.79x10 '

is due to the opening of the 6p, &z channels. Outside this

region, the autoionization width may be accurately
represented by a two-term formula an +bn ', the
coefficients depending on the various angular momenta.
One also notices that the inhuence of the fine-structure
transition is strongly dependent on the angular momen-
tum k: the medium values k =

—,
' and —,

' are much more

sensitive to the 6p &&2 channel than the extremal ones.

C. Fine-structure effects

The influence of Pne structure tr-ansitions observed in
Fig. 1 is also illustrated by Fig. 2, where the branching
ratio for (6p3&2241, ) [k]Jstates of Ba to the 6p, &2 thresh-
old is plotted as a function of /, . It appears that for

moderate 1, ( (7), the medium k values (k =1,+—,
'

) cor-
respond to the maximum fraction of slow electrons, while
for higher /, the biggest k corresponds to the maximum
percentage of such electrons. This can be understood by
the following argument. The much lower branching ratio
for k =l, —

—,
' may be attributed to angular factors and

selection rules for quadrupolar transitions. Indeed, the
6p3, 2n, 1, [k =1, —=', ] state autoionizes towards

6p, ~2c/=/» —2 if k is conserved; conversely, if k =l &+—,',
for the 6p]y2 threshold the ejected electron has l =I, ,
while for k =l, + —,', the final l will be I, +2. For exam-

ple, the bound-free matrix elements (El ~r ~24g ) in-
volved in long-range approximation are 3.346X10
8.547 X 10 ', and 1.056 X 10 ' for / =2, 4, and 6 respec-
tively. As for dipolar transitions, there are propensity

TABLE IV. Relative variation of the 6pj241, [k]J widths in barium between exact and long-range
calculation. One reads the difference I (exact)/I {long range) —

1 for the various states of the
configuration. The exact values are the ones obtained within the present formalism with short-range
effects (exchange and short-range contribution on the direct integral) included.

1, =3
3

1

I 3

I
1

1

1

+ 1

2

I, +-,'-

I, +='
2

+
2
1

1

1

1

I, + —'
2

I, —2

I, —1

I,
I,

11+1

I, +1
I, +-2

I, —1

11

I,
I, +1

=2.87 X 10
—1.27X10 '

—2.44x10 '

--4.07 X 10
—3.81 X 10
—1.98 X 10

+ 1.79 X 10
——1.08 X 10
—2.70 X 10
—8.90x10 -'

—1.02 X 10
—3.54 X 10

—3.09 X 10
—1.50 X 10
—2.05 X 10
—2.47X10 '

—1.61x 10 '

—1.06X10-
—2.48 X 10
—5 ~ 58 X 10
—8.04X10 '
—3.23 X 10

+9.14x10 - —1.11x10 '

—1.44 X 10
--9.19X10 -'

—2.52 X 10
-1.09x10 '
—1.43x10 -'

—4.46 X 10 --'

—3.88x10 '
—1.96X10 '-

—2.89 X 10
—8.63X10 -'

--1.44X10-
—4.64X10 '

—3.97 x 10-3
—1.62 X 10- -'

—5.77X10 "
—2.06 X 10

—8.65 X 10
-1.24x10 '
—3.62 x 10-"
—3.10X 10
—1.48x10 '
-- 3.03 X 10

—4.37x10 -'

—6.47 x 10-'
—1.81 X 10
—7.15 X 10
—3.42 x 10--'
—2.81 X 10

—1.02 X 10 —1.04 X 10
-- 1.86 X 10
—5.51X10 '

—2.06X10 '
—5.84 X 10

—2.43x10-' —1.23x10 -'
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FIG. 1. Scaled autoionization width as a function of the ener-
gy. The quantity n', I' for 6p3/pn, g[k]J states of barium is plot-
ted vs the outer electron energy —1/n &. The various symbols
correspond to the different k and J values as specified. Data are
plotted for n

&
=6-12, 14, 18, 24, 30, and 36. The 6plz& channel

is open if n
&

~ 9.

FIG 2 Branching ratio to the 6plz& threshold In the au-

toionization process of 6pq~z241, [k]J states of barium, the frac-
tion of ions left in the 6plz& state is plotted as a function of the
momentum II. When this momentum is greater than 4, the data
for J=k+

~
almost coincide.

TABLE V. Autoionization widths of 51,241
~ [k]J states of barium (atomic units). When written between two rows, the autoioniza-

tion width is the same for J=k 6—, at the table accuracy. The radiative width is computed in hydrogen, accounting for the allowed

transitions 241
&
~n'I

&
+1.

II =3 II=4 II =5 II =6 II =7 Ii=8 II =9 II =10
5
2

5
1

5
1

I ——'
2 2

I, —3 9.64X10 3.93X10 1.79X10 ' 7.51X10

2.32 X 1P 1.'92X 1P 4.55 X 1P 7.86 X 1P-"
I, —2 1.17X10 6.36X10 1.32X10

1 ~ 17X10 " 2.06X10 ' 4.68X10 ' 1.24X10

1
1

I, +—'

I, —1 9.58X10 6.02X10 1.31X10
I, —1 6.30X 10 1.41 X 10 2.73 X 10

I, 6.96 X 10 1.42 X 10 2.75 X 10

I, 1.50x 10-' 2.18x 10-' 3.35x 10-'

I I + 1 6.69 X 10 1.92 X 10 3.32 X 10

I, +1 1.21x10-' 4.93x10-'

3.87X10 1.27X10 4.38X10 ' 1.50X10 ' 4.96X10

5.22X10 1.03X10 2.27X10 ' 5.83X10 " 1.66X10

5.25X10 8.23X10—Io 1.73X10 ' 7.27X10 " 4.28X10

I i+2 8.19X 10 5.13X 10

I, +2 5.89X10 1.19X10

1.94X10 7.11X10 2.42X10 8.56X10 ' 3.60X10 ' 1.75X10

6.50X 1Q 2.53 X 1Q 7.5PX 1Q 1.92 X 1Q 5.5P X 1Q ' 2.25 X 10

3
2

I, +3 1.10x 10-' 1.17x 10-'
I —2 1.17X10 2.71X10 ' 2.15X10 ' 4.78X10 " 6.72X10

1 1.94 X 1P 9.57 X 10 6.72 X 10 ' 4.44 X 1Q ' 6.69 X 1Q-"

I, —1 5.62x 10-' 1.56x 10-' 2.79x 10-'

8.05X10 ' 8.36X10 ' 7.50X10

1

I, + —,
'

I, + —'

I, +3
2

4.65X10 7.21X10 ' 1.00X10 ' 1.22X10 " 1.29X10
I, 9.26X 10 1.65 X 10 2.80X 10

4.36X10 8.54X10 1.62X10 2.93X10
4.82X10 ' 7.04X10 " 8.91X10 ' 9.67X10

I I + 1 2.34 X 10 7.94X 10 1.61 X 10 2.92 X 10

I, +1 6.57x10-' 8.05X10-'
5.02 X 10 2.19X 10 7.09X 10 1.77 X 10 3.48 X 10 ' 5.47 X 10

II+ ~ II+2 7 69X 10 8 10X 10
Radiative rate (241I] 1.67X10 ' 1.00X10 ' 6.67X10 " 4.74X10 " 3.54X1Q " 2.74X10 " 2.18X1Q " 1.77X1Q
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rules on quadrupolar elements which state that, for
moderate I& (in the present case less than 8), the transi-

tion 1 t ~l] is significantly more probable than 1, ~l, +2
which is in turn more probable than 1, —+1, —2. For
higher I&, the ordering changes to (i&+2, 1&, l&

—2) and
accordingly, the maximum autoionization probability to-
wards 6p»2 is obtained for k = l, + —,'. More significantly,
it appears that in the large Ili-mit, the jine stru-cture tran
st'tion is the favored autoionization decay channel, whatev-
er the angular momenta k or J. This statement is corro-
borated by the observations on the 6p3/2nh series by
Bente and Hogervorst [7].

10

10

D. Quadrupolar transitions

As another example, the Sdj241&[k]J autoionization
widths of barium are detailed in Table V. Such states
only decay by quadrupolar transitions to the Sd 3&2

threshold if permitted and to the 6s&/2 threshold. Thus
specific stability properties are expected. Besides, the
valence-electron wave function has a small radial exten-
sion, making the nonoverlap hypothesis generally easy to
comply with. Comparing these results to those concern-
ing 6pj24I& states in Table III, one notices that the
present probabilities are one or a few orders of magnitude
smaller for moderate l„but for large l, the figures are
not very di6'erent. As stated above, this can be explained
by the quadrupolar transitions that become dominant for
large 1, . Once again, one observes a strong variation of
the probabilities with k, according to the possible value
for the final angular momentum; for example, the life-
times of Sd~&224l& =7 range from 2.1 ps (k =l, ——,') to
3.2 ns (k = i, +—,') and if i&

= 10 from 200 ps to 110ns. In
the present case, long autoionization lifetimes may be ob-
servable since such states hardly decay radiatively. The
Sds/2 3/2 lifetimes in Ba+ are 37 s and 84 s, respectively
[21,29]; more probable is the radiative decay of the outer
electron which, treating the inner electron as spectator
and the outer one as hydrogenic, occurs in 140 ps for
i&

= 10 and 14 ps for l& =3 (last row of Table V). Except
for the minimum k value, autoionization is still more
probable than radiative decay even for 1& =10. This
demonstrates the interest for studying such long-lived
doubly excited states. Some experimental data are avail-
able for the Sdnf [13] and 5dng [30] series, the first one
being discussed in the next section.

E. Computation in strontium

Similar computations have been performed in stronti-
um for 5p3/$241 and 5p, /2241 states. The results are
presented in Figs. 3 and 4. The general properties ob-
served on barium still hold; one wi11 notice that probabili-
ties are a little larger because the ejected electron is of
smaller energy. The change in slope for the 5p3/2241~
[k =1&+—', ] autoionization probability for I

&

=7 can be
attributed to the fine-structure contribution which be-
comes dominant for this l, value. Besides, including for
the highest i& considered (10), the 4d~zz-threshold contri-
bution cannot be ignored in the 5p3/2241, autoionization,

*

FIG. 3. Autoionization width for the 5p, ~,241, [k] states of
strontium (atomic units). The width is plotted as a function of
I, for the J=k+

2
states. The data points are indistinguishable

from the J =k —
—,
' points at the drawing accuracy.

10

10

*

10
—10

FIG. 4. Autoionization width for the Sp, &2241, [k] states of
strontium (atomic units). See comments about Fig. 3.
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it remains the dominant channel for the lowest k values

(I, ——', ). For these states, the decrease of autoionization

probability with I, is slower than for corresponding states
in barium because the ejected electron is less energetic:
E(4d 5/z ) =4. 33 X 10 a.u. and E(5p, /z )=2.78 X 10
a.u. in strontium versus e(5d5/z)=7. 33X10 a.u. and

e(6p»z )=6.84 X 10 a.u. in barium. When k varies, the
widths for 5pz/z241&=10[k]spread over two orders of
magnitude in strontium against more than three in bari-
um. For energetic reasons, as well, the autoionization
widths of 5p, /z241, [k] states decrease more slowly in
strontium than in barium.

V. COMPARISON WITH EXPERIMENTAL DATA

Really quantitative data on autoionization width for
large-1 states are rather scarce, so few significant checks
of the present formalism can be done. Some indications
about its validity range will be given here.

A first comparison with experiment can be done using
data by Jaffe et ttl. [3]. The measured values for
6p&/z24g[k] J =5 are 0.87 and 0.69 cm ' for k =—', and
—", , respectively. As shown in Table III, the present mod-

el gives 0.499 and 0.705 cm '. The computed branching
ratio to the 6p &&2 threshold is 0.271 and 0.018, respective-
ly. As discussed in the previous section, the fine-

structure transition has a maximum probability when a
b, l =0 transition is allowed, i.e., when k =1&k—,'. In the

present case, without considering fine-structure transi-
tion, the autoionization width would be 0.36 and 0.69
cm ' for k =—', and —", , increasing the global disagree-
ment with experiment. However, it appears that fine-
structure contribution is underestimated by the present
treatment.

The 6p 24f [k]J autoionization widths in barium are
listed in Table VI. For these states, a detailed experimen-
tal analysis has been done by Abutaleb et ol. [15]. A R-
matrix and multichannel quantum defect theory (MQDT)
computation has been performed by Telmini, Aymar, and
Lecomte [31] and agrees fairly well with the measured
data. There also exists a single-configuration computa-
tion and measurements on 6p, /znf by Wang, Story, and
Cooke [32]. The present large-l analysis is pushed a little
beyond its limit of applicability for f states, since their
inner classical turning point [r (24f)=6.03 a.u.] falls
inside the classically allowed region for the valence elec-
tron [r+ (6p, /z ) =6.72 a.u. , r+ (6p3/z ) =6.94 a.u.]. Even
more significant is the high value of the scaled autoioni-
zation width n I, usually greater than 0.1 including for
the 6p, /z24f states, which corresponds to an autoioniza-
tion probability close to 1 per orbiting time. However,
we get at least a qualitative picture. As a rule, the calcu-
lated widths are about one half of those deduced by Abu-
taleb et al. from their measurements by a MQDT
analysis. The long-range approximation, the results of
which are mentioned in the experimental paper, is closer
to the measurements since, as shown above, exchange
effects generally tend to decrease the probabilities. From
Tables IV and VI one observes that short-range effects
are far from negligible since the computed widths of
J=k+ —,

' may significantly differ and differ also from the

long-range approximation. In spite of discrepancies in
absolute values, one must notice from Table VI that the
reltztiue values of the probabilities are fairly well repro-
duced. For example, the experimental ratio I'(6p 24f [k]
J =k+ —,')/I (6p 24f[k] J =k —

—,') is 064(23), 1.50(21),
0.72(16), 1.06(17), 1.06(14) for (j,k ) = ( —'„—,' ), ( —', , —', ), ( —'„—', ),
( —,', —', ), and ( —,', —', ), respectively, the numbers in

parentheses being the uncertainty in the last quoted di-

gits; the corresponding numbers within the present for-
malism are 0.784, 1.30, 0.633, 0.935, and 1.11, all within
error bars and significantly different from 1, which would
be the long-range result. From the last column of Table
VI one notices a roughly constant factor of —,

' between

theory and experiment. As an exception, a special men-
tion has to be made for the 6pz/z24f [k=—', ] states
which, from Table VI, are those for which the branching
ratio to the 6p, /z threshold is maximum (0.366 and 0.281
for J =2 and 3, respectively). Once again, one observes
that the present theory systematically underestimates the
contribution of such quadrupolar transitions. A possible
explanation is the following: fine-structure transitions
are possible through the quadrupolar term of the interac-
tion 1/r &z considered at first order, but also through the
dipolar term of the same interaction considered at second
order. Probably, such a second-order contribution is not
negligible in the present case. This situation also prevails
when one calculates the energy position of singly excited
states of helium [23] or doubly excited large-1 states [8].
Accounting for such corrections, one will probably get
for the k =

—,
' states a computed-to-measured-width ratio

similar to the one for other k values. Considering
second-order corrections amounts to the use of wave
functions with correlated electrons.

A better check of the present results is provided by
measurements on 51 nf levels since the wave function
overlap is then smaller. Including polarization terms in
the potential [21], one computes the classical outer turn-
ing points r+(5d3/z)=3. 89 and r+(5d5/z)=3. 95 a.u.
Above the 5dz/z threshold, the reported scaled half width
at half maximum (HWHM) for the series labeled
(5d5/znf ) J=5 is 13000 GHz [13],that is, a full width
at half maximum (FWHM) equal to 2.9X10 a.u. if n is
24. Assuming the value k =—,'can be attributed to this
series [33], this is greater than the calculated value in
Table V (8.2X10 ). In the present case, the long-range
approximation would give a very different result
(2. 1X10 ). This does not mean that exchange effects
must be ignored in the present case; as shown below and
as apparent from Table V, the other J=5 level has a
much larger width and if the true coupling is not jk but
some intermediate coupling, as may be suspected for such
low-l states, the present calculated width will probably be
increased by this k mixing. Besides, a previously pub-
lished value [33] was 5400 GHz for this same scaled
HWHM, which gives a width (FWHM) of 1.2X 10 a.u.
for n =24 in much better agreement with the Table V
value. On the other hand, the scaled half width of the
other J=5 series, labeled 5d~/znf+ by the authors
[13,33] changes from 650 to 35000 GHz when the 5d&/z
threshold is crossed. For n =24, the corresponding
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TABLE VI. Autoionizatiou widths of 6p, 24f [k]J states in barium (atomic units). The experimental
data are from Abutaleb et al. [15], the width of 6p, /, 24f [k = —', ] J=2 being unavailable. The branch-

ing ratio to 6p&/2 is a value computed within the present formalism including exchange. The numbers
between parentheses are experimental errors in terms of the last quoted digit. From its definition, the
long-range width is the same for J=k+ —'.

k J Experiment

2.0(2) X 10

This work

1.11 X 10

Long range

1.56 x 10-'

Autoionization probability (a.u. ) Branching

ratio to 6p&/2

0.00647

Obs. :calc.

ratio

1.8(2)

4.7(14)X 10

3.0(6) X 10
1.2(1)x 10-'

1.8(2) X 10

3.2(6) x 10-'

2.3(3) X 10
1.7(2) X 10

1.8(2) x 10--'

1.6(1)X 10

1.7(2) X 10

1.37 X 10

1.27 x 10-'

9.94x 10-'
6.20x10 '

8.04 X 10

1.73 x10-'

1.09 X 10

9.16X 10

8 57X 10

1.03X10 '
1.15X10 '

1.68 x 10-'

1.00x 10-'

1.58 X 10

1.08 x10-'

1.37 x 10-'

0.093 1

0.366

0.281

0.080 7

0.170

0.127

1.44x 10-'

3.7(11)

3.0(6)
1.9(2)

2.2(2)

1.9(3)

2.1(3)

1.9(2)

2.1(2)

1.5(1)

1.5(2)

FWHM is 7.7X10 a.u. , in good agreement with the
computed value (5.89X10 ) if we assign k = —", to this

series. Here again, the long-range approximation would
be far from suScient, giving 1.35X10 a.u. A study of
the theoretical branching ratio shows that the preferred
final state is then 5d &/zsf [k =—', ]; this agrees with the ob-

servation of the prevalence of the fine-structure transition
and provides a situation where a k-changing transition
may be dominant. Computations have also been per-
formed in the jj-couPling scheme. The (Sd&/z24f ) I=5
widths are 2.04X10, 4.67X10 for j =

—,
' and —,re-

spectively; the former value roughly agrees with the
"f " experimental data but the latter is in stronger
disagreement with the "f+"data than the result in the
jk coupling; here the correct coupling is probably inter-
rnediate. The present analysis proves that short-range
effects may be quite important even when both electron
wave functions do not overlap; it also stresses the necessi-
ty to define correctly the coupling scheme.

In order to emphasize the inAuence of higher mul-
tipoles, it is interesting to quote the results in '*double cir-
cular states" 4f5g [I=2] of barium by Jones, Fu, and
Gallagher [19]. A direct comparison with their data is
not easy because the observed levels are labeled in the jj-
coupling scheme and because the corresponding widths
have to be extracted from the figures. The 4f, /z5g, /,
width (FWHM) is about 6 cm ', the 4f, /z5g9/z peak is
small, and its width is very difficult to estimate (perhaps 9
cm '). The long-range formalism gives 18 and 8.5 cm
for k =—', and —,

' which, considering the bigger coefficient

in the transformation matrix, may be assigned to the jj-

coupled states f5/zg7/z and f5/zg9/z respectively. The
favored thresholds are 7s, /2 and 5d»2, respectively, so
the k =

—,
' level decays mainly by octupolar transition.

However, if one computes short-range effects, one gets
quite difFerent figures (2.6 and 20 cm ' for k =

—,
' and —,',

respectively). No quantitative conclusion should be
drawn from this comparison. The short-range effects are
uneasy to evaluate correctly since 4f states in barium II
are very sensitive to the double-well structure of the po-
tential [34]; besides, as we stated above concerning qua-
drupolar transitions, higher-order effects should be con-
sidered when octupolar terms are involved. Similar con-
clusions arise when considering 4f7/z5g states. The es-

timated experimental widths are 10 and 16 cm ' for g7/2
and g9/2 electrons while, assigning again the k value

through the maximum weight in the transformation ma-

trix, one gets 16 and 6 cm ' for k =
—,
' and —,', respective-

ly. Here again, inclusion of short-range terms changes
significantly these figures in 2.6 and 12 crn '. Clearly ad-
ditional work is desirable both theoretically —in addition
to the above-inentioned special character of the 4f level
in barium II, the 4f threshold is close to the 6d thresh-
old, so configuration mixing is certainly very
important —and experimentally to get more accurate life-
times and to assign correctly the k angular momentum.
However, it turns out that, including quadrupolar and
octupolar terms, one is able to get at least an order of
magnitude of the 4f5g widths, while consideration of the
dipolar term only is far from sufficient [19]. Moreover, as
was stated previously [19], the 4f and5g classically al-

lowed regions do not overlap; the present first-order com-
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putation of short-range effects proves that such condition
is not suScient to ignore exchange.

VI. CONCLUSION

The present work is an exact computation of autoioni-
zation widths of large-I Rydberg states within first-order
perturbation theory, in the framework of jk coupling. As
in the long-range formulation, one observes a rapid de-
crease of autoionization probability with 1,. But this
statement needs to be tempered: while for the lowest k
value (1i ——,') the 6p3/2n, l, [k] width in barium roughly
decreases by one order of magnitude for each unit of 1i,
this is no longer true for the other k values, and especial-
ly the highest one (1, + —,), its lifetime changing from 0.49
ns for 1, =7 to 4.8 ns for 1, =10. In the latter case, the
computed lifetime of (6p ~&2241 i =10) [k = —", ] is three or-
ders of magnitude longer (8.7 ps). This emphasizes the
need to account properly for the coupling scheme in the
doubly excited atom. Besides, it is remarkable that in the
large-I limit, the fine-structure contribution tends to be
the only significant one. While fine-structure effects tends
to increase dramatically with the angular momentum 1,,
exchange effects also considered here rapidly decrease
with 1,. An indication of their infiuence is given by the
relative variation of the width between two states of a
pair (J=k+ —,

' for a given k). Concerning the 6pJ24f [k]
states of barium, the computed relative variation agrees
with experimental data by Abutaleb et al. , while the ab-
solute computed widths are about twice the measured
ones. For g states, one expects the exchange effects not to
affect the widths by more than 10 and 2% for h states, re-
spectively. So the present work defines quantitatively the
validity domain of the long-range formalism previously
used. Some limitations concerning its applicability for
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APPENDIX: ANGULAR FACTOR
FOR THE EXCHANGE AMPLITUDE

IN jk COUPLING

The exchange amplitude in jk coupling is written as

&,= g (el, nplpjp~r' /r'+'~n2lzjz, n, li )
t&0

1 t 12 lp t 1,
X 0 0 0 0 0 0 [1,1i] (Ala)

with

X=(—I) +'+'[1(i,1,j,ji,k, k')'

l~ 1

Jz

I, /0

where the notation

J0 (A lb)

[a,b, .. . ]= (2a + 1)(2b + 1 ).. . (A2)

quadrupolar transitions have been emphasized. Clearly,
this single-configuration approach is not relevant in re-
gions where series perturbations are important. Possible
refinements of the formalism, involving the accounting
for second-order effects, will be considered in a forthcom-
ing paper.

has been used. The 12j symbol of the second kind is defined as [24]

Jz

k,

J4
Jz kz g Ji k

k3 Jp 12 k4 J4

j4 k4

ls ki J
g

14
(A3a)

with

4
&= g (j;+k;+1,) . (A3b)

Graphically, this symbol may be figured as a hexahedron (say, a cube) in the same way a 6j symbol may be represente
as a tetrahedron.

For the considered symbols, since two momenta are equal to —,', one gets, using the definition (A3) and the known
values for 6j symbols with one momentum equal to —,

' [35], four different expressions according to the k and k' values.
With the notations

e=2(j2 —li),
e'=2( jp —lp),

s=l, +l +1,
s'= I +10+1,

(A4a)

(A4b)

(A4c)

(A4d)
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8=I, —l2,
O' = I —lo

one writes the fo11owing angular factors. For k =J—
—,', k'= J+—,',

j~+lp+1/2
X= I(s —eJ)(J+ed)[s'+e'(J+1)](J+1 E'd—')]'

2J+1
for k =J +—,', k'= J—

—,',

I, l2 J
I lo t

(A4e)

(A4f)

(ASa)

jp + 12 + 1 /2

X=
2J+1

for k=k'=J —
—,',

I, l2 J
I [s+e(J+1)](J+1—ed )(s' e'J—)(J+e'd')] ' (Asb)

(
—1)'X=-

2J [(s +eJ)(J ed—)(s'+ e'J )(J—e'd') ]
'

1
j&+jp 1— I, l2 J

+ [(s eJ)(J—+ed)(s' e'J)(—J+e'd')]' (A5c)

and for k =k'= J+—,',

l~ + lp
—1 I, l2 J

x=
(2J + 1)(2J +2) I(s+e(J+1)](J+1 ed)[s'—+e'(J+1))(J+1—e'd')]'

l Eo t

)Jp+jp t, J+1
I [s —e(J+1)](J+1+Ed)[s E'(J+1)](J +1+Ed )] '

(2J+2) Io
(A5d)

In this work, a computer program has been used to get these elements in terms of square roots of rational numbers. In
this way, the angular factors are obtained with the best available numerical accuracy, i.e., without any rounding due to
difference effects in computation of a sum.
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