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First-order theories for adiabatic L-shell ionization by protons
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L-shell ionization cross sections, evaluated as mean values of the experimental data, were com-
pared with the first-order theoretical values obtained by the plane-wave Born and semiclassical
method. Hydrogenic Dirac wave functions in the united-atom limit were employed in the calcula-
tion. The plane-wave Born approximation cross sections with Dirac-Hartree-Slater wave functions
were obtained from the tables of Chen and Crasemann [At. Data Nucl. Data Tables 33, 217 (1985);
41, 257 (1989)]. The agreement between the experimental and semiclassical cross sections was gen-
erally better than 20%, except for the L, subshell of heavy elements and for the very adiabatic region
of L3 3 subshells. The differences between both sets of data were largely reproduced by a simplified
coupled-channel calculation performed nonrelativistically for a single final state. The calculation
also suggests that, due to the uncertainties of the fluorescence yields, the ionization cross sections
deduced from the measured data are overestimated by 10%.

PACS number(s): 34.10.+x, 34.50.Fa, 03.65.Sq

I. INTRODUCTION

A comprehensive statistical evaluation of the L-shell
ionization cross sections, performed at the National Uni-
versity of Singapore during recent years, provides a
data base which can be effectively used for studies of
the L-shell cross sections within an accuracy of a few
percent [1,2]. As most of the experimental data have
been obtained by x-ray spectroscopy using semiconduc-
tor detectors which are inefficient in the sub-keV re-
gion, the majority of the data are for heavier elements,

Z, R 40. For proton bombardment, the atomic num-

ber ratio Z;/Z> < 0.025 is then sufficiently small for the
first order theories to yield reliable results. Indeed, the
perturbed-stationary-state (PSS) theory with energy-loss
(E), Coulomb deflection (C), and relativistic (R) correc-
tion (ECPSSR) [3] agrees with the experimental data
within a factor of 2 in a rather broad energy and Z,
interval [2]. The ECPSSR cross sections can be easily
calculated and have been widely used for the normaliza-
tion of experimental data in the statistical procedures
[2,4]. However, it is known from the studies of the K-
shell ionization process that the Coulomb correction used
in the model [3] is underestimated in the very adiabatic
region [5]. Furthermore, the binding correction takes into
account only the change of the binding energy due to the
presence of the charged projectile, neglecting the change
of the wave function. In the adiabatic region, the bind-
ing correction underestimates the cross section. The rela-
tivistic correction [3] increases the cross sections for non-
relativistic wave functions more than the corresponding
use of the Dirac wave functions [6].
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The corrections introduced by the ECPSSR theory
[3] are not independent. Their deficiencies partly com-
pensate each other for certain projectile velocities. It
is therefore futile to inspect or revise them individu-
ally. No relativistic corrections are necessary when Dirac
wave functions are used. Within the semiclassical ap-
proach, the Coulomb trajectory of the projectile is ex-
plicitly taken into account. It is then the binding effect
alone which limits the validity of first-order models. In
further analysis we shall restrict ourselves to sufficiently
slow collisions, characterized by the reduced velocity pa-
rameter £ [7] smaller than unity. In this region the change
of the electron binding energy and of the wave function is
ingeniously taken into account by the united-atom model
[8], where the ionization process occurs in a virtual atom
of the atomic number Z; + Z,. In subsequent refine-
ments of the united-atom model for the K-shell [9,10], a
generally better agreement with the experiment was not
found. This can be explained by an unrealistic propo-
sition that the electron wave functions adjust instantly
to the position of the projectile. The importance of the
wave function time evolution is clearly demonstrated ob-
serving the transitions in a harmonic oscillator perturbed
by a time dependent coupling of an additional spring [11].
The united-atom case corresponds to the oscillator with
the perturbing spring coupled permanently. The transi-
tion probabilities for the “united-atom” type of the wave
functions differed significantly from the results obtained
by the coupled-channel method.

There are no straightforward binding correction proce-
dures between the calculations in the united-atom model
or those for the more elaborate coupled-channel ap-
proach. We shall therefore adopt the united-atom model
for our first order calculations. For L-shells, the united-
atom binding procedure has already been used in the very
adiabatic region by Vigilante et al. [12].

It is significant that for the L-shell ionization the per-
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turbing field of the projectile induces redistribution of va-
cancies among different L-subshells [13]. The deficiency
of the first order models on account of this effect will be
studied by a simplified coupled-channel approach.

II. THEORETICAL MODELS

In a multielectron atom, the adequate inner shell wave
functions are of the Dirac-Hartree-Slater type, which
were used by Chen and Crasemann for the cross-section
calculation in the plane-wave approximation [14]. For
the semiclassical approach which describes the ionization
process to greater detail, we used the hydrogenic atomic
model. The wave functions used were screened hydro-
genic Dirac wave functions, where the screening due to in-
ner electrons was taken into account according to Slater,
and that due to outer electrons according to Bethe [15].
If the energy of the projectile transferred to the electron
is close to the binding energy, the electron transits not
to the continuum but to a virtually bound state. The
missing energy is supplied in a later stage of the collision
on account of shrinking of the electron cloud.

In order to investigate the differences in cross sections
obtained by different wave functions, we first calculated
the cross sections in the relativistic plane-wave Born ap-
proximation (RPWBA) with screened Dirac hydrogenic
wave functions. The functions were then used in the
semiclassical calculations for which we developed a new
computer code. The semiclassical calculations were also
performed by the code IONHYD of Trautmann and Rosel
[16] which differs from the present one in its specific hy-
drogenic approximation.

The principle of Bethe was generally used in plane-
wave methods, but not in the semiclassical ones. Since
both methods yield the same results for energetic pro-
jectiles whose trajectories approach straight lines, this
criterion provided an essential test for the numerical ac-
curacy of our calculations.

A. Dirac-Hartree-Slater cross sections

RPWBA cross sections using Dirac-Hartree-Slater
(DHS) wave functions [14] are tabulated for selected ele-
ments in three forms: the uncorrected cross sections, the
cross sections corrected for the binding effect according to
[3], and the cross sections corrected both for the binding
and Coulomb effect. Since the united-atom approach was
used throughout our calculations, the united-atom DHS
cross sections were taken to be the uncorrected values
of the neighboring Z; + Z; element. The errors intro-
duced using this procedure are a slightly overestimated
reduced mass of the projectile and an additional electron
in the outer shells. For Z, R 40 elements, both effects
were estimated to contribute negligibly to the ionization
cross sections. For a selected element and proton energy,
the cross-section values were obtained by interpolation
from tables. The interpolated quantity was the ratio be-
tween the tabulated cross sections and the nonrelativistic
PWBA values, which deviates from unity by less than a
factor of 2. The deduced cross sections were then mul-

tiplied by the Coulomb correction factors of the original
element.

B. RPWBA cross sections

The plane-wave cross sections for hydrogenic Dirac
wave functions were obtained from the standard expres-

sion [17,18]
2d
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where q and W are the momentum and energy trans-
ferred to the atomic electron, respectively, v the velocity
of the projectile, ¢ the velocity of light, and a the fine
structure constant. Using the results of the angular in-
tegrations [18], the square of the electron form factor
Fr.(q) may be written as
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where the first value in the curly brackets refers to
£ = —l — 1 and the second one to x = [. The radial
integrations are contained in the expression

L () = / ii(ar) [9e(r)gn, (7) + fu(r) fr, ()] 72 db,
(3)

where g and f are the large and small components of the
Dirac wave function for the initial and final state, respec-
tively. The integration (3) was performed numerically by
the transformation procedure according to Talman [19],
and the continuum wave functions were generated by the
step-controlled Runge-Kutta procedure from the analytic
expansion of the Dirac wave functions at small r [5]. Par-
tial waves up to | = 5 were included in the calculation
and the numerical accuracy was maintained within 1%.

C. Semiclassical cross section

In the semiclassical approximation, the separation of
projectile and electron variables is generally performed
either in the momentum or in the coordinate space [20].
The momentum space method was used for our K-
shell calculation [5] and the existing program can eas-
ily be modified for the L;-shell ionization. However, the
coupled-channel calculations stimulated the development
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of a code which was based on the coordinate method. Ex-
panding the electron functions in the orthonormal set of
atomic eigenstates

U =>" an(t)|n) e*n* (4)

we obtain a set of coupled equations
day c 1
L2 202 5 (o
ds ‘ 1a02n:an f|R—r|n

X exp <2 it e} s) , (5)

v

where R and r denote the projectile and electron position
vector, respectively. We also introduced the variable s =
vt. In the first-order approximation, ag = 1, an>o = 0,
and the summation n reduces to the n = 0 term. The
ionization cross section is given by

a:/dW/|af(W)|227rbdb. (6)

By multipole expansion of ﬁ, the radial dependence
of the matrix elements in (5) is given by the functions

1 R
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For | = 1, G1(R) is increased by the recoil contribution
[21]

m E;+FE; (r
Gre(R) =z B8, ®
where m is the electron mass, (r) the matrix element of
the electron dipole operator, and E; and Ey are the elec-
tron initial and final energy with m c? offset, respectively.

For Coulomb trajectories we used a parametric repre-
sentation of the hyperbola which is approximately linear
for large projectile-target nucleus distances [11]. The in-
elasticity of the collision was taken into account by the
procedure [22] which replaces 1/v2? by its symmetrized
value 1/vv’, v/ being the projectile velocity after the col-
lision. In (5), the symmetrized value of 1/vv’ has a no-
ticeable effect only on the exponential function. Within
a linear approximation, this correction is equivalent to
assuming in (5) a realistic value of the minimum mo-
mentum transfer Aw/v.

For the first-order integration of (5) we used the
method of Ford et al. [23], generalized to the fourth-
order polynomial. For very adiabatic collisions, the algo-
rithm was optimized to avoid an unnecessary summation
of positive and negative numbers. The functions G; were
precalculated for a set of R values spaced logarithmically,
and the necessary values of G; were obtained by a ratio-
nal function interpolation. For sufficiently large values of
R, the second integral in (7) was regarded as negligibly
small, and the values of G| were obtained by scaling in
R'', The integration procedure in (7) was Gaussian,

and by careful bookkeeping, the continuum wave func-
tions had to be computed only once for a particular final
state energy.

The calculation included continuum states up to I = 2.
For ¢ < 1, the higher multipole states contribute less than
10% to the total cross sections. Since this contribution
originates from large impact parameters, it is a good ap-
proximation to calculate it in a straight line limit. This is
equivalent to the plane-wave approximation and we have
adopted it for the partial cross sections of I > 2.

The accuracy of the calculation was within 1%, as
checked by comparing the results for K and L; shells,
obtained by the present coordinate and momentum space
[6] methods. The same accuracy was estimated also for
the values of ¢ close to unity, where the contribution of
higher multipole states becomes noticeable.

D. Coupled-channel calculations

It is expected that the coupled-channel model yields a
more accurate description of the binding effect and esti-
mates the contribution of the projectile induced vacancy
redistribution among different subshells [13]. The calcu-
lations performed here were of the simplest nonrelativis-
tic type and primarily intended to demonstrate the va-
lidity of the first-order theories. Several approximations
were introduced.

(a) Numerical solution of the system (5) can only be
performed for a finite number of states. A realistic cutoff
depends on the size of the perturbation, i.e., on the Z; /Z;
ratio. Trial calculations using the analogous harmonic
oscillator model [11] showed that, within a few percent
accuracy, only the two lowest states may be used for the
perturbation corresponding to Z;/Z; < 0.025. The L-
shell calculation may therefore be limited to a few lowest
states.

(b) We have assumed that the continuum consists of
only one state, similar to the model [13]. The results of
the coupled-channel calculation are then reported as a ra-
tio to the respective first-order values. In our case, these
are given by the first-order solution (5) in the united-
atom limit.

(c) The choice of the continuum state is not unique.
In the approach of Sarkadi and Mukoyama [13, 24-26], a
collision with minimum energy transfer results in an elec-
tron transition to the lowest continuum state with zero
energy. This principle is contradictory to that of Bethe,
where the lowest final states are virtually bound. Since
the three subshells have different binding energies, the
corresponding lowest final states are described by dif-
ferent wave functions. It seems that strict validity of
Bethe’s principle is questionable in the L-shell case since
only a large part of the L;-L, energy difference can be
explained by screening due to other electrons [27], while
the Ly-L3 energy difference is mainly due to LS coupling.
We have therefore used the following procedure, which is
specific for our calculation. The lowest final state was
determined from the mean L-shell binding energy. For
the examples shown below, the final state was between
the states of n = 3 and n = 4. As a further approxi-
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mation we chose the transitions into the n = 4 state as
most representative. In order to estimate the variation
of our results with n, the calculation was also performed
for the n = 3 final state. The choice of the n = 4 case
is physically more sound since its energy transfer, which
exceeds the minimum one, approaches the mean energy
transfer in the ionizing collision. By using an integer n
for the final state, the matrix elements in (5) reduce to
close analytical expressions which considerably facilitate
the solution of the system of coupled equations. Further-
more, it is possible to explicitly include the coupling of
the final state to itself.

(d) The system (5) was solved for a deexcitation pro-
cess which is roughly similar to the transitions of vacan-
cies in the relativistic calculations [28,29]. An electron
was initially set into one of the 4s, p states and the tran-
sitions into the bound L states were observed. No LS
coupling was considered in the 4s,p state. Since the re-
sults have to be independent of the initial choice of the
electron spin, we used this effect as a general check for
our procedure. The backcoupling bound state continuum
was omitted in (5), but we included all diagonal terms.
For the calculation of L-L matrix elements, the results
of [30,31] were indispensable. The numerical procedure
for solving (5) was of a modified midpoint type extrap-
olating the step size to zero [32]. As the transitions of
vacancies between different L subshells depend strongly
on the impact parameter [29], the integration for the im-
pact parameter in (6) was carried out. The algorithm
was a simple fifth-order Gaussian, and the final result
was the ratio between the coupled-channel cross section
and that for the united-atom.

IITI. EXPERIMENTAL CROSS SECTIONS

The theoretical values were compared to the exper-
imental data from the compilation [1]. The averaging
procedure of the experimental data [33,34] was similar to
that for the K shell [4], but using a different rejection
method. The procedure included the newly compiled
data, so there were generally 1700 experimental points
per subshell. The experimental points were normalized
to the ECPSSR cross sections, and grouped in equidis-
tant intervals of the variable log€. The mean values of
each interval yielded the so called “s functions” [4]. As
the Z, dependence of the ECPSSR cross sections is not
entirely correct, the elements were divided into three in-
dependent groups. The points which differed by a certain
value from the mean were rejected, and the new mean
value was sought. The difference between the two sets of
the mean values was generally on a percent level, except
in the very adiabatic region [34].

The s functions were also used to generate reference
experimental cross sections. The procedure is most ac-
curate for the elements which are in the middle of the
Z, intervals. This implied the choice of Sn, Dy, and Pb
for the representative elements. The errors in the cross
section are then essentially determined by the statistical
distribution of the measured points.

IV. DISCUSSION

As mentioned before, the first-order theories involved
in the present analysis were RPWBA with DHS wave
functions [14], RPWBA with screened hydrogenic Dirac
wave functions, and the semiclassical approximation
(SCA) as evaluated by the code IONHYD [16] and that
by the present authors. It should be kept in mind that
the united-atom binding procedure was used systemati-
cally.

The ratios between the experimental and both types of
the RPWBA cross sections are shown in Figs. 1 and 2.
For L, 3 subshells, the experimental and calculated cross
sections agree within 20% for moderately low velocities.
For £ < 0.4, the ratios of the experimental to theoreti-
cal cross sections show a rapid decrease which indicates
the inefficiency of the approximate Coulomb correction
factor [3]. The L, experimental cross sections exceed
the RPWBA values by up to 40% and the correspond-
ing breakdown of the Coulomb correction at low ¢ is not
so apparent. Figures 1 and 2 also enable us to study
the effect of using a different type of wave functions in
the calculation. The cross-section ratios obtained by the
DHS and hydrogenic wave functions generally differ by
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FIG. 1. The ratios between the average experimental and
RPWBA cross sections using DHS wave functions in the
united-atom limit [14].
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less than 10%, except for the L; subshell where the dif-
ferences amount to up to 20%. This can be explained
by the node of the L; wave function which has a marked
effect on the size of the cross section.

A more realistic cross section ratio for £ < 0.4 is ob-
tained by a semiclassical approach. Figures 3 and 4
show the ratio between the experimental and semiclas-
sical cross sections, calculated by the method of [16] and

the present one, respectively. For ¢ R 0.7, the Coulomb
correction factor [3] is greater than 0.9 and we expect that
the ratios in Figs. 3 and 4 approach the corresponding
ratios obtained by the RPWBA methods. This is in-
deed the case for the present calculation shown in Fig. 4,
while the ratios in Fig. 3 calculated by the method of
[16] are lower by between 20% and 40%. We may con-
jecture that this difference is due to the specific hydro-
genic approximation used by the authors [16] which dif-
fers from that using the principle of Bethe. However,
the use of the principle of Bethe is strongly supported by
the good agreement between the present hydrogenic and
DHS cross sections.

We shall next compare the results of Fig. 4 to those
of the coupled-channel calculations (Fig. 5). It is first
observed that the choice of using either the 4s,p or the
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FIG. 2. The ratios between the average experimental and
RPWBA cross sections obtained by the hydrogenic Dirac
wave functions.

3s,p wave function for the representative final state does
not significantly alter the shape of the cross section ratios
in Fig. 5, though the position along the ¢ axis may vary
up to A¢ ~ 0.1.

We may expect that the structures in the ratio be-
tween the experimental and semiclassical united-atom
cross sections (Fig. 4) are reflected in the correspond-
ing ratio between the coupled-channel and united-atom
cross sections of Fig. 5. For the L, calculation in Fig. 5,
a common feature is a broad dip at £ ~ 0.5. This dip
may be traced for Sn and Dy data in Fig. 4, while Pb
data for £ > 0.5 behave in a completely different way,
showing a maximum at £ ~ 0.6. The occurrence of this
maximum cannot be explained.

The cross section ratios for the Ly subshell in Fig. 5
largely exceed unity for the adiabatic collisions £ < 0.4,
as already pointed out by Sarkadi for helium projectiles
[24] and by Vigilante and co-workers [12,35] for the case

of protons. For ¢ S 0.4, smooth maxima tend to appear
in the cross-section ratios of Fig. 4. The intensities of
these maxima increase with increasing Z,, and their po-
sitions shift to the lower values of £. There is a similar
trend in the data obtained by the coupled-channel calcu-
lation (Fig. 5), except that the intensities of the maxima
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FIG. 3. The ratios between the average experimental and
semiclassical cross sections calculated by the code IONHYD
(16].
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are lower and their positions are shifted to values of &
which are lower by 0.1.

For the Lj shell, the experimental and semiclassical
cross sections generally agree within 10%, except in the
adiabatic region £ < 0.4 where the cross-section ratios
exhibit distinct maxima. The intensities and positions of
the maxima vary with Z; in a way similar to the L, case,
but the intensities of the maxima are lower. The results
from the coupled-channel calculations in Fig. 5 show a
maximum for Sn only, which may denote deficiency of
the present model. However, we may not neglect the
possibility that the maxima are generated by the averag-
ing procedure [33,34] as the ECPSSR cross sections are
overestimated in this region.

In all three subshells the cross-section ratios obtained
by the coupled-channel calculation (Fig. 5) appear to be
10% lower than the ratios between the experimental and
semiclassical cross sections in Fig. 4. We can immediately
exclude the wave function effect as a possible reason since
the cross section ratios for DHS wave functions (Fig. 1)
are even higher than those of Fig. 4. The second source
of the difference may be the uncertainty of the data base
for the conversion of the x-ray production cross sections
to ionization cross sections [33], which uses the radia-
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FIG. 4. The ratios between the average experimental and
semiclassical cross sections, obtained by the present code
which employs the hydrogenic Dirac wave functions according
to the principle of Bethe.
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tive widths of Scofield [36] and the Coster-Kronig and
fluorescence yields of Krause [37]. Replacing the com-
pilation [37] by the theoretical DHS data of Chen et al.
[38], ionization cross sections generally 15% lower were
obtained [33,39]. Lower experimental values imply lower
cross section ratios of Figs. 1-4, as supported by Fig. 5.

The influence of the target electrons on the projectile
kinematics may also contribute to the difference between
the ratios in Figs. 4 and 5. As our targets were heavy
atoms with a large number of electrons, the projectile
effectively moved in the combined field of the nucleus
and electron cloud. A simple correction procedure for the
projectile motion suggested by [40,41] is to increase the
projectile energy by the difference of the electron cloud
potential. Expanding the screening function x up to the
linear term, the correction term is independent of r and
we find for the Firsov potential

_ Zl Z2€2

2 2\ 3
AV - X' (0)| = 48.73 Z1 Z, (Zf + Z,;) eV

(9)

 dmegap

The values of AV were between 9 and 18 keV for our
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FIG. 5. The ratios between the cross sections obtained by
the coupled-channel method and by the first-order calculation
in the united-atom limit. The single final state is represented
by the 4s,p (solid line) or 3s,p (dotted line) virtually bound

state.
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FIG. 6. The ratios between the average experimental and
semiclassical cross sections, calculated for the proton energy
increased by the difference of the electron cloud potential (9).
The semiclassical cross sections are multiplied by the ratios
of Fig. 5 to account for the intershell coupling.

targets and resulted in the cross sections being larger by
1% at £ = 1, and by 5% at £ = 0.6. The correction had a
remarkable effect for £ < 0.4, increasing the cross section
by a factor of 2 at £ = 0.3. The corrected SCA cross
sections were multiplied by the ratios in Fig. 5 to ac-
count for the intershell coupling effect, and used for the
normalization of the experimental data in Fig. 6. The
resulting cross-section ratios approach a constant for a
large part of the £ interval, except in the very adiabatic
region where the theoretical data exceed the experiment.
The effect is larger for lighter elements which can be ex-
plained by an overestimated correction of the proton en-

ergy by the electron cloud potential. For the very adia-
batic collisions, the ionization process occurs at internu-
clear distances close to the K-shell radius, for which the
statistical description of the electron cloud is not valid.

For the L, subshell, the relative intensity of the Pb
peak is largely reduced and it is now comparable to the
variation of the data for Sn and Dy. Figure 6 also shows
that the experimental data exceed the theoretical cross
sections by 10% for the Ly 3 subshell and by 20% for the
L, subshell. This effect supports our previous statement
that the data base of Scofield and Krause [36, 37] yields
cross sections which are overestimated by several percent.
Replacing the hydrogenic wave functions with DHS ones
would result in the theoretical ionization cross sections
being lowered by 10% for the L3 subshells and up to
20% for the L, subshell. For L,, the ratios between the
experimental and theoretical cross sections could be up
to 30% larger than unity. This is in accordance with
the fluorescence yield uncertainty which is largest for the
L, subshell. Further refinements of the fluorescence and
Coster-Kronig yield data base are beyond the scope of
the present paper and may be found in [25,42,43].

V. CONCLUSION

Among the different first-order theories, the semiclas-
sical method which uses hydrogenic wave functions in
the united-atom limit and obeys the principle of Bethe
was found to be most efficient in reproducing the L-shell
cross sections in a wide energy interval. Experimental
and theoretical cross sections generally agree within 10—
20 %, except for the L; subshell and L3 subshells in
the velocity range £ < 0.4 where the intershell coupling
strongly increases the cross sections. This phenomenon
was confirmed by a simple coupled-channel model. The
calculation also suggests that the ratio between the ex-
perimental and theoretical cross sections should be lower
by 10%. Neither the use of the DHS wave functions nor
the correction of the projectile kinematics for the outer
electron screening can explain this difference. It is most
probably due to the uncertainty of the fluorescence and
Coster-Kronig yields used in the cross-section evaluation
procedure.
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