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Traversal-time wave-function analysis of resonance and nonresonance tunneling
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A generalized wave function is defined for an arbitrary real functional. Properties of the traversal-
time wave function are investigated for one-dimensional scattering at a fixed energy. A Heisenberg-type
uncertainty relation is derived from the traversal-time wave function. Traversal-time probability distri-
butions for a Larmor clock measurement are studied in detail. The high-resolution limit of a traversal-
time measurement is examined. The use of "fast" and "slow" arguments in a traversal-time analysis is
discussed. The systems studied include free motion, resonance, and nonresonance tunneling through a
double-5-function potential, rectangular barrier, absorbing optical potential, and interaction with a slow

oscillator.

PACS number(s): 03.65.Nk, 73.40.6k

I. INTRODUCTION

It is often stated that one of the remaining unsolved
problems in quantum mechanics is to determine the dura-
tion of a collision and, in particular, the time for a parti-
cle to tunnel through a potential barrier (for reviews, see
Ref. [1]). Another commonly expressed view is that
quantum mechanics in its standard form cannot describe
these time parameters and therefore requires an extension
or revision [2—4].

In conventional quantum mechanics, dynamical vari-
ables are represented by Hermitian operators and the
wave function is interpreted as the probability amplitude
for obtaining a particular value of the variable at a given
time. However, for time parameters such as the tunnel-

ing time, it is not possible to define a wave function at a
given instant of time because these parameters relate to a
given duration of time. This is also true classically,
where the classical traversal time is the time interval
spent by a particle in a specified region of space.

An important approach to the quantum traversal-time
problem exploits Feynman path-integral techniques

[1,4—22]. Using this approach, we have shown [13—15]
how the concept of a wave function can be generalized to
a quantity which is represented classically by a functional
that is nonlocal in time. In particular, the traversal-time
wave function has been introduced in Ref. [13]. Having
obtained this wave function, application to physical prob-
lems then follows well established lines [23].

The purpose of this paper is threefold. First, we inves-

tigate properties of the traversal-time wave function for
one-dimensional scattering. The systems studied are free
motion, resonance tunneling, rectangular barrier, absorb-
ing optical potential, and interaction with a slow oscilla-
tor. Second, we discuss the measurement of the traversal

time by a Larmor clock. Third, we show how a
traversal-time analysis can be used to study the effect of
external interactions on the tunneling.

This paper is arranged in the following way. Section II
uses Feynman path-integral theory to derive a wave func-
tion for an arbitrary real functional defined along a classi-
cal path. Section III obtains the traversal-time wave
function for a fixed collision energy and considers some
of its general properties. The traversal-time wave func-
tion for free motion is analyzed in Sec. IV, where we
show that it has some unusual properties. The traversal-
time representation for resonance scattering is derived in
Sec. V and we examine its behavior both on and off reso-
nance. Section VI uses the results of Sec. IV to obtain the
traversal-time wave function and transmission amplitude
for a rectangular barrier potential, an absorbing poten-
tial, and an interaction with a slow osci11ator. In Sec. VII
we discuss an uncertainty relation for the traversal time
and consider its measurement using a Larmor clock. The
high-resolution limit of a traversal-time measurement is
investigated in Sec. VIII. In Sec. IX we consider the use
of "fast" and "slow" arguments in quantum mechanics.
A traversal-time analysis for more general interactions is
discussed in Sec. X. Our concluding remarks are in Sec.
XI.

II. GENERALIZED WAVE FUNCTION
FOR A QUANTITY REPRESENTED

BY AN ARBITRARY REAL FUNCTIONAL

The probability (transition) amplitude g (%z, tz ~%'&, t, )

for a quantum particle prepared at time t = t, in an initial
state 'II&, and then found in a final state %2 at the later
time t =t2, can be written as a sum over a11 Feynman
paths [6]
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=f dx~ fDx (.)f dx, %~(x~)

Xexp[iS[x ( ~ )]/Aj'P, (x, ) .

(2..1)
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g(ez, tz~e, , t, )=f" q(f)df . (2.3)

Thus if the wave function ri(f) is known, g (%z, tz ~V&, t& )

can be evaluated as a simple one-dimensional quadrature.
We can derive an alternative expression for ri( f) by re-

placing the 5 function in Eq. (2.2) by its usual integral
representation [13). We then obtain

ri( f)= f dAexp(iA, f/A)g(A, ), (2.4)

where

g(A)=—fdxz fDx( ~ )f dx&%z(xz)

Xexp I iS& [x ( ) ]/R] %,(x, )

(2.5)
is the transition amplitude between the same initial
and final states, but governed by a new action
Sz [x(t)]—:S[x(t)]—AF [x(t)].

Equation (2.4) is a generalization of the familiar rela-
tion between the momentum and coordinate representa-
tions [23], with f playing the role of the coordinate and A,

the momentum. Indeed, the exponential factor in Eq.
(2.4) is an eigenfunction of the operator —il(B/Bf),
which represents the variable "conjugate" to f. Equation
(2.4) shows that to calculate ri(f), one needs to know
g(A, ), for all values of A, . Note also that ri(f) is normal-
ized by Eq. (2.3) rather than the condition
I"„ln(f}l'df=1.

III. TRAVERSAL TIME REPRESENTATION
FOR TIME-INDEPENDENT SCAx-ra:RING

We now consider the question of how much time
(duration} a one-dimensional particle of mass m and wave

In Eq. (2.1), S [x (t)] is the classical action.
Consider an arbitrary real functional F[x(t)], which

represents some characteristic of the path x (t}. We can
carry out the path integration in Eq. (2.1) in two steps.
First, we sum the factor exp [iS[x ( ~ ) ]/A] over only those
paths along which F[x(t)] takes a given value f, i.e.,
F[x(t)]=f. We can write

ri(f)= f dxz fDx( )fdx, @z(xz)5(F[x( ~ )]—f)
Xexpt iS [x (.)]/RJ4', (x, ),

(2.2)

where 5(x) is the Dirac 5 function. In the same way that
a conventional wave function in the coordinate represen-
tation %(x, t) gives the amplitude for the coordinate to
equal x at time t, the function ri(f) is the amplitude to
have the value f in the transition (%&, t& )~(%z, tz). For
this reason, we will call ri(f ) the (generalized) wave func-
tion in the f representation. It differs by a normalization
factor from the amplitude distribution o z (a) introduced
in Ref. [13]. Note that rt(f) must vanish identically for
those values off which the functional F cannot take.

In the second step, we integrate Eq. (2.2) over all possi-
ble values of f (assumed to be —~ &f & ao), which
yields

number k spends in a region [a,b] C. lassically, this dura-
tion is given by the traversal-time functional

t.",[x(t)]—:f H.b(x(t))dt,
l

where 8„,(y) = 1 if x &y &z and 0 otherwise, and x (t) is
the particle's trajectory [7—10]. Quantally, all informa-
tion about the probable values of a physical quantity, e.g. ,
the position of an electron in a hydrogen atom, is con-
tained in the wave function. Therefore, for the present
problem we must first obtain the wave function in the
traversal-time representation, i.e., ri(r)

A. Traversal-time wave function

We obtain the traversal-time wave function by the
method of Sec. II. One-dimensional elastic scattering by
a potential V(x) is described by reflection and transmis-
sion amplitudes R (k) and T(k), which are the probabili-
ty amplitudes for a particle with initial momentum A'k at
t, ~—ao to have momenta —Ak and haik after the col-
lision at t2~+ ao, respectively. A simple method to cal-
culate rl(r) for the transmitted particle is to apply Eq.
(2.5) to a wave packet whose initial spread of energies
tends to zero, as described in Ref. [13]. It is then readily
seen that the action Sz[x(t)]—:S[x(t)] At,'b[x(t—)] in
Eq. (2.5) corresponds to that for a particle interacting
with V(x) plus an additional potential Ae,b(x) Repla. c-
ing A, by 8'and denoting the transmission amplitude for
the composite potential V(x)+ WH, b(x) by T(k, W), we
have [13] (see also Ref. [18])

rt,b(k, r)= f dW exp(iWr/A)T(k, W) (3.1)

In Eq. (3.1), ri,b(k, r) is the amplitude to have momentum
Ak before and after the collision and, in addition, to
spend inside [a,b] a duration r. Note that for any path,
t,'b [x (t)] can only have a non-negative value, which does
not exceed the total duration of motion t2 —t, . Further-
more, since the collision begins in the distant past where
t, ~—Oo and is completed in the distant future where
tz~ ~, we have ri,b(k, r)—:0 for r &0, but rig~(k, r) can
be nonzero for any ~ ~ 0.

For the reflected particle, T(k, W) in Eq. (3.1) must be
replaced by R (k, W), the reflection amplitude for the
composite potential. In problems with more than two
channels, the appropriate S-matrix element for the com-
posite potential must be used.

Finally, inverting the Fourier transform (3.1), or using
Eq. (2.3}, we obtain the traversal time representation for
T(k}

T(k)=f rt,b(k, r)dr .
0

This result wi11 often be used in the following sections.

(3.2)

B. General properties of the traversal-time wave function

The following general quantum-mechanica1 rules apply
to the traversal-time wave function, where we will
suppress the indices defining the scattering channel, the
region [a,b], and the wave number and simply write ri(r)
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from now on.
(i) If no measurements are made, the duration spent by

the particle in [a, b] cannot be determined, in accordance
with the uncertainty principle. This point is discussed
further in Ref. [14].

(ii) If we measure the quantum traversal time by a de-
vice, the probability amplitude that the result of the mea-
surement be 5'is given by (cf. Ref. [6), pp. 106—108)

moving in free space, V(x) =0, and discuss its properties.
According to Eq. (3.1), rio(k, r) is the Fourier transform
of the transmission amplitude To(k, W) for the rectangu-
lar potential WO, b(x), with W ranging from —ao to
+ (I).

Instead of k and W, it is convenient to introduce the
dimensionless variables

P=k(b —a)
q(7)= f G('T, r)q(r)dr,

0
(3.3)

where G('T, r) is a function peaked around r='T whose
width determines the accuracy (resolution) of the mea-
surement. Equivalently, to measure the value of the
traversal time with a given accuracy, we must project
ri(r) onto a state G(V;r) sufficiently localized on the r
coordinate. The probability to have the result 5; denot-
ed P(T), is then given by P(T)= ~%'(T)

~

. In the limit-
ing case of an infinitely accurate measurement
G(7;r) +5(r '—7) and—for a smooth rt(r), the expecta-
tion value of the traversal time ( r ) is given by

(r)= f rig(r)l'« f" q( r)i'«. (3.4)
0 0

Equation (3.4) is analogous to the standard expression for
(x ), the expectation value for the position of the parti-
cle.

(iii) The transition amplitude g i (0'2, tz 0'i, t, ) for a par-
ticle governed by an action Si[x(t)] can be written in

terms of ri(r), calculated for an action S [x (t) ], as

g((%'i, tg~4i, ti)= f A (r)rt(r)dr, (3.5)
0

where 2 (r) =rt, (r)/rt(r) and ri, (r) is the amplitude (2.2)
for the action Si [x(t)]. Equation (3.5) is simply an iden-

tity.
(iv) For the specific case Si[x(t)]=S[x(t)]

+f(t,'b [x (t) ]),where f is an arbitrary function, we have

z = [2m ( W E)]'—~ (b a)/—fi,

respectively, where E is the collision energy. In terms of
P and z, the transmission amplitude can be written as [24]

4i pz—exp( —ip)
(z —ip) exp(z) —(z+ip) exp( —z)

(4.1)

By analytic continuation, Eq. (4.1) is valid in the entire
complex W plane.

A. Series representation for qo(k, ~)

We have not been able to evaluate the Fourier trans-
form

, z„+ip
exp(z„)=(—1)" ' . , n =1,2, .z„ l

(4.3)

rto(k, r) = f d W exp(iWr/fi) To(k, W) (4.2)
2 c0

analytically. However, it is possible to obtain a series
representation for rto(k, r) using the method of residues,
as we now explain.

For P=O, To(P, z) has an infinite number of poles lying
along the Imz axis at z„=(n—1)iri, with n =1,2, . . . .
For p= ~, the poles lie at z„=niri For fi.nite values of
p, the pole positions are obtained from

il, (r)=exp[if(r)/iri]il(r) (3.6)

because the 5 function in Eq. (2.2) makes
Si [x (t)]—S [x (t)] have the same value f (r) for all paths
that spend in [a,b] a duration r. Provided il(r) is known,
we have the important, yet simple, result

g~(%&, ti ~%„ti) = f exp[if (r)/fi]rt(r)dr . (3.7)
0

The statements (i) —(iv) are also valid for an arbitrary
real functional F [x (t)] provided the integration limits in
Eqs. (3.3)—(3.5) and (3.7) are changed to the values actu-
ally taken by the functional.

In the following three sections, we will explore the
properties of the wave function ri,b(k, r) for the cases of
free motion, resonance tunneling, rectangular barrier, ab-
sorbing potential, and an interaction with a slow oscilla-
tor.

As p increases from 0 to ~, each pole trajectory traces
out a loop in the first quadrant of the complex z plane, as
illustrated in Fig. l for n ~6. In the complex W plane,
the pole positions are given by

W„=inst z„/[2m (b —a) ]+E, n =1,2, . . . . (4.4)

The residues of To(P,z) are

Res„TO(P,z) = 2i P exp( —i P)( —1)—"
z„+P+2iP

n =1,2, . . . . (4.5)

Next we return to the integral (4.2), change variables
from W to z, and close the integration contour in the first
quadrant of the complex z plane so that Cauchy's
theorem can be applied. The result can be written

IV. TRAVERSAL-TIME %'AVE FUNCTION
FOR FREE MOTION

rto(k, r) = g ( —1)" ' e ap(ixW„r/ ).iri

n=1
(4.6)

In this section we obtain a series representation for the
wave function iio(k, r) for the important case of a particle

Using Eqs. (4.4) and (4.5), we find that the coefficients

[a„]are given by
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4

0

n =1

n=6

n=5

n=

n=3

n=2

Re z

S = —exp(iEri% —2r/~p i—P)=2
'Tp

m I A'~
X g ( —1}'exp i-

2m (b —a)

Now, by definition, for Im z )0 [25]

84(viz)—:1+2 g ( —1}'exp(ill z}cos(2n.lv),
1=1

so that S can be expressed as

S = e—xp(iEr/fi 2r—/wp iP—)
1

70

FIG. 1. Pole trajectories n =0-6 of T(P,z} in the complex z

plane, where z—= [2m(W E}]'~ (—b —a}/A, as P=k(b —a) in-

creases from 0 to ~. The arrows indicate the direction of in-

creasing P (a) free motion (dashed line) and (b) double-5-
function potential with y= 5 (solid line).

2
2 exp( i P) — zn

rp zz+P +2iP

n =1,2, . . . , (4.7)
2 exp( iI3}—

rp ( W„+ifi/rp)

X 840—
2m (b —a)

Oscillatory 8-function expansions similar to Eq. (4.6)
have also been found in several other physical problems
[26]. Note that in practice the series (4.6) can be truncat-
ed at a large value of n when calculating physical quanti-
ties, such as 4( T) in Eq. (3.3). This is because the result-
ing integrals will rapidly tend to zero as n~00, since
they possess highly oscillating integrands.

(ii) The integral Ip" Ihip(k, r) I
dr is divergent. To show

this we formally use Parseval's theorem (Ref. [25], p. 139,
item 4.11-11)to write

where

rp= m (b —a)/(Ak)
f I'gp(k, r)I'dr= ' f I T,(k, w)l'dw . (4.10)

is the time it takes a classical particle with momentum Rk
to traverse [a,b]

Now consider the range W (E, so that z is pure imagi-
nary. Equation (4.1) gives

I Tp(k, W}l'=
I Tp(P, lzl }I'

B. Properties of go(k, ~)

We next use the series representation (4.6) to investi-
gate some properties of rip(k, r)

(i) A perturbative solution of the pole formula (4.3)
shows that for large n

z„= (n —1) n +4i—P+O(1 in ) .

Hence, for n ~ e&, Eq. (4.4) yields

W„=—(n —1) +E+ +0
2m (b —a) 70 2

(4.8)

and Eq. (4.7}becomes

lim a„=2exp( iP)/rp . —
pf ~ 00

(4.9)

Equations (4.8) and (4.9) demonstrate that the nth term
in the series representation (4.6) for rip(k, r) does not tend
to zero. In fact, the series (4.6) is oscillatory and must be
interpreted as a distribution. Its behavior is that of a
Jacobi theta function of the fourth kind, 84(viz}, on its
boundary z =x [25]. To see this, note that the tail of the
series can be written

4e'I I'

4P'I l'z+(P' —lzl'}'»n'(lzl }
(4.11)

Next replace Eq. (4.11} by the smaller quantity
4P'lzl'/[4P'lzl'+(0' —lzl')'] and insert it into Eq. (4.10).
We then find that the integral diverges logarithmically
for W —+ —~, which proves our original statement. An
application of property (ii) will be discussed in Sec. VIII.

(iii) The contribution of each pole to the residue sum
(4.6) decays exponentially with r because all the pole po-
sitions [W„]lie in the upper half of the complex W
plane. We have verified numerically that for a fixed E,
the n =1 pole has the smallest imaginary part. The larg-
est time scale associated with rip(k, r) is therefore approx-
imately ~,„=A/1mW, . Note that r,„canbe interpret-
ed as the "efFective size" of rip(k, r) along the r coordi-
nate, just like the Bohr radius ap for the ground-state ra-
dial wave function exp( r/ap} of a hydr—ogen atom
determines the effective size of the atom. We will show
below that ~,

„

tends to infinity in the classical limit
P~ 0O.

(iv) If we compare the de Broglie wavelength of the in-
cident particle 2m-/k to the width of the region b —a, we
find that there are three different cases.

(a) (Ultra)quantum case (P« 1). For small P, the pole
formula (4.3) has the perturbative solutions
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and

z, =2iP+O(P )

z„= (n ——1) m +4iP+O(P ), n =2, 3, . . .

so that the series for bio(k, r) can be written in the form

1
7lo(k, r) =—exp( el—ro)

7 p

+—g (
—1)" 'exp i—2 "

„ i . ir (n —1)
On=2 P 0

X exp( —2rlro) . (4.12)

plotted versus the reduced time T=r/ro for P=0.001
and y=0.015 obtained by term-by-term integration of
Eq. (4.6). The smooth exponential decay of bio(k, r) is

1.0

01

0.5

3 0
/

I„f,, I:CI

,II,I!h ' '

'1

~max«0

c) 0 = 200

FIG. 2. Real part (solid line) and imaginary part (dashed line)
of roy~(P, r) with y =0.015 versus the reduced time T =rl~o for
(a) p=0.001. The imaginary part is too small to be visible on
the scale of the drawing in this case. (b) P=m. ; (c) P=200. The
corresponding values of ~ „/'Tp are (a) 1.0, (b) 1.26, and (c)
2026.66, respectively.

Equation (4.12) shows that the leading n = 1 pole contrib-
utes an exponential term with a lifetime ~,„=up. The
terms in the sum with n ) 1 are exponentials with an en-
velope exp( 2r/ro—), which oscillate with high angular
frequencies m(n .—1) /(2Pro) for n =2,3, . . . . Thus in
the limit P—&0 we can simPly aPProximate iso(k, r) by
ro 'exp( —r lro). Note that neglect of the highly oscilla-
tory terms with n ) 1 is only justified if we are not in-
terested in the detailed behavior of rio(k, r) on a r scale
finer than approximately equal to 4rop/ir

Figure 2(a) shows the convoluted wave function

(r—r')'
T/p(k 1 ) =

I ~z exp —
2 bio(k, r' )dr'

yro Y 0

so that Im W„=2n nfi/(P r.o) and r,„=A'/Im W,
=P ro/2' Since. r,„»rion this case, bio(k, r) tends to
zero rather slowly for large values of ~. This can come as
a surprise, because one expects rio(k, r) to be sharply
peaked around the classical value 'Tp and to tend to
5(r—ro) as Iri~0.

Figure 2(c) shows rio(k, r) versus T for P=200 and
y=0.015 obtained by summing (4.6) for n »P/ir. Evi-
dently, rio(k, r) is highly oscillatory except for a small vi-

cinity hr of r=ro. In this vicinity Rerio(k, r) remains
positive while Imrip(k r) changes sign so that Eq. (3.2) for
T(k) tends to 1 for Relic(k, r) and to 0 for Imrio(k, r).

The width h~ can be evaluated by noting from
Eq. (4.2) that rio(k, r) =5(r ro) requ—ires T(k, W)
=exp( i Wro/Iri) —Now for. z = i p with p » 1, we can
write Eq. (4.1) in the form

2 (k, W)=exp(z iP)—
=exPI i[Wro/fi+—W ro/(2lri P)

+O(W'/Z'")]j .
The range of 8' for which the second term in the ex-
ponent can be neglected is b, W=2(2p)'~ IIi/ro and there
fore b,r=A'/b, W=rc/[2(2P)'~ ] &&r,„.

An improved approximation for qo(k, r) can be ob-
tained for z = iP with P » I by first writing

4i z
Tc(P,z) = exp(z i P) . —

(z+ip)
A stationary-phase evaluation of Eq. (4.2) then yields

1/21/2
o &o

iso(k, r) =
(~+ rc)

p(r —rc)
Xexp i

27"TQ
(4. 14)

For Ir roI «ro/p'~3, E—q. (4.14) reduces to the simpler
approximation

clearly visible.
(b) Intermediate case (P= 1). When the de Broglie

wavelength is comparable to b —a, the pole positions for
n &P must be determined numerically from Eq. (4.3),
which also allows r,„=ili/1mW, to be calculated. The
contribution from poles with n »P is essentially the
same as in case (a) and bio(k, r) can be computed by trun-
cating the series (4.6) at a sufficiently large value of n

Figure 2(b) shows bio(k, r) versus T for P=m and
y=0.015. The convoluted wave function has a compli-
cated shape which tends to zero for z) ~,„.

(c) Semiclassical case (P» 1). A perturbative solution
of the pole formula (4.3) for IP/z„ I

» 1 results in

z„=niri +2nrr/P, n =1,2, . . .

and using Eq. (4.4) gives

(ilies.n) . 2(IIhrn)
+L n —1,2, . . .

2m (b —a) Pm (b —a)

(4.13)
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go(k, w}=—1 P
2m

p(~ —~0)'
exp i

2 p

. 7T
l

4

Resonance transmission through a double-barrier po-
tential is often associated with a long time delay as the
tunneling particle becomes "trapped" in the well between
the two barriers. In this section we investigate ri(k, r}
both on and off resonance to see if it possesses properties
characteristic of resonance tunneling.

A. Double-5-function potential barrier

The simplest model that exhibits resonance tunneling
consists of two 5-function barriers, located at x =a and b,
respectively:

a result we obtained in Ref. [15]. Note that
qo(k, r)~5(r —ro) for P~~.

V. TRAVERSAL-TIME WAVE FUNCTION
FOR RESONANCE TUNNELING

and that the resonance widths are

r„
2

2A' (mn) 1
( )

my (b —a)

As a result, when the incident energy coincides with one
of the quasistationary states, we have Tss(k) = —1, which
leads to complete transparency of the double barrier (5.1).

y=2Q(b —a) .

For large Q, the barriers are almost impenetrable and the
potential (5.1) supports quasistationary states with reso-
nance energies [E„}and halfwidths [I „/2}determined

by the positions of the poles of Tss(k) in the complex en-

ergy plane. With the help of Eq. (5.2), we find that the
resonance energies are given approximately by the quant-
ization rule for a particle in a box of length b —a

nein 1+0 —,n=12, . . . (53)
2m (b —a)

2m V(x)/fi =2Q[5(x —a)+5(x —b}] . (5.1) B. Series representation for gM, (k, v )

where

4p exp( ip}—
g exp(iP) —(2iP —y) exp( iP)— (5.2)

The transmission amplitude for this potential can be writ-
ten in the form [27]

We obtain the traversal-time wave function riM(k, r)
for the well region [a,b] by inserting in Eq. (3.1) the
transmission amplitude TM(k, W) for the composite po-
tential V(x}+WH, b(x}. Using standard techniques, we
find that Tss(k, W) is a generalization of Eqs. (4.1) and
(5.2), namely,

4i pz ex—p( —ip)z-
[z i(p+iy—)] exp(z) —[z+i(p+iy)] exp( —z)

(5.5}

(5.6)

We again use the method of residues to obtain a series representation for riM(k, ~). The positions of the poles Iz„}of
Tss(p, z} in the complex z plane are given by Eq. (4.3), except that ip is replaced by i (p+iy) The p. ole positions trace
out loops in the complex z plane as p increases from 0 to ~, as illustrated in Fig. 1 for n 6. For y))p and y&&Nm,
the positions of the lowest poles in the complex W plane are

8'„=E—E„+0 —+i +0, n=1, 2, . . . , N.y, 2 E„
The residues of Tss(p, z) are given by Eq. (4.5) provided p +2ip is replaced by (p+iy) +2i(p+iy). In the limits

y »P and y »Nn, we have

E„
E

-ir2

lim riss(k, r)=exp( —iP) g ( —1)" ' exp i E E„+i-
+~ 00

' 1r2

+Q,7
(5.7)

where Q includes contributions from those poles for
which Eq. (5.6) no longer holds.

Tss ( k) =f 7}ss(k, r )d r
0

(5.8)

C. Properties of gzz(k, ~)

We can use Eq. (5.7) to study the on- and off-resonance
behavior of riss(k, r) in the limits g&)p and y»Nm
For EPE , with j= 1,2, . . . , N. , all terms in Eq. (5.7) os-
cillate rapidly so that the transmission amplitude [From
Eq. (3.2)]

will be small.
On the other hand, at a resonance E =E., the jth term

in the sum (5.7}has the form

—( —,
' I'i /A'}exp( —

z' I .v/A}

since p=j nfrom Eq. (5.3).. This term is nonoscillatory
and decays with a lifetime A/ —,I .. It is responsible for
the complete transparency of the double-barrier potential
since the right-hand side of Eq. (5.8) yields —1 in this
case.

More generally for E =EJ, the jth term in Eq. (5.7) can
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E . ~3.2'I. Iq. ~ . ). n this section, we consider three physically
important cases.

pp '

(I

p
t

x)000

T

FIG. 3. Real part (solid line) and imaginary part (dashed line)

of roi)5&(g, r} with y=0.015, P=m, and y=50 vs the reduced
time T =~/~0. The nearly horizontal solid line is the first t
x1( 000) in the residue series for roi)~~(g, r}, while the nearly

horizontal dashed line is —~0( 2 I, /fi)exp( —
—,
' I l~/Aj ( X 1000),

where
2 I, is calculated using the first term of Eq. (5.4).

—i—'I
T(Bw) (E) E —E +i—'I

J
(5.9)

For E=E, terins in the sum (5.7) with n Wj remain os-
cillatory. In particular, the (j + 1)th term has a period of
oscillation of 2iri'i/(E +, E). With —the help of Eq. (5.3)
this period is readily seen to be approximately 2vo, which
is short compared to the long lifetime of the resonance

i [see Eq. (5.4)]. When E=E, the contribution of
the (j+1)th term to Tss(k) is approximately

—i—,'I, +,(Ei/E, +, )' '/(E/+, E, ), —

which is small compared to the Breit-Wigner contribu-
tion (5.9). However, terms with nWj for E=E cannotJ
be neglected if more detailed information on i)ss(k, r) is
required.

In summary, for the case of resonance tunneling we
have found, as expected, that the traversal-time wave
function tends to zero much slower than in the free-
particle case. Its on-resonance behavior is characterized
by the formation of a slowly decaying nonoscillatory tail
in the series representation (5.7), which is responsible for
the absolute transparency of a symmetric double barrier.
Figure 3 shows the convoluted wave function i}ss(k, r) for
P=ir, y=50, and @=0.015. Note that the 1 1—( —' I A', / )exp( —

—,'I, rlirt), is lost in the background os-
cillatory contributions from poles with n & 1 in this case.

UI. TRAUERSAL-TIME WAUE FUNCTION
FOR ADDITIONAL INTERACTIONS

Equation (3.6) provides a simple way to calculate the
traversal-time wave function for an additional interaction
of the form f(t,'b[x (t)]}, provided we know the wave
function for the Unperturbed problem. The correspond-
ing transmission amplitude can then be obtained from

be approximated by

—
( —,'I /fi)exp[i (E E+i ,'—I )r/—h'] .

Equation (5.8) then yields the Breit-Wigner approxima-
tion for the transmission amplitude

A. Rectangular barrier potential

A rectangular barrier VO, b (x ), with V & 0, adds to the
free-particle action a term

VO.,(x (t))dt = —Vt,",[x (t)] .
I

Therefore from Eq. (3.6) we have
gatv(k,

r) =exp( iV—r/A)i)p(k, r) (6.1)

(
—1)" 'a„exp[i( IV„—V)r/iri],

n=1
(6.2)

(6.3)

Since Ti,(k) —= 1 for V=—0, Eq.(6.3) yields the identity

iA g (
—1)" 'a„/IV„=1.

n=1
(6.4)

Equations (6.3) and (6.4) let us write T~(k) in the alterna-
tive form

Tv(k}=Tv=p(k)+ g R„+
V —W, W,

(6.S)

where

where Y/p( k 7 ) is the free-particle wave function discussed
in Sec. IV and Eq. (4.6) has also been used.

It is instructive to examine how an increase in V affect
rii, (k, r) in the semiclassical limit P »1. For V =0 it has
been shown in Sec. IV that rip(k, r) has a stationary re-

gion around rp of width br=so/[2(2P)' ]. For
A/V »hr, the factor exp( i Vr/f—i) oscillates slowly
compared to Av. and

i)i, (k, r) =exp( iVrp/fi—)rip(k, r) .

In physical terms, the barrier is too low to influence the
particle's motion. A further increase in V results in a de-
formation and shift of the stationary region to larger
times. As V approaches E, a simple classical picture no
longer holds. In particular when

V=E —(iilirn) /[2m(b —a) ] for n =1,2, . . .

we have, from Eq. (4.13), Re( IV„—V) =0, so that the os-

cillating contribution from the nth pole in Eq. (6.2) is ab-
sent. As shown in Sec. V, this behavior is typical of a res-
onance, resulting in complete transparency. Indeed,
there is a well-known resonance effect discussed

' R fe in e.
~ for energies near the top of a rectangular barrier. Fi-

nally, for V »E, the factor exp( i Vr/A) —oscillates rap-
idly, so that i) i (k, r) no longer has a stationary region on
the real r axis. In particular, no unique real time, analo-
gous to ~o, can then be found for the tunneling particle.
This point is analyzed further in Ref. [15].

The transmission amplitude Tv(k) is obtained from

Eqs. (3.2) and (6.2)
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B. Optical potential

A purely imaginary potential iU—H,b(x), with U) 0,
describes absorption in [a,b]. It adds to the free-particle
action a term

t2

U,& x t &=&Us,'b' x t
1

so that

and

il, ,(k, i.) =exp( —Ui. /A)rto(k, i.)

00 a„
T, ,(k)=i tire (

—1)"
n=1 n l

Unlike the previous case, the factor exp( —Ui/i)1) de-
creases monotonically with i., which leads to a smooth
monotonic decrease of the transmission probability
P,~,(k) =

~ T,~,(k)
~

with U. Figure 4 shows a plot of
P,~,(k) versus the dimensionless variable U= U~o/A for

=6.

C. Interaction with a slow oscillator

Consider a free particle linearly coupled to an oscilla-
tor. The classical Hamiltonian for this system is

2 p2 M 2 2a=p +P +M &+U()g,
2m 2M 2

where (m, p, x) and (M, P, Q) are the mass, momentum,
and coordinate of the particle and oscillator, respectively.
The transition amplitude for leaving the oscillator in its

1.0

0
lA
lD

CQ

Vl
C

CL

I-
0.0

0.0

P (k)

2.5

X

Pv(k)

5.0

FIG. 4. Transmission probability at P=6 versus X for (a) a
rectangular barrier, where X= V7 0/A' (solid line); (b) for an opti-
cal potential, where X= U~o/A (dashed line); and (c) for an in-
teraction with a slow oscillator, where X=a ro/fi (solid line).

R„=Res„T(k,W) =imari( —I)"a„,n =1,2, . . . .

Equation (6.5) is an example of Mittag-Leffier's expansion
theorem [29].

It is not difficult to show that Ti,(k) is a function of the
dimensionless variables P and V = V~~/k. Figure 4 shows
the transmission probability Pi,(k)=~Ti, (k)~ versus V
for /=6.

Note that to calculate Tv(k) from Eq. (6.1), we first
need to know To(k, W) =T~(k) for —~ & W & co in or-
der to find ih(k, i.); see Eq. (4.2). The next two examples
are less circular.

Xexp[ i ro—(t —s)], (6.6)

where So [x (t) ] is the free-particle action. In general, the
double integral in Eq. (6.6) cannot be expressed in terms
of t,'b[x(t)]. However, in the special case co~0 and
U(x)=A, e,b(x} we have

S [x (t)]=So [x (t)]+i[at,'b [x (t)]]z,

where a=A, /(4M')'/ .
The wave function il (k, i.) becomes

il (k, i.) =exp( —a r /h')rto(k, i.) . (6.7)

Substituting Eqs. (4.6) and (6.7) into Eq. (3.2) allows the
transmission amplitude T (k) to be written in terms of a
sum of complementary error functions

T (k) = g (
—1)" 'a„exp

2a

8'„
4a A

Xerfc
i 8'„

2atrt'
(6.8)

where

erfc(z)=1 —(2/ir'/ )f exp( t )dt . —
0

Equation (6.8) can be rewritten in terms of the dimension-
less variables P and a =aiolh'

The factor exp( —a r /fi) in Eq. (6.7) has a damping
effect on iso(k, i.). As a result, the transmission probabili-
ty P (k)= ~T (k)~ rapidly decreases for large a, in a
similar way to P, ,(k). Figure 4 shows P, (k) versus a
for P=6. The curves for P, ,(k) and P (k) have been
plotted so that they would coincide in the classical limit
ih( k, r ) =5(r ro). The d—ifference between the two
curves in Fig. 4 is therefore a measure of the different
Feynman paths which contribute to T,~, (k) and T (k).

Finally, we note that the method described in this sec-
tion could be used to find q(k, r} and T(k) for any com-
bination of the three interactions. We could also study
the effect of the three interactions on resonance tunneling
by replacing rto(k, r) with rt&&(k, r) in the above equa-
tions.

VII. UNCERTAINTY RELATION
AND MEASUREMENT

OF THE TRAVERSAL TIME WITH A LARMOR CLOCK

In this section we first discuss an uncertainty relation
for the traversal time. We then discuss measurement of
the traversal time using a Larmor clock, which we apply
to free-particle motion, a rectangular barrier, and reso-
nance tunneling.

ground state can be written as a path integral with an
effective action (Ref. [6],p. 233)

S[x(t)]=S,[x (t}]

+ f dt f ds U(x(t))U(x(s))2M'
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A. Uncertainty relation

5~58'~ A, (7.1)

Now T(k, W) in Eq. (3.1) is the transmission amplitude
for the composite potential V(x)+ WH, t, (x). A measure-
ment of the traversal time to an accuracy of A~ therefore
results in an uncertainty of 6W + fi/b, r in the composite
potential. Since V(x) is fixed, we conclude that this un-

certainty must be introduced by the measuring device. A
difFerent uncertainty relation has been discussed in Refs.
[18,19].

It is well known (Ref. [23], p. 130) that the Fourier
transform relation (2.4) between r)(f) and g (A, ) implies a
Heisenberg-type uncertainty relation bfb, A, ~ fi, where
ri(f ) is assumed to occupy a region of order b,f in f space
and g (A, ) is assumed to occupy a region of order b, A, in A.

space. It follows from this uncertainty relation that f
and A. cannot both be known simultaneously.

In a similar way, for the traversal wave function (3.1)
we can write

FIG. 5. Schematic representation of the basis set ~y") with
k =0, 1,2, . . . , 2j used to describe a Larmor clock. The rotation
angle PI,

"for k =4 and j= 8 is illustrated.

For large j, the factor G " (p'ki' —cur), as a function of
r, has sharp peaks near r=T&'"'= [P'k'+2'—n]/co with

n =0, +1,+2, . . . (see Fig. 1 of Ref. [14]). The base
width of the peaks, which determines the accuracy (reso-
lution) of the measurement, is approximately

B. Larmor clock R, =4'/[(2j +1)o~] . (7.8)

The traversal time can be measured by a Larmor clock
[1,30—33]. This consists of a spin with 2j+1 com-
ponents, j =

—,', 1,—'„.. . , which interacts with a uniform

magnetic field H directed along the z axis, when the parti-
cle is inside [a,b] Followi. ng Peres [32] and Foden and
Stevens [33] (PFS), we describe the clock using orthonor-
mal states y"), k =0, 1,2, . . . , 2j, with

choose the Larmor period Tl =2ir/co to be

large compared to the time scale on which r)(E, r) van-

ishes as a function of ~, i.e., TL )&~,„.Then only the
n =0 peak of G " (Pz' cow) contr—ibutes to %(E,PI~') and

comparing Eq. (7.5) with Eq. (3.3) we see that rotation of
the spin through the angle p'kj' is equivalent to a traversal
time for the particle in [a,b] of

j
ly" &= y y" lm &, k =o, 1,2, . . . , 2j (7.2)

7 "=T" '-P~„"/co, k =0, 1,2, . . . , 2j .

where

y" —= ( m ~y") =(2j + 1) ' exp( —im P&~'),

k =0, 1, 2, . . . , 2j (7.3)

and the rotation angle |I)'k" is

P~&~'=2irk/(2j+1), k =0, 1,2, . . . , 2j (7.4)

k =0, 1,2, . . . , 2j (7.S)

The number m is the projection quantum number along
the direction of the magnetic field. The clock described
by Eqs. (7.2)—(7.4) is shown schematically in Fig. 5.

If the spin is in the state ~y ) prior to collision, the
probability amplitude to find the spin in the state ~y )
after the collision is [from Eqs. (10) and (13) of Ref. [14]]

%(E,P'j,")=I G " (P'k" cur)ri(E, r)dr, —
0

Equation (7.8) shows that the uncertainty R, in Nz~' de-
creases as j and ~ increase. Note that for k =0, we have
V~' =0. One might be tempted to conclude that passage
through [a,b] is then an infinitely fast process. However,
the finite uncertainty for R prevents us from changing
7"~-"=0 to N~~ ==0. We examine the limit R, ~0 in Sec.
VIII.

We can use the analysis just presented to verify the un-
certainty relation (7.1). For the initial state y ), Eqs.
(7.2) —(7.4) give

i.e., the states ~m ) are uniformly distributed between

,

'—j ) and
~j ). Next we note that if the spin is in state

~m ), the particle encounters an additional potential
A'mcog, b(x) [31]. Thus the uncertainty in the scattering
potential is h, W= 2Ajm. We also know that
=R, =4'/[(2j +1)co]. Constructing the product of b,r
with AW gives A~W=4M, in accordance with the un-
certainty relation (7.1).

where co is the Larmor angular velocity and

G " (y)=(2j+1) ' g exp(imy)

, sin[(2j+1)y/2]=(2j +1}
sin(y /2 )

(7.6)

C. Measurement of the traversal time

We now consider the measurement of the traversal
time by the Larmor clock method for three choices of the
potential V(x). We assume the clock is set as in Sec.
VII 8 so that Eqs. (7.2) —(7.7) apply. The experiment con-
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CL

0.8

nance lifetime (Fig. 8) and multiple bounces in the well
(Fig. 9) requires different resolutions —they are not both
seen simultaneously.

In summary, by adjusting the resolution R of the Lar-
mor clock, we have been able to obtain readings that are
consistent with different pictures used to describe reso-
nance tunneling. In the next section, we study the limit
in which the clock tends to infinite accuracy, R ~0, i.e.,
an ideal measurement of the traversal time.

32.5z VIII. HIGH-RESOLUTION LIMIT
OF A TRAVERSAL- TIME MEASUREMENT

34.5z 100

FIG. 8. Same as Fig. 6, except for the double-5-function po-
tential with j =20, y=600, and TL =100~O (RJ 5~O). The ap-
proximate position of the resonance at P= 32m is indicated by a
black triangle.

Tl =100ro (i.e., R =5ro), with 31.5m +P ~ 32 5n, w.hich
includes the 32nd resonance at P&2=32m; the lifetime of
this resonance is iri/ —,'I ~2=17.8ro. The effect of the reso-

nance can be seen clearly in Fig. 8; there are also large
peaks at k =0, corresponding to "fast" off-resonance tun-
neling. The small bumps at 7"z~' /re=100 come from the
overlap in Eq. (7.5) of the peaks in G "(P'k~' —cur) for
k =38—40 (which are centered at small negative values of
r}with ass(E,7).

Figure 9 shows a similar plot to Fig. 8 except that now
we have improved the resolution R by setting j =250 so
that R, =0.4'. The peaks in P (X;E,V&~') at
7kj' /re=1, 3, 5 correspond to the particle crossing [a, b]
once, three times after two reflections, and five times after
four reflections, respectively. The peaks become broader
and more distorted as N~'/ro increases. To resolve peaks
for six or more reflections would require calculations be
carried out for larger values of the semiclassical parame-
ter P. Note there is very little change in the plot on pass-
ing through the resonance. Thus observation of the reso-

A. Introduction

Consider Eq. (3.3) applied to an infinitely accurate
(ideal) measurement of a quantity x (e.g. , the coordinate
of a particle), which is described by a wave function P(x).
For this situation, the apparatus function must be
G(X,x)=5(X —x). It then follows that the normalized
probability W(X,X+5X) for the result of an ideal mea-
surement to lie in the interval [X,X+dX] is given by the
standard result

W(X,X+5X)=I (t(x)l'dx J ~P(x) 'dx .

(8.1)

The same argument cannot be applied directly to the
traversal time because the integral f o" ~ri(E, r)~ dr is

divergent, as has been discussed in Sec. IV B for the free-
particle case. However, we will show that this divergence
is also present in the numerator and the corresponding
normalized probability W('T, 'T+5 T) is a well-defined

quantity.

B. High-resolution limit of a Larmor clock measurement

'We consider, as discussed in the preceding section, a
Larmor clock measurement of the traversal time for a
free particle. The normalized probability WJ(T, '7+5'T}
for the result of a measurement to lie in the time interval

[7;7+5'] at an energy E is, by definition,

0.35

0.0
32.5z

1

f

/

}

0

where P(E, Nz~') is given by Eq. (7.9). We will assume
that j))1 and that many k states lie in the interval 5'T.

In order to isolate the divergence of r}o(E,r) we intro-
duce a truncated wave function rlo(E, r), which contains
only the first K terms of the residue sum (4.6):

N

r}o(E,r)= g ( —1)" 'a„exp(iW„rjh)
n=1

so that

31.57I;
qo(E, r)= lim go(E, r) .

Q~ ce

FIG. 9. Same as Fig. 6, except for the double-6-function po-
tential with j =250, y=600, and TL =100wo (R =0.4~0). The
approximate position of the resonance at @=32vr is indicated by
a black triangle.

Replacing r}o(E,r) by r}o(E,r) in Eqs. (7.5) and (7.9)
yields the approximate probabilities P (E, VIJ' } and

W,N(W, W+5V)
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2J

W,"( T, T+5'T) —= g e~,+,gNg')P"(E, +g') .
k=o

(8.2)

Now the high-resolution limit R-~0 corresponds to
j~ oo, so the probability W(T, T+5'T) can be written

W('T, 'T+5'T)= lim WJ ('T, 'T+5'T) .
J~ Qo

(8.3)

(E 'Ti')~2
lim P (E, Vg')=

(2j+1)~ f ~q,"(E,r)~'d7

k =0, 1,2, . . . , 2j . (8.5)

Finally, substituting Eq. (8.5) into Eq. (8.2) and replacing
the sum in Eq. (8.2) by an integral, we obtain for Eq. (8.3)
the result

W(T, 'T+5'T)

= lim gz E~ ~ gz E'T 7
N~cc T 0

(8.6)

It is convenient to consider 6rst the limit j~ao in Eq.
(8.3). From Eq. (7.7) we have (for the n =0 peak)

lim G "(P~J' nil)—= 5(r—7J'),2'
J~oo (2j+1)co

k =0, 1,2, . . . , 2j . (8.4)

%e also recall from Sec. VIIB that retaining only the
n =0 peak implies TL »r,„.Inserting Eq. (8.4) into
Eq. (7.5) and replacing the sum in the denominator of Eq.
(7.9) by an integral, we find

ed a high-resolution measurement of the traversal time in
the following way. First we set TI »ro/4 and then split
the interval [0,TL ] into I subintervals of width
57= TI /I. We then evaluated Eq. (8.2) for a fixed

j» 1 in each subinterval ['T;, T; +5'T] with i
=0, 1,2, . . . , I —1.

Figure 10 shows the results for Ti =2', I =50 (corre-
sponding to 5'T= 0.04 ro), and P=5. Plots for two values
of j are shown, namely, j =100 (i.e., Rj=0.02ro) and

j =1000 (i.e., R =0.002ro). In both cases, 900 Poles
have been retained in the residue sum. Also plotted in
Fig. 10 is the exponential distribution of Eq. (8.8). As R
decreases, it can be seen that the distribution of measured
traversal times does indeed tend to the limit (8.8). Note
that the number of terms N required in the residue sum is
0 (j'~ ); see Eq. (8.12). The analysis presented above also
applies to a rectangular barrier because rji,(E,r) only
differs from rlo(E, r) by the factor exp( i Vr/—A); see Eq.
(6.1).

2J

Pclock«j ) = X lj~(E 6')
I

k=0
(8.9)

To estimate P„„„(E,j), we again rePlace rjo(E, r) by
rjo(E, r) and then take the limits j~ oo and N~ oo. The
resulting sum for P„d,(E,j) has already been evaluated
in the derivation of Eq. (8.5). We have

C. Quencbing of transmission by an accurate clock

Finally, we consider the total transmission probability
for a free particle in the presence of a Larmor clock,
which is given by the sum in the denominator of Eq. (7.9),
namely,

Equation (8.6) is the analog of Eq. (8.1).
Next we consider the N +oo limit of—Eq. (8.6). Ac-

cording to Eq. (4.6), ~rjo(E, r)
~

consists of a double sum.
A more detailed analysis shows that the divergence of the
integrals in Eq. (8.6) arises from the diagonal terms in
this sum, i.e., we can replace ~rlo(E, r)~ by

lim P,i„k(E,j)= . f ~jrlo(E, r)j dr
j~ao 2J+1 co 0

and with the help of Eq. (8.7)

(8.10)

N

g ~a„~ exp( —21mW„r/h') .
n=1

Equations (4.8) and (4.9) tell us that for n~ co, we
have Im W„~2iii/ro and

~ a„~~4/ro, so that

N 4
lim g ~a„~ exp( —21mW„r/fi)=N —exp( 4rlro) . —

N~ oo 20

(8.7)

After using the result Eq. (8.7) in Eq. (8.6), we find that
the factor N in the numerator and denominator cancels
and that a high-resolution (ideal) measurement of the
traversal time is distributed exponentially with a lifetime
of v.p/4:

c0
~~

L

Vl

Eg
U)I
gl

I-

1.0

0.5

I

j-
I

0.0 ——--

j =100

j = 1000

W( 'T, T+5'T) = exp( 4'7—/ro)5'T . —4
7p

(8.8)

The derivation of Eq. (8.8) has assumed that
R «5Y« wp.

As a check on the validity of Eq. (8.8) we have simulat-

FIG. 10. Histogram of ~OW, ('T, , 'T, +$g )/(4$'T) for free
motion versus 7;/~o with i =0, 1,2, . . . , 49, O'T=0. 0470,
TL =2ro, P=5, and N =900, for (a) j=100, corresponding to
RJ=0.02~O (dashed lines) and (b) Z =1000, corresponding to
Rj 0 0027 0 (solid lines) ~ The solid curve shows the high-
resolution limiting result exp( —O'T/wo).



l252 D. SOKOLOVSKI, S. BROUARD, AND J. N. L. CONNOR

2mN
lim P,&„z(E,j)—

Q~ oo

(8.1 1)
%e now examine how these three steps might be imple-

mented using the traversal-time wave function.

Next we estimate the number of terms N in the residue
sum which contribute to the integral (7.5) by noting that
the period of oscillation of exp(iIV„r/A') for n »1 de-
creases as I ln; see Eq. (4.8). Equating the period to the
base width of (the n =0 peak in) G " (Pz~' r—or) gives an
estimate for ¹ From Eq. (7.8) we have

2m' 4m

~ W„~ (2j+1)ro

and using Eq. (4.8} we obtain
' 1/2

(b —a)2mJN (8.12)

IX. TRAVERSAL-TIME ANALYSIS
AND THE USE OF "FAST"AND "SLOW"

IN QUANTUM MECHANICS

A. Introduction

A great deal of practical interest in quantum traversal
times, and in particular tunneling times, arises from the
hope of finding quantum time scales analogous to those in
classical mechanics. Once discovered, these scales are
thought to tell one whether the scattering is fast or slow,
thereby justifying sudden or adiabatic approximations for
scattering problems in which a particle interacts with an
external time-dependent field or with other degrees of
freedom [1].

The use of a quantum time scale would typically in-
volve three steps. First, the exact action S [x (t) ] for the
problem would be replaced by an approximate one

So[x (t)], for which a solution of the Schrodinger equa-
tion could be obtained more easily. Second, a quantum
traversal time would be found for the motion of the parti-
cle governed by So[x (t)] through [a,b]. Third, neglect
of the remainder b,S [x ( t }]in

S [x (r)]=S,[x (r)]+ b,S [x (t)]

would be justified on the grounds that the particle spends
in [a,b] a (real} duration which is short (i.e., fast) or long
(i.e., slow) compared to a characteristic time associated
with the external time-dependent field or other degrees of
freedom.

In Eq. (8.12), m is the mass of the particle. Using Eq.
(8.12) in Eq. (8.11) shows that P,~„k(E,j) is O(1/j '~

),
i.e., a highly accurate Larmor clock (j »1) will lead to
reflection of almost all the particles incident on the inter-
val [a,b]. This is an inevitable consequence of the distor-
tion of the particle's motion by the measuring device.

Note the result (8.8) gives the normalized conditional
probability W(V; 7+5%') that the particle has crossed
[a,b], i.e., Larmor clock readings for the transmitted par-
ticle. Although the clock strongly perturbs the motion of
the particle, also note that the result (8.7}, as well as the
wave function r)o(E, r) used to obtain it, are for the un-

perturbed motion without the clock [14].

B. Interactions expressed in terms of t,'b [x ( t) ]

Let us assume that

bS[x(t)]=f(r,'„'[x(r)]), (9.1)

where f an arbitrary function of t,'b [x (t)]. In general, no
unique traversal time is available for the motion governed
by So[x (t)]; rather there is a distribution of times and in

the second step we must use the wave function bio(k, r).
In order to carry out the third step, we express the exact
and approximate transmission amplitudes T(k) and
To(k), respectively, in terms of t)o(k, r):

T(k) =f exp[if (r)/tri]t)o(r)dr (9.2)
0

and

To(k) = f t)o(r)dr,
0

(9.3)

where Eqs. (3.2) and (3.6) have been used. We then ask
the following question: Under what conditions does
T(k)= To(k), so that the replacement of S[x(t)] by

So [x ( t ) ] is permissible?

C. (Semi)classical examples

&strow(&)

cI

FICr. 11. Schematic representation of go(~) =6(~—~") and a
"fast" and "slow" f(r}, as used in the analysis of the transnus-

sion amplitude.

We first consider the (semi)classical limit

re(r) =5(w r"}, where—r" is the classical traversal time
for motion through [a,b] (see Sec. IVB(iv) (c) and Ref.
[15]). For T(k)=To(k), Eqs. (9.2) and (9.3) show that
we must have exp[if(r")/4]=1 or, equivalently,

~f ('7 )
~
/fl ((1.

Figure 11 illlustrates schematically two situations
which can arise. For f =f,&,„(r),the exponent f is

nonzero only for long (slow) times r& r" As a resul. t we
have T(k)=To(k) and can neglect b.S [x(t)]. Alterna-

tively, for f =f«st(r), the exponent is large for short
(fast) times 0 ~ r & ~", but vanishes for r & r", i.e.,

b,S [x (r)] does not have any effect on T(k).
Another possibility is f =f,„„(r)+f«„(r), where

again T(k) = To(k), although a simple "fast" or "slow"
argument does not apply in this case.
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D. Quantum examples

In the quantum case, Recto(r) and Imrto(r) typically
have finite extent along the ~ axis and there exists a ~,

„

such that ih(r)=0 for r&r,„T.he slow example dis-

cussed above can always be realized by choosing f (r} (as-
sumed to be real) to be nonzero only for r ~ r

Another example of a slow interaction is the free-
particle plus slow oscillator, which was discussed in Sec.
VI C. In the (ultra)quantum limit P«1, we have, from
Eq. (4.12), rto(r)=so 'exp( —r/~o) and from Eq. (6.7},
f(r)=ia 2 with a) 0. In order to have T(k) = To(k),
we must have a« irt' /~o, so that the exponential

exp( —a r /irt) in Eq. (9.2) is approximately unity. In this
case, a traversal-time analysis with a slow f (w) has led to
a restriction on the value of a. Equivalently, we have ar-
rived at the condition for the interaction to be suSciently
small to be treated perturbatively. Note that expanding
the exponent in Eq. (9.2) yields a perturbation series in
the coupling constant.

Since ih(r) =so 'exp( r/ro) —decreases monotonically
from ~=0, it is easy to see that in general we cannot ar-
gue that there is a f (w) which is very fast and hence
negligible. Instead, any slowly varying f (~), which takes
significant values between 0 and ~0, will contribute to the
integral (9.2) and change the transmission amplitude.

E. An additional ambiguity

rather than the single integral (9.2)
Throughout this section, we have assumed that

b,S [x (t)] is expressed in terms of t,'b[x (t)]. We briefly
discuss the case when Eq. (9.1) does not apply in the next
section.

X. TRAVERSAL-TIME ANALYSIS
FOR MORE GENERAL INTERACTIONS

A. Introduction

This section discusses the diSculties that arise when
b,S [x (t}]A f (t,'b [x (t)]). As a concrete example, we will
consider a rectangular barrier whose height increases
linearly with time,

V(x, t) =( V+ut)8, b(x), (10.1)

where u &0.
Consider a quantum particle impinging on the time-

dependent barrier (10.1). A classical analogy suggests
that the particle will 'see" a static barrier if the duration
spent inside [a,b] is sufficiently short. We will show,

An additional ambiguity arises if we are only interested
in the transmission probability

~
T(k)

~
rather than T(k)

itself. It is possible for the interaction b,S[x(t)] to
change the phase of T(k), but leave its modulus un-

changed. In this situation, one should analyze the double
integral

~T(k)~ =f d~f dr'exp[i[f (r) —f*(r')]/A]

X i}o(r)rto (r')

however, that a simple criterion for the validity of this
sudden approximation does not follow from the analysis
of the preceding section, because the problem requires a
different functional than t,'b [x (t) ].

S[x(t)]=Sy[x(t)]—u f t8,b(x(t))dt . (10.2)

Following the development of the theory in Sec. II, we
define a traversal-time wave function by

x~, t2
il(~)= f Dx( )5(t,'b[x( )]—r)expIiS[x( ~ )]/R],

1' 1

where for simplicity 4, and %2 in Eq. (2.2) are chosen to
be Dirac 5 functions. From Eq. (2.3), we have for the
transition amplitude

g(x2, tt~x„t,)= rt(7)dr
1

Next we rewrite Eq. (10.3) in the form [cf. Eq. (3.5)]
t2

g (x2, tilxi, ti) = ~ (~)sty(r)«,
1

where

A (r) =rt(r)/sty(r)

(10.3)

with

~y(~)= f '
Dx( ~ )5(t,'b[x( ~ )] r}exp—[iSy[x( )]/irt] .

X), t)

Unfortunately no further simplification of A (r) is pos-
sible to give a result analogous to Eq. (3.6) or (9.2), which
formed the starting point for the traversal-time analysis
of Sec. IX. The reason is that the value of

t2

t.'b'[x (t)]—=f 8„(x(t))dt
1

does not uniquely define the value of the functional

t~8,[x(t)]—=f t8.b(x(t))dt,
1

which enters in Eq. (10.2). To see this, consider two
paths which both cross [a,b] once. Let us assutne that
they enter and leave [a,b] at times Ti, T, +r and

Ti, Ti+7., respectively. The value of t,'b[x(t)] is r for
both paths, whereas the value of 8,"b [x (t) ] is

r(~+2Ti )/2 for the first path and r(7+2T2)/2 for the
second one.

C. Analysis in terms of the functional e 'b [x {t}]

The discussion of Sec. XB suggests that the appropri-
ate variable for the problein is 8 b[x(t)] rather than
t,'b[x(t)]. To this end, we define wave functions in the
representation of 0 'b [x (t)] by

y(8)= f I)x( ~ )5(8'ib[x ( ~ )]—8)exp[iS [x (.)]/4]
xl, tl

B. Traversal-time analysis

The action for the system (10.1) can be written in the
form
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x2, t2

y~(8)= f Dx( )5(8"b[x( ~ )]—8)
x

l y t

Xexp[iS,,[x ( ~ )]/A'] .

Using Eq. (10.2), we have

y(8) =exp( iu—8/A)gz(8)

and the transition amplitude is now given by a simple
quadrature

0~

g (xz, t, ~x, , t, ) = f exp( iu 8—/A)yt, (8)d8, (10.4)
8l

where t9& and 82 are the smallest and largest values that
8,"b[x (t)] takes on those Feynman paths which connect
(x, , t, ) with (x2, t2), respectively. The effect of the per-
turbation in the integral (10.4) can now be analyzed in a
similar way to that discussed in Sec. IX. However, this is
no longer a trauersal-time analysis. Rather we have used
a different representation and in general there does not
exist a simple relation between y~(8) and r)~(r). Thus
we conclude that a traversal-time analysis is restricted to
problems for which b,S [x ( t ) ]=f( t,'b [x ( t ) ] ).

XI. CONCLUDING REMARKS

In this section, we summarize our answers to two fre-

quently asked questions about the quantum traversal
(tunneling) time and also discuss the connection with a
complex-valued traversal time.

A. How long does it take a quantum particle to tunnel?

First, we note that this question should be replaced by
a more precise one, e.g. , what is the net duration a parti-
cle spends in [a,b]? For a quantum particle this duration
is not a single time; rather there is a distribution of times.
For fixed energy scattering, this distribution is given by
the traversal-time wave function ri(k, r), which is the
probability amplitude for the duration to equal ~.

In order to obtain further information, a measurement
of the traversal time must be made. This projects g(k, ~)
onto a state localized on the ~ axis. An equivalent state-
ment is that the measuring device (e.g. , a Larmor clock)
excludes all Feynman paths except those for which

t,'b[x(t)] equals r. Like dynamical variables, the traver-
sal time obeys the usual quantum-mechanical rules.

We now examine some of the above statements in more
detail.

(a) The classical traversal time t,'~ [x (t)] is only one of
many time parameters that occur in classical mechanics.
In a quantum treatment, it is first of all necessary to de-
cide which classical functional is to be quantized. Time
parameters other than t,'I', [x (r)] can be used, as discussed
in Secs. II and X.

(b) The traversal-time wave function g(k, r) is
obtained by summing the Feynman weight
exp[iS [x( )]/fi] over those paths which spend a dura-
tion r in [a,b]. For a free particle, go{k,r) is a complex-

valued distribution (generalized function), which has an
oscillatory series representation over the poles of the
transmission amplitude To(k, JY). However, in applica-
tions, qo(k, r) is typically convoluted with a smooth func-
tion of finite width, as illustrated in Fig. 2.

(c) The complicated form of go(k, r) prevents us from
characterizing its properties in terms of a single time pa-
rameter, e.g., its first moment or median. Rather Sec.
IV 8 shows that a variety of time parameters, such as the
classical traversal time ~o, the width of the semiclassical
peak Dr=so/[2(2P)'~ ], and the lifetime associated with
the leading pole r,, „=A'/Im W&, are "hidden" in rio(k, r)
A unique traversal time is only obtained in the
(semi)classical limit where rio(k, r) ~5(r—ro).

(d) The nonlocal nature of t,'I', [x (t)] has an important
consequence for its measurement. It is we11 known that
measurement of a local dynamical variable, such as posi-
tion or momentum, causes collapse of the wave function.
Because t,'b [x (t)] is nonlocal, interaction with a measur-
ing device (and hence disturbance of the particle's
motion) must occur throughout the motion. This is
clearly illustrated in our analysis of a Larmor clock mea-
surement in Sec. VII, where the Larmor clock introduces
an uncertainty 58' into the composite potential. Note
also that in Eq. (7.5), the apparatus function
Gp~s(p'„"—cur) only depends on the parameters of the
clock, while g(k, r) is the traversal-time wave function in
the absence of the clock.

It is interesting to note that the original Baz' method
[30] proposed to measure the traversal time without per-
turbing the particle's motion, which is responsible for the
failure of this approach. In the Baz' method b, 8'~0,
and it then follows from the uncertainty relation
b, ~58'&A that h~-~ co, i.e., there is an infinite uncer-
tainty in the value of the traversal time.

(e) A remarkable feature of a Larmor clock measure-
ment is that the traversal-time probability distribution
depends crucially on the resolving power of the clock R .
For example, a free particle at high energy shows Larmor
clock readings peaked around ro (see Fig. 6). However,
for R ~0, the results of the measurement are distributed
exponentially, as discussed in Sec. VIII. In the case of
resonance tunneling, Fig. 8 shows how a resonance affects
the traversal-time distribution. In contrast, at higher
resolution, Fig. 9 exhibits multiple rejections as the par-
ticle bounces between the potential walls.

B. How can one use the quantum traversal time?

We have described two uses of the traversal-time wave
function in this paper, provided the action can be written
in the form S [x (t)]=SO[x (t)]+hS [x (t)], where
b,S [x (r)]=f(r.'b'[x (t)]).

(a) If the traversal-time wave function for the action
So[x (t)] is bio(k, r), then the full wave function is given

by the simple result

r)(k, r) =exp[if (r)/fi]r)0(k, r) .

For example, knowing the free-particle wave function, we
obtained in Sec. VI the wave function for a rectangular
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barrier, a purely imaginary optical potential and for in-
teraction with a slow oscillator.

(b) The corresonding transmission amplitude is given
by

T(k) =I exp[if (v)/A']go(k, v)d~ .
0

This integral representation lets us analyze the effect of
the interaction f(t,'b[x (t)]) on the unperturbed transmis-
sion amplitude. In particular, it may be possible to carry
out a fast or slow analysis of the kind described in Sec.
IX. Another possibility is to obtain the semiclassical lim-
it of Eq. (11.1) by examining the stationary phase (or sad-
dle point) structure of exp[if (r)/t)1]go(k, r), as we have
described in Ref. [15].

C. Connection ~ith a complex-valued traversal time

A complex-valued time, obtained as a Feynman aver-
age of t,'b[x (t)], has been introduced by Baskin and one
of the present authors (D.S.) [7]; its properties are exarn-
ined in Refs. [8—14]. In the traversal-time wave-function

approach, this complex time is the first moment of
q(k, r), as has been shown in Ref. [13] for an arbitrary
potential V(x) and by Fertig for a rectangular barrier po-
tential [18,19].

The complex time arises naturally [14] in an indirect
measurement when one attempts to measure the traversal
time without destroying the interference between Feyn-
man paths which spend different durations in the region
of interest, e.g., the Baz' method mentioned above. We
have discussed the relation between this complex time
and (real) observable quantities in detail in Ref. [12].
Many other tunneling times have been defined in the
literature and their connection with the complex time is
extensively reviewed in Refs. [1]and [4].
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