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An application of the artificial-channel method with hyperspherical coordinates to the calculation of
photoionization cross sections of two-electron systems is presented. The method yields “bound-free”
transition amplitudes and bound-state energies of any two-electron system. It obviates the separate gen-
eration of bound- and continuum-state wave functions by calculating directly the desired amplitudes. As
applications, the photodetachment cross section of the H™ ion and the photoionization cross section of
the He atom have been calculated. The computations are compared with other theoretical calculations
and with experiments. The results obtained are in excellent agreement with experimental results for all
the energies considered. Of equal significance is the close agreement, attesting to the high accuracy of
the method, between results obtained by using the length form for the field-matter interaction and those

obtained with the acceleration form.

PACS number(s): 32.80.Fb, 31.50.+w, 32.70.Cs, 32.80.Dz

I. INTRODUCTION

Photoionization of two-electron systems is a subject of
growing interest, as it sheds light on the role of electronic
correlations in both bound and continuum states. When
a number of channels are open, photoionization process-
es result in a rich spectrum of doubly excited highly
correlated autoionizing states. Such resonances were ob-
served recently for He [1,2] and the H™ ion [3,4]. These
observations are complemented by new measurements of
field-induced window-type resonances in electron detach-
ment of H™ in the static electric field (F <90 kV/cm)
[5,6], leading to the production of (N =4, 5, and 6) neu-
tral H atoms.

The study of doubly excited atoms poses a number of
interesting challenges, as we need to properly describe
the dynamics induced by several interacting continua and
we need to account for strong correlational effects.
Configuration interaction by basis-set expansion methods
becomes very cumbersome for treating doubly excited
resonances because of the vast number of configurations
needed to account for the strong electronic correlation
existing for these states. The problem becomes even
more severe when the system does not have atomic sym-
metry. Because of this, a variety of specialized pro-
cedures have been employed [7-18]. These procedures
include R-matrix methods [8,9], coupled-integral equa-
tions within many-body perturbation theory [10],
multiconfigurational Hartree-Fock [11,12], continuum
discretization methods [13—15], the complex Kohn varia-
tional method [16], and hyperspherical close-coupling
schemes [17,18].

All the above methods go through two phases in which
the continuum and bound wave functions are first ob-
tained; the ‘“bound-free” transition dipole matrix -ele-
ments are computed from these wave functions by nu-
merical integration. This procedure is costly and fraught
with inaccuracies because of two main reasons: (a) At
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sufficiently high energies the continuum wave functions
are highly oscillatory. They therefore need to be generat-
ed and stored at many points. (b) If one uses propagation
techniques, the generation of the continuum wave func-
tion necessitates the continual applications of stabilizing
transformations in order to get rid of the exponentially
growing components of the closed channels. These sta-
bilizing transformations must be undone after the propa-
gation is finished in order to obtain the wave functions.
The undoing of the stabilizing transformation is time
consuming and is a source of errors. In fact, the errors
propagate exponentially with the number of steps at
which the stabilizing transformation is undone.

In this paper we present a method, an application of
the artificial channel method (ACM) [19,20], which over-
comes the above-mentioned difficulties. We present an
application to photoionization processes of the artificial
channel method, which has so far been applied to
nuclear-type problems (e.g., photodissociation [19-21]).
The main merit of the method is that it does not require
the explicit generation and storage of continuum or
bound wave functions. Rather, the relevant bound-free
matrix elements (and the bound-state energies) are com-
puted from a single set of equations. An additional
benefit is that, because of the above, it is possible to use
algorithms, such as the log-derivative or piecewise-
analytic methods [22,23], which take steps larger than
those necessary for convergence of the bound-free in-
tegral by ordinary quadrature. Moreover, since the
bound and continuum wave functions are treated on an
equal footing, they are of identical accuracy, a point of
great importance to the overall accuracy of the bound-
free integrals. A drawback of the method is that because
both bound and continuum spaces are included in a sin-
gle set of equations its size is larger than that of the
separate spaces. This drawback is more than offset by
the ease of computation, the great stability of the
method, and the ability to take much larger propagation

1205 ©1994 The American Physical Society



1206 ALEXANDER G. ABRASHKEVICH AND MOSHE SHAPIRO 30

steps.

For the case of two-electron systems we found it useful
to use the hyperspherical coordinates [24—26] which al-
low for the description of exchange symmetry in these
systems in a very natural way. In the hyperspherical
coordinates the motion of the electrons in R® space is
separated into the &> angular variables [27] and the
“hyper-radius” p=1/r?+r3, which acts as the scatter-
ing coordinate. The goodness of the hyperspherical
method derives from the success of the hyperspherical
adiabatic (HSA) approximation [26-36]. The expansion
in the HSA basis was performed for the photoionization
of He [18], and for the doubly excited states [17,34-37]
in particular.

This paper is organized as follows: In Sec. II we out-
line the hyperspherical artificial channel method. In Sec.
IIT we present the results for the He and H™ bound
states, the photoionization of He, and photodetachment
of H™. Future applications are discussed in the Con-
clusions section.

II. METHOD

A. Photoionization cross section

In the weak-field limit, the cross section for photoion-
ization or photodetachment of an atom by a single pho-
ton is given in the length form by

o (w)=4r’0alf;|?, (1

and in the acceleration form by

2
o)=L p 2 @)
@
where
2
fL(a))=<\IIE DR \I/,,> (3)
i=1
and
& Zr;
fato)=(¥; o 3 5w, ) @
i=1 7

are, respectively, the length- and acceleration-form tran-
sition amplitudes. The wave functions ¥, and Vg
represent, respectively, the bound and the continuum
states; @ is the photon energy in atomic units, « is a fine-
structure constant, Z is a nuclear charge, € is the field’s
polarization direction, and r; is the radius vector of the
ith electron. When the bound and continuum wave func-
tions are exact, the length and acceleration forms should
yield identical results in the weak-field limit.

J

1
V2
O30 =V 1(h 2

OFIT(p) = —= [YHY (2,28, azp)+(— 1)

Sgiasp) for 1,=1,=1,

L+S+1+1

B. Hyperspherical coordinates
The Schrodinger equation for a two-electron atom is

given by

3

i=1

——1 —
|f1_r2‘

E {¥(r,,1,)=0, (5)

where A; is Laplacian for the ith electron. In hyper-
spherical coordinates r, and r, are replaced by the
hyper-radius p and hyperangle a defined by

p=V'ri+rl, a=tan"'(r,/r) . ©

Expressed in these coordinates, the Schrodinger equation

for the “hyperspherical” wave function WY(p,Q)
=(p*/*sina cosa )y has the following form:
— O L hip)—2E |W(p,2)=0 ™
9  4p? P P ’
where
ﬁ(p)=#7&2(ﬂ)+—V(a,9n), 8)
R 2 12 I2
R ©)
oa cos‘a sin‘“a
and
Via9g)=——=2-—-22 2 (g

cosa  sina  4/1—sin2acosé,,

Here () represent the five angles a,T,,T,; [; is the orbital
angular momentum of the ith electron, and 6,,
=cos [(r, 1)) /r 7]

C. Hyperspherical adiabatic (HSA) basis

The HSA states {®,(Q;p)} are defined as the solutions
of the eigenvalue equation,

h(p)®,(Q;p)=U,(p)®,(Q;p) . (11

Equation (11) must be solved for each p value to obtain
the hyperspherical potential U,(p). For large values of p
the HSA functions take on the character of the hydro-
genic wave functions perturbed by a distant charged par-
ticle. For p close to the origin the HSA states resemble
the hyperspherical harmonics (K harmonics [26)), defined
as the eigenfunctions of AXQ), the generalized angular
momentum operator.

Following Ref. [38], we solve Eq. (11) by expanding
®,(Q;p) in a p-changing basis of )-dependent functions,

D,(Q;p)= I%a;;,zk(p)eﬁﬁ”m;p) , (12)
11'5212
where
YR M /2= asp)] for 1, (13)
(14)
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with ‘3/{“11}42 (f,,T,) being the bipolar spherical harmonics. The quantum numbers L, M, S, and  are, respectively, the to-

. . 11 .
tal angular momentum, its projection onto the z axis, the total spin, and total parity. The g:' *(a;p) functions are
chosen as the solutions of the following eigenvalue equation:

{1 L +1)  L,+1)
— | —==+
p2

2
subject to the boundary conditions,

da? cosla sin“a

g a=0,p)=g; (a=m/2;p)=0. (16)

Substitution of the expansion of Eq. (12) into Eq. (11)
leads to a set of algebraic eigenvalue equations for the
af 1,x(p) coefficients,

ha=al, (17)
where
U, =U,pl, ., (18)

a’=(a,,a,,...,a,), ai=a1‘i12k(p) , i=12,...,n,
(19)

and
Ik
hi) i (p>=<eﬁ%ﬁ*r(n;p)m(p>|eff;f;j(9;p)> . (0
Since h is a real symmetric matrix, Eq. (17) can be easily
solved by standard diagonalization methods.

We obtain the solutions of Egs. (15) and (16) by a
finite-element method [39] with isoparametric Lagrange
elements of the nth order. Tlhcle method is accurate to
O(h?") with respect to the € *(p) eigenvalues and to

O(h"*1) with respect to the g,ﬁ‘ >(a;p) eigenfunctions,
where h, is the length of one of the N grid elements of
order n =N, spanning the [0,7/2] interval. The result-
ing generalized eigenvalue problem is solved by the sub-
space iteration method [39].

The numerical integrations of the
(fVILﬁ’Z |V(a,6y,)] ‘.‘/{“ﬁ’z ) angular matrix elements and the

transition-dipole angular matrix elements are carried out
with a 450-node Gauss-Legendre quadrature. Numerical
parameters, such as N, N, the maximal value ofl,,1,,
and k of Eq. (12), are adjusted to render U,(p) and
<D#(Q;p) accurate to 1074-107° a.u Representative
values of these numerical parameters are given in Table I.

As reported below, the HSA expansion converges well,
with the rate of convergence improving as p increases.
This trend is probably due [38] to the e,ﬁ’;fj,:’(n;p) func-

tions accounting for the main part of the interaction.
This is in sharp contrast to the hyperspherical harmonics
method [26] where the rate of convergence decreases as p
increases.

In Figs. 1(a)—1(c) we present the H™ 'S° and 'P° and
the He !P° potential curves correlating with the
n=1-n=5 hydrogeniclike states as a function of p.
Clearly seen are points of avoided crossings [26] where
the radial nonadiabatic coupling terms are known

+%( Yt Via, o) Y1 g,i‘Iz(a;p)=ei‘lz(p)g,i112(a;p) (15)

f

[26,34,36] to peak. If these peaks are very sharp, the use
of the adiabatic basis may be problematic. In this case it
is advisable to switch to some diabatic representation
[40,41] (i.e., a representation in which the first-derivative
coupling terms vanish). One convenient type of diabatic
basis is the so-called sector-diabatic basis [38,42] which
satisfies Eq. (17) in the middle of each p sector only.
Propagation with this basis necessitates transforming
from one sector basis to another, as one moves across the
sectors, in order to guarantee the continuity of the total
wave function ¥(p,Q). As described below, this is in fact
the procedure adopted here.

D. Coupled-channel expansion

With the introduction of the HSA expansion, the six-
dimensional Schrédinger equation [Eq. (7)] is
transformed to a system of coupled differential equations
(“coupled channels”) in p. In the sector-diabatic method
we divide the range of p values into [p,_,p,]
g=1,...,N sectors and use in each sector a diabatic
basis obtained by solving Eq. (17) at the
py=(pg—1tpy)/2,q=1,...,N midpoints.

In principle, the sector-diabatic basis is used to expand
both the bound, ¥, (p, 1), and continuum, ¥z (p, 1) wave
functions,

¥,(p, Q)= 3 B,(p;p, )P (%P, , (21)
u

Yz (p, Q)= 3C, (Elp;p,)Pc(Q;p,) . (22)
N

TABLE 1. Numerical parameters used for calculating the
HSA eigenvalue curves and corresponding basis functions.
Below pp,, is the number of basis functions ®,(£;p), I, is the
maximal value of orbital momentum / for all pairs (/,,/,) al-
lowed, k., is the number of solutions of Eq. (15), N is the
number of finite elements, N, is the order of isoparametric
Lagrange elements used as the finite element shape functions,
and h,, is a typical step of the finite element grid.

Numerical

scheme H™ He
parameters 1se 1pe 1se 1pe
Emax 15 25 15 25
Lna 8 5 9 5
K max 9 10 10 11
N, 172 200 160 188
N 4 4 5 5
h, 0.0091 0.0079 0.0098 0.0084
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B,(p;pg)and C (E|p;p,), the “channel wave functions” d?
in the bound and continuum manifolds, satisfy similar —FH—VC(p)—ZE ) C‘(Elp;ﬁq)=0 , (23b)
sets of coupled-channel equations, P
d? 3 _ differing only in the boundary conditions and the numeri-
- dp? I+V%(p)—2E,1 B,(p;p,)=0, (23a)  ca values of the potential matrix elements,
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2
__1 _
Vinlp)=— 402 8yt Uyi(pg)8y,

Pq

1_Ps
p P
X D%(Q;p,)|V(,0,)95(Q;5,)) ,

oc=B,C .

(24)

+2

In practice we solve for a single set of equations, as dis-
cussed below.

The change from one sector to the next must maintain
the continuity of the Wg(p,Q) wave function and its
derivative at the sector borders. This is accomplished by
expressing the channel wave functions on the left-hand
side (lhs) of the n +1 sector in terms of the channel wave
functions on the right-hand side (rhs) of the nth sector.
Using the identity between the total wave functions at the
border point,

SCulprsB, O X5,) =S CulpriPn + VOH DB, 1)
p 7

(25)
we obtain
CulpriPn+1)= 22, .C.(PR3Py) » (25a)
where the sector overlap matrix Q" is defined as
Qn ,=(@LQ;p, ) |P(Q;5,)) . (25b)

The bound-state equations may be treated in an identical
manner. A good check of the accuracy of the basis func-
tions and the sector size is the unitarity of Q" overlap ma-
trices. We have found that a uniform width of 0.2a,
guarantees the unitarity of the overlap matrices to within
1073-107* over the entire p€[0.1,125.] range used in
our computations.

E. Dipole matrix elements

The dipole transition amplitudes are obtained by sub-
stitution of Egs. (21) and (22) into Egs. (3) and (4),

frle)=3(C, (E)dL,(p)|B,) , (26)
uv
falo)=3(C (B)d(p)B,), 27
H'V
where d5{* (p), the angular dipole matrix elements, are
given as
di(p)=pDy,(p,) , (28)
dAe=%D4,) . 29)
p

D{;,,(ﬁq )and D /2, (p, ) are given as [29]

1209

L= \y=(HC(O-5

D, (p,)=(®.(Q;p,)|(cosa cosh,
+sina cos6,)|PE(Q;5,)) ,  (30)

cos@, cosf,

cos?a  sin’a

DAp=(2fp,)

23(0;p, )> .

(3D

The D, matrix elements are independent of the final-
state energy E and are the same for any photon energy .
In Figs. 2 and 3 we show the radial dependence of D,
for the !S-1P transition in H™ and He. These matrix ele-
ments approach a constant value as p tends to infinity.
Near the origin they depend strongly on p (except for the
diagonal elements in the length form) as a result of elec-
tronic correlations. In general, the variance with p of the
acceleration-form matrix elements exceeds that of the
length form. The nondiagonal matrix elements quickly
decrease with the number of channels 1 and with p. As
can be seen in Figs. 2 and 3 the behavior of the angular
dipole matrix elements in the vicinity of the avoided-
crossing points, occurring at 13.66 a.u. for the 'P? state
of H™ and at 7.65 and 17.43 a.u. for the !P° state of He
(see Fig. 1), is rather erratic. This is as expected due to
the rapid change in the HSA basis near the crossing
points. Again, the problem is resolved in the sector-
diabatic representation used here.

2 A ' 1 '
AL length form
o e acceleration form
. L
\}‘\2\2

Dipolar Angular Matrix Elements (a.u.)

4 6
p (a.u.)

0.10 . L L
length form H~™

Dipolar Angular Matrix Elements (a.u.)

0 10 20 30 40

FIG. 2. Radial dependence of the angular matrix elements
D, in the length and acceleration forms for 'S-'P transition in
H . @Qu=v=12;b)u=12,...,6,v=1.
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u.)
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Dipolar Angular Matrix Elements (a.
I
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FIG. 3. Radial dependence of the angular matrix elements
D,, in the length and acceleration forms for 'S-'P transition in
He. @) u=v=12; ®)u=1,2,...,6, v=1.

F. Artificial-channel method

In the artificial-channel method one solves a single set
of coupled-channel equations for the bound and continu-
um manifolds. An additional (“artificial’’) channel, serv-
ing as a source term, is introduced in order to satisfy the
incompatible boundary conditions imposed on these two
manifolds. In the hyperspherical sector-diabatic repre-
sentation the artificial-channel set of equations is com-
posed of the following:

A continuum manifold,

Fipsp)+ 3 Vi (p)Fy(psp,)

= 3d,,p)FE(p;p,) . (32)

coupled to a bound manifold,

d2

-2 g
dp’

FE(p;p )+ VL, (p)FE(p;p,)

=W, (p)Fp;p,), (33)

coupled to the artificial channel,

2
—:—pz-—E-Fea-F Veip) |Fi(p;p,)=0 (34)
which serves as the source term. The ng(p) and Vﬁv(p)
matrices in the above are given by Eq. (24), €, is the
artificial-channel asymptotic energy, and the dipole ma-
trix elements d,,(p) are given by Egs. (28) and (29). As
explained below, the results for the final bound-free ma-
trix elements are insensitive to the exact form of V%p)
and W ,(p) of the above. In the present application [43]
both are taken to be simple decaying exponentials
Voexp(—ap).
Equations (32)-(34) can be written more compactly in
matrix notation as

|

where the potential matrix is of the form

2
—4- g [1+V(p) [F(p)=0, (35)
dp

Vip)+e® 0 o
Vip)= 0 Vip) dp) | . (36)
W(p) 0 VBp)
The matrix of solutions is of the form
F@ o 0o
F(p)= |F¢ FS FE | . 37
F§ F§ F5

In the above, boldface symbols represent rectangular sub-
matrices, italic symbols represent column vectors, and T
represents a Hermitian adjoint (for real matrices, a ma-
trix transpose). For example 0, 0, and 0' denote zero rec-
tangular matrix, zero column vector, and zero row vec-
tor, respectively.

The S matrix derived from Eq. (35) can be obtained us-
ing a variety of multichannel propagation schemes [22].
Of greatest interest to us are the elements of the S matrix
that connect the artificial channel to the continuum sub-
space. These matrix elements can be written, using stan-
dard expressions, as

Sc.(E)=2mi{C (E)|d|F§%E)) , (38)

with (C7(E)| being the (incoming) solutions within the
continuum manifold [Eq. (23b)]. It can be shown [19,20]
that with the special nonsymmetric form of Eq. (35) the
above matrix elements become

(C™(E)|d|B, Y{B]|W|F**(E))
E—E,

Scoa(E)=2miS , (39)

where E, are the eigenenergies and B,, are the columns of
eigenstate coefficients in the bound manifold [Eq. (23a)].

It follows from Eq. (39) that all the elements belonging
to the S¢ , column have poles at E, —the bound-state en-
ergies of the (two-electron) system. The residues of these
poles are directly related to the desired dipole transition
amplitudes
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o 1 S,,qa(E)
funtE)Y=(CE)d|B, )= —Res, [w—(E)— , (40)
where

w™E)=(B]|W|F}%E)) . 41)

The quantity w” and the bound-state energies E, are
most conveniently calculated in a separate smaller calcu-
lation in which the whole C manifold is replaced by a
second artificial channel @’ whose ¥° channel potential
and W' row vector of coupling terms (like C, channel a’
is coupled to the bound manifold) are set identical to V*
and W. The S, , matrix element resulting from this set
of equations, which is identical in structure to Eq. (35), is
of the form

(F&~(E)\W'|B, )(BlIWIFZ*(E))
E—E,

Syo(E)=2mi S
n

=2mi exp(2i8,) 3 |w™E)|*/(E —E,) . 42)
n
Hence |w"(E, )|* are obtained as

lw™(E,)|*= , (43)

1
E;Resnsa"a(E)

and E, are obtained as the corresponding poles positions.
These poles can be located very efficiently [44] using only
a few iterations. (See Appendix A of Ref. [44].) Typically
[45] an eigenvalue can be located to nine to ten significant
figures with four or five evaluations of the S-matrix ele-
ment. Once w™(E,) and E, are known, the desired
bound-free matrix elements are computed directly from

used for all energies [19].

Finally, we outline our procedure for extracting the S-
matrix elements. As mentioned above the propagation of
Eq. (35) is performed with the log-derivative method [22].
In the asymptotic region we must transform the solutions
from the hyperspherical coordinates to the heliocentric
(r;,1,) coordinate system, in terms of which the asymp-
totic form of the two-electron wave function is

W, (r,1)=3;(ry, 7,5 )x5 (k7))
j

= 2¢j(r2’?1’?2)
J
—1/2; —1/2
X (k72 Uy )8+ k™ 2my (e K )
(44)

where

¢j(r2,?1,?2)=Pn12(r2)‘3/{“11}’2(?1,?2) , J=nly,1L), (45)
with P,,,Z(rz) being the radial hydrogenic wave functions.
k, is the channel wave number given by

k,=V'2AE—e¢,), €,=—Z*/2n?, (46)
K;; are the elements of the reactance K matrix, and

j,j(kjrl) and n,j(kjrl) are spherical Riccati-Bessel and

Riccati-Neumann functions, respectively. Equating Egs.
(22) and (44), and using the orthonormality of the basis
functions ®,(Q;p,,), we have

Eq. (39). A simple shift of E—E, in the definition of the Fui(pa)= 2 Fuj(pas)8si + 9, (pas)K i} 47)
€, asymptotic energy guarantees that it is enough to solve J
Eq. (43) only once, i.e., that the value of w"(E,) may be  where
J
p 172
/2 11 L
7;4j(pas)=N —kﬁ %aﬁlzk(pas)foﬁ dagk1 2(a;pas)Pnlz(passula )]Ij(knpascosa) ’ (48)
n
p 172
/2 11 .
9,i(pas) =N k—as %a,‘:,zk(pas)fo dag, 2(oz;pas)P,,lz(pass1na)n,j(k,,pascosoz) , (49)
n

with N being a normalization constant, N=1 for [, =1,
and N=1/V"2 for 1,51,. p, is the end point of the in-
tegration region in variable p. Equation (47) can be writ-
ten in matrix notations as

F=%+6K . (50)

Matching the log-derivative matrix in hyperspherical
coordinates to the transformed asymptotic form on the
P=p,s hypersphere gives

Z=(F+9KNF+9K) !, (51)

where prime denotes differentiation with respect to p.

Partitioning the matrices into open-open, open-closed,
closed-open, and closed-closed submatrices leads to the
following equation for the open-open portion of the K
matrix:

(Z8— 9, Ko =(F —ZF),, . (52)

To extract the open-channel K matrix we need only &,,,
S0or Feo» and G, submatrices, so Eq. (52) can be reduced
to

(Zocgco_Zoogoo—g;o)Km=g;o_Zocgco_ngw .
(53)
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Equation (53) is easily solved for K,,, from which the S
matrix is obtained as

S=(I—-iK,,) "I+iK,,) . (54)

The system of coupled-channel equations is integrated
from p.i,=0 to p,, for which the § matrix is a (p-
independent) constant.

III. RESULTS AND DISCUSSION

A. Bound-state calculations

As a useful check of the method we have performed a
number of bound-state calculations. Since our final aim
is the photoionization cross sections we did not attempt
to exceed the accuracy of other methods by pushing the
bound-state calculation to complete convergence. The
method for calculating bound states is based on locating
the poles of S, ,(E) of Eq. (42). We use two (identical)
artificial channels and a set of closed physical channels.
Plots of the artificial and the closed-channel potentials for
H™ are presented in Fig. 4. As shown there the artificial
potentials do allow for good overlap between the bound-
and artificial-channel wave functions.

The energy dependence, showing a pole, of a typical
o Mmatrix element in the vicinity of the H™ ground-
state energy, is shown in Fig. 5. In Table II we provide
details of the 17-channel calculation (15 closed channels
and 2 artificial channels) needed to locate the ground-
state energy to sufficient accuracy. Table III presents a
convergence study of the ground-state energies of H™
and He with the number of channels. We see that the en-
ergy eigenvalues converge monotonically from below,
with the 17-channel value being E, - = —0.527642 a.u.
and Ey, = —2.903611 a.u. As shown in Table IV, these
values are very close to Pekeris’ values [46]. E ‘;;“
=—0.527751 a.u. and E{i; = —2.903 724 a.u. Compar-
isons with other calculations are also given in Table IV.
We can see that our ground-state energies are as accurate
(sometimes even more so) as those obtained by other ab
initio methods.

S,
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B. Photodetachment of H™

The nuclear charge of the negative hydrogen ion is
smaller than the number of electrons. As a result H™ has
different properties from the other heliumlike systems:
the electron-electron interaction is as strong as the
nucleus-electron one, leading to strong correlational
effects; the continuum states are governed by the long-
range polarization of the core by the continuum electron.
In addition, H™ has only one bound state.

Past studies of the H™ photodetachment, such as those
based on the hyperspherical adiabatic approximation
[29], suffer from substantial discrepancies between the
length and acceleration forms, at least in the energy
range of {0.03-0.22} a.u. This discrepancy completely
disappears, as we show below, when nonadiabatic effects
are properly taken into account.

The convergence of the H™ photodetachment cross
section (in the length form) with the number of continu-
um coupled channels is presented in Table V. In Table
VI we present converged 36-channel (20 continuum chan-
nels, 15 bound channels, and one extra artificial channel)
results for the H™ photodetachment cross sections for
photoelectron energies between 0.01 and 0.70 Ry. Also
included in Table VI are calculations based on the ac-
celeration form which are seen to be in excellent agree-
ment with the length-form calculations for k2 ranging
from 0.01 to 0.70 Ry. Comparisons with previous calcu-
lations [11,47,48,50—54], are also included in Table VI.

Our acceleration-form results can be compared with
the perturbation-variation calculation by Stewart [51]
and with the variational calculation of Geltman [50] per-
formed with a 70-parameter Schwartz function for the
bound state and an extensively correlated continuum
state. We see that our results are superior since the
acceleration-form calculations of Geltman [50] differ sub-
stantially from those of the length form. Possibly this
failure is due to differences in the treatment of the short-
range electron correlation between the bound and tpe
continuum states. In contrast, in the artificial-channel
method the bound and scattering states are treated on an
equal footing.

FIG. 4. Artificial and diagonal channel po-
tentials for the H™ bound manifold.
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TABLE II. Details of the ground-state energy level calculation for H™ and He. The numbers in
brackets represent the power of ten. Energy is expressed in a.u.

Calculation Energy Im(S,,)/cosd,
number H™ H™ He

1 —0.527 65100 —2.903 624 37 —0.618[+2] —0.101[+2]

2 —0.527 65100 —2.903 62437 —0.509[+ 1] —0.119[+ 1]

3 —0.527 64204 —2.903 61113 0.538[+5] 0.433[+4]

4 —0.527 64205 —2.90361116 0.603[+9] —0.124[+8]

5 —2.90361116 —0.336[+ 8]

Our length- and acceleration-form results are also com-
pared in Table VI with the following calculations:

(i) The length-form results by Bell and Kingston [52]
using the Schwartz function for the ground state and
polarized-orbital functions for continuum state.

(ii) Ajmera and Chung [53] using the 33-parameter
Hylleraas-type ground-state wave function with an
asymptotic “tail function” and continuum wave function
obtained by the simplified Kohn-Feshbach variational
method.

(iii) Broad and Reinhardt [47] multichannel J-matrix
calculation using 67 configurations of Slater-type orbitals
for the bound state and 160 configurations of Laguerre-
type functions approximating 36 scattering channels.

(iv) Wishart [48] using the close-coupling method with
pseudostates and Hylleraas-type correlation terms.

(v) Daskhan and Ghosh [54] using the 70-parameter
Schwartz ground-state function and continuum function
obtained by a polarized-orbital method with accounting a
distorted-target wave function.

(vi) Saha [11] using the multiconfigurational Hartree-
Fock method including 32 configurations for the ground
state and 36 configurations for continuum state.

In order to highlight the differences between the vari-
ous calculations we have plotted in Fig. 6 both the
length- and acceleration-form cross sections vs the photo-
electron energy obtained by us and by the above-
mentioned authors.

6 1 1 1 1
ISe H-

4 L
p
8
o
S 2 .
2
E

(U "

E =-0.527642 a.u.
_2 T T e T T
-0.540 -0.535 -0.530 -0.525 -0.520 -0.515

Energy (a.u.)

FIG. 5. Behavior of Im(S,.,)/cosd, as a function of energy
in the vicinity of the H™ ground-state eigenvalue.

Analysis of Table VI and Fig. 6 shows that our length-
form results are in very close agreement with the very ex-
tensive calculations of Saha [11], Stewart [51], and
Wishart [48]. Our acceleration-form results are almost as
accurate over the entire 0.025-0.075-a.u. range. Notice
also the excellent agreement between our length- and
acceleration-form cross sections which differ at most by
0.065X 10~ 7 cm? (and usually by much less). The agree-
ment between the two forms becomes even better with in-
creasing k2.

In Fig. 7 we have plotted our length and acceleration
cross sections as a function of the incident photon wave-
length from 4000 to 14000 A. Also included are the
theoretical results of Refs. [11,48,50,51] and the relative
experimental cross sections of Smith and Burch [55], nor-
malized to the present length-form curve at 5280 A
(k?=0.117 Ry). At 5280 A our length- and
acceleration-form results are, respectively, 3.081 and
3.049 in units of 10717 cm?, both well within the error
bars of the experimental value of 3.28+0.3, determined
by Geltman [50] from the absolute integrated measure-
ments of Branscomb and Smith [56].

Our computed values compare very favorably with the
length-form calculations for Stewart [S1] (3.068 in the
same units), Bell and Kingston [52] (3.08), Ajmera and
Chung [53] (3.06), Broad and Reinhardt [47] (3.019),
Wishart [48] (3.078), and Saha [11] (3.074). In the long-
wavelength region the agreement between our results and
the experimental ones is in fact better than that of all oth-
er calculations.

C. Photoionization of He

The photoionization of He serves as an important test
case for different theories and computational schemes.

TABLE III. Convergence of the ground-state energy (in a.u.)
and relevant width amplitude (the residue of the S-matrix pole)
for H™ and He with the number of coupled channels.

Energy Width amplitude

Number of
channels H™ He H™ He

1+2 —0.536499 —2.925340 0.0061832 0.0017030
3+2 —0.528460 —2.904855 0.0056403 0.0013788
6+2 —0.528122 —2.904682 0.0055789 0.0013605
10+2 —0.527749 —2.903736 0.0055510 0.0013438
15+2 —0.527642 —2.903611 0.0055354 0.0013382
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TABLE IV. Comparison of the present ground-state energy
(in a.u.) of H™ and He with other theoretical calculations.

Method H™ He
ACM?* —0.527 642 —2.903611
HSCC® —2.903 594
HSA® —0.527 746 —2.903 698
VAR? —0.527751 —2.903724
MCHF¢ —0.527 542 —2.902 909
CIf —0.527 542 —2.90323
RMM® —0.52403 —2.8961
cCcM? —0.52775 —2.8934

*Present 17-channel artificial-channel method calculation.
"Hyperspherical 21-channel close-coupling calculation [17].
“Six-channel hyperspherical adiabatic calculation [35(a),37].
4Variational method calculation [46].

‘Multiconfigurational Hartree-Fock calculation: using 32
configurations for H™ [11] and 10 configurations for He [12].
{Configuration interaction method calculation: using 130
configurations for H™ [13(b)] and He [13(a)].

¢R-matrix method calculations: using 158 configurations for
H™ [9] and 79 configurations for He [8(a)].

"Close-coupling method calculation with pseudostates and
correlation terms: nine Hylleraas-type functions for H™ [48]
and seven correlation functions for He [49].

Over the last few years, a large number of calculations of
the photoionization of ground-state He using a variety of
sophisticated  techniques have been  published
[8(a),10,12,13(a),14(a),15,16,18,49]. Most of the recent
computations of the photoionization cross sections agree
with each other and with earlier calculations to better
than 4%, a value nearing the precision of modern experi-
ments [57], estimated to be better than 2% in the 0-120-
eV range. Direct comparisons between theory and exper-
iment are therefore possible.

In Fig. 8 we present the length- and acceleration-form
photoionization cross sections of He, calculated using 26
channels (10 channels for scattering-state manifold, 15
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TABLE V. Convergence of H™ photodetachment cross sec-
tion (in units of 10™!7 cm?) with the number of coupled chan-
nels of the “continuum manifold.” The number of “bound man-
ifold” channels used in the calculation is fixed at 15.

k* Number of channels for 'P continuum state
(Ry) 4 9 12 16 19 22
0.04 3.950 3.938 3.891 3.883 3911 3.909
0.06 3.883 3.947 3.938 3.958 3.979 3.979
0.08 3.567 3.641 3.669 3.692 3.700 3.711
0.10 3.234 3.303 3.350 3.371 3.370 3.375
0.16 2.361 2.405 2.444 2.456 2.457 2.461
0.32 1.216 1.235 1.237 1.238 1.238 1.238

0.570 0.570 0.570 0.570 0.570

0.64 0.573

channels for bound-state manifold, and one artificial
channel). Our length- and acceleration-form cross sec-
tions coincide to better than two significant figures over
the whole energy range considered. As in the H™ case,
the agreement between the acceleration-form and length-
form calculations further improves with increasing ener-
gy-

Both our length-form and acceleration-form results are
in very good agreement with the high-precision measure-
ments by Samson et al. [57]. In Fig. 8 we also plot other
theoretical cross sections of the following authors: (i)
Stewart and Webb [58] (length- and acceleration-form
calculations using six-parameter Hylleraas-type ground-
state function and Hartree-Fock continuum wave func-
tion); (i) Burke and McVicar [59] (close-coupling
1s-2s-2p length-form calculation wusing the Hart-
Herzberg 20 parameter ground-state wave function); (iii)
Bell and Kingston [60] (length-form calculation using 20
parameter Hylleraas-type bound-state function and
polarized-orbital continuum wave function). We forego
here additional literature surveys of He photoionization
calculations, since an extensive analysis, including a dis-
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TABLE VI. Comparison of the present photodetachment cross section of H™ (in units of 10~ 17 ¢m?) as a function of photoelectron
energy (in Ry) with other theoretical calculations. L denotes the length form and A4 the acceleration form.

k? Present St? G® BK® AC? BR® wf DG# st
(Ry) L A L A L L L L L L L
0.01 1.645 1.641 1.565 1.429 1.197 1.234 1.531 1.553 1.221 1.55
0.02 2.971 2.945 2.862 2.546 2.509 2.600 2.810 2.798 2.846 2.559 2.868
0.03 3.601 3.556 3.580 3.113 3.411 3.540 3.525 3.461 3.583
0.04 3.910 3.851 3.912 3.363 4.048 3.863 3.982 3.898 3.920 3.911
0.05 4.006 3.940 4.010 4.090 4231 3.968 4.100 4.007
0.06 3.979 3.915 3.978 3.377 4.079 4.205 3.940 3.956 3.965 4.080 3.968
0.07 3.876 3.811 3.870 3.952 4.060 3.838 3.950 3.857
0.08 3.706 3.645 3.717 3.152 3.767 3.859 3.695 3.759 3.708 3.663 3.707
0.09 3.534 3.480 3.548 3.014 3.560 3.640 3.533 3.409 3.538
0.10 3.375 3.327 3.373 2.874 3.351 3.432 3.364 3.313 3.368 3.364
0.117 3.081 3.049 3.068 3.08 3.06 3.019 3.078 3.074
0.16 2.450 2.436 2.450 2.358 2.447 2.463 241 2.335 2.443
0.25 1.616 1.621 1.595 1.467 1.558 1.643 1.591 1.541 1.599
0.36 1.082 1.088 1.058 1.050 1.129 1.094 1.072 1.064 1.065
0.50 0.737 0.739 0.716 0.694 0.729 0.728 0.722
0.64 0.569 0.570 0.547 0.522 0.531 0.584 0.560 0.523 0.553
0.70 0.547 0.547 0.523 0.509 0.543 0.539 0.525

2St, Stewart [51].

G, Geltman [50].

°BK, Bel and Kingston [52].
4AC, Ajmera and Chung [53].

cussion of the validity of the adiabatic approximation has
recently been published [17,18].

IV. CONCLUSIONS

In this paper we have presented a method based on the
artificial channel method for calculating bound-state en-
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FIG. 7. H™ (!S)+hv—H (15)(*S)+e " (kp) photodetach-
ment cross section vs photon wavelength. @, experimental re-
sults of Smith and Burch [55]; , present length-form re-

sults; — — —, present acceleration-form results; —-—, Stewart
perturbation-variation length-form calculation [51]; —-—,
Stewart acceleration-form calculation [51]; —. —-—- , Geltman

variational length-form calculation [50] using the 70-parameter
Schwartz bound state and fully correlated continuum state func-
tion; - - . ., Geltman variational acceleration-form calculation
[50]; O, length-form multiconfigurational Hartree-Fock calcula-
tion of Saha [11]; O, length-form close-coupling pseudostate cal-
culation with Hylleraas-type correlation terms by Wishart [48].

°BR, Broad and Reinhardt [47].
'W, Wishart [48].

EDG, Daskhan and Ghosh [54].
hS, Saha [11].

ergies and photoionization processes in two-electron sys-
tems. The method treats the bound and continuum man-
ifolds on an equal footing. The uniformity in accuracy
thus achieved results in excellent agreement between the
length and acceleration forms.

We have studied the photodetachment of the H™ ion
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FIG. 8. He (!S)+hv—He" (15)(3S)+e " (kp) photoioniza-
tion cross section vs photoelectron energy. ®, experimental re-
sults of Samson et al. [57]; , present length-form results;
— — —, present acceleration-form results; —-—-, Stewart and
Webb length-form calculation [58)] using the six parameter
Hylleraas-type ground-state function and the Hartree-Fock con-
tinuum wave function; —-—, Stewart and Webb acceleration-
form calculation [58]; A, Burke and McVicar 1s-2s-2p close-
coupling length-form calculation [59]; O, Bell and Kingston
length-form calculation [60] using the 20-parameter Hylleraas-
type ground-state wave function and the polarized-orbital con-
tinuum wave function.




1216 ALEXANDER G. ABRASHKEVICH AND MOSHE SHAPIRO 50

and the photoionization of ground-state He. The results
obtained are in excellent agreement with experiment
throughout the range of energies considered. There is
also a very close agreement with theoretical results ob-
tained with some well-established methods.

The method can be used for describing the recent ex-
perimental observations [1-6] of the high-lying photoion-
ization spectra of two-electron atoms. It can also be ap-
plied with minor modifications (see Ref. [19]) to the cal-
culation of the positions and widths of the doubly excited
(autoionizing) states of two-electron systems. The metho-

dology presented here is not limited to atomic systems.
Any two-electron molecular system can be solved (within
the Born-Oppenheimer approximation) with this method.
Extensions to the strong field domain [61] and for multi-
photon processes [62], will be published soon.
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