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Vacuum-polarization contribution to the hyperfine-structure splitting of hydrogeniike atoms
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A calculation of the vacuum-polarization contribution to the hyperfine splitting for hydrogenlike
atoms is presented. The extended nuclear charge distribution is taken into account. For the experimen-
tally interesting case Bi + we predict a AA, = —1.6 nm shift for the transition wavelength of the
ground-state hyperfine splitting.
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INTRODUCTION

The ground-state hyperfine splitting of hydrogen, the
well-known 21-cm radiation, has been measured with a
relative accuracy up to 10 ' [1]. However, the accuracy
of the theoretically predicted value of the transition
wavelength is about six orders of magnitude lower [1].
There are various corrections to the first-order perturba-
tion theory calculation of the hyperfine splitting: radia-
tive corrections, recoil and radiative recoil corrections,
and nuclear structure corrections. The latter can be di-
vided into polarizability corrections and modifications
due to the extended nuclear charge current -distribution
which has been computed by Zemach [2] in the nonrecoil
limit, i.e., mz~ ~. For heavy nuclei the finite-nuclear-
size contribution will dominate, whereas recoil correc-
tions are assumed to be relatively negligible. @ED
corrections become more and more important for heavy
elements because of the large efFective coupling constant
Za to the electrostatic field of the nucleus.

Experimental as well as theoretical data on the
hyperfine structure of hydrogenlike high-Z atoms were
not available up to now. Precision calculations of this lev-
el splitting have been motivated by recent experiments
with hydrogenlike high-Z atoms, e.g. , in Ref. [3], where

Bis2+ is under examination [3]. From the first success-
ful experiment of Klaft et al. one deduced a ground-state
transition wavelength of b, k,,„v,=243.87(4) nm [4]. For
the next experimental generation one is aiming at an ac-
curacy of about 10 [5], which represents a severe chal-
lenge for the theoretical description.

Recently, two groups presented a first-order perturba-
tion theory calculation of the hyperfine structure of hy-
drogenlike Bi [6,7]. The authors concentrated on the
effects of the extended nuclear charge-current distribu-
tion. The modification according to the finite nuclear
charge distribution is known as the Breit-Schawlow effect
while the correction due to the extended magnetization
distribution is the Bohr-Weisskopf effect [8].

Our paper represents the first part of a detailed
analysis of the first-order radiative corrections to the

hyperfine structure of hydrogenlike atoms. Here, we
focus our attention on the vacuum-polarization contribu-
tion. An accurate evaluation of the self-energy level shift
is in progress.

THE HYPERFINE-STRUCTURE SPLITTING

First we summarize brie6y the results of the first-order
calculation for the most interesting case Bi +. In
first-order perturbation theory the hyperfine-structure
splitting follows from [9]

b E= egtt ptt [F(F+ 1 ) I(I + 1 ) —j(j + 1 )]—

X 2I G(r)F(r} dr
0

dG(r) = ——G(r)+[E+m, —V(r}]F(r),
df P'

dF (r) a.
F(r) [E—m—, —V(—r)]G(r) .

c& l"

(2)

(3)

The electrostatic potential V (r) is generated by the
spherical symmetric nuclear charge distribution.

For paint-nucleus wave functions the integral in Eq. (1)
is known analytically, e.g. , it reads for the ls, zz state [9]

~here I and j are the total spin of the nucleus and the
electron, respectively, and I' designates the total spin of
the electron-nucleus system. gN is the anomalous magnet-
ic moment and pz denotes the nuclear magneton. For

Bi +, the angular momentum quantum numbers are
I =—,'and j =

—,', resulting in the two values I'j =5 and

F2 =4. K signifies the Dirac angular-momentum quan-
tum number and k = I for K) 0 or k =I +1 for K &0,
where I is the orbital angular-momentum quantum num-
ber of the electron. The magnetic moment of bismuth is
taken to be pB;=4. 1106pN [10]. Furthermore, G(r) and
F(r) are the relativistic radial wave functions, satisfying
the radial Dirac equations
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(Za)
+1—(Za) [2+1—(Za) —1]

(4)

For extended nuclear charge distributions this integral
has to be determined numerically. For our explicit calcu-
lations of the general behavior we utilized wave functions
corresponding to the Coulomb field of a homogeneously
charged sphere. The root-mean-square radii of the
difFerent nuclei are tabulated in Ref. [11]. For nuclei
with Z )30 we found that the difference between results
for a point nucleus and an extended nucleus may be
parametrized as

EE(finite)=(1 —e"+ '
)EE(point), (5)

where A = —6.813 and 8 =5.5884X10 . For bismuth
this implies a 12/o modification. In lowest order the
transition wavelength between the F,=I+ ,' and t—he

F2 =I ,' sta—te—s of Bi + was computed to be
hA, '=238. 8 nm, employing an experimentally determined
Fermi distribution [12]. An examination of the Bohr-
Weisskopf effect yielded a shift of hA, =+3.5 nm [7].
This value was determined within the extreme single-
particle model and might be still uncertain. For muonic
atoms Johnson and Sorensen [13]presented an evaluation
within the configuration mixing model that coincides
with the experimental value from Riietschli et al. [14].
Vhthin the framework of the single-particle model the
Bohr-Vfeisskopf eFect is assumed to be underestimated
because of missing configuration mixing contributions.
Thus, a more sophisticated calculation of the Bohr-
Weisskopf effect for the hydrogenlike Bi nucleus seems to
be vital for a more rigorous theoretical prediction.

Furry or bound-state interaction picture, where the exter-
nal field is included in the electron field operator as well
as in the Green function of the Dirac equation. The
graphical representation of the first-order radiative
corrections within the Furry picture is shown in Figs.
1(a)—1(c}. The double lines signify wave functions and
propagators, respectively, that are exact in the elec-
tromagnetic field of the nucleus. A direct application of
the methods developed for the evaluation of the Lamb
shift is not possible because of the nonspherical symmetry
of the external field. Since the inagnetic field of the nu-
cleus is rather small compared with the electrostatic po-
tential, it is legitimate to treat it as a perturbation. Thus,
the vacuum-polarization part of the QED corrections
[Fig. 1(c)] can be expanded in terms of the magnetic cou-
pling. In Fig. 2 the diagrammatic depiction of this ex-
pansion is displayed. Two contributions arise if one re-
stricts the calculation to a single magnetic coupling: (a)
the diagram with one loop that couples to the magnetic
field, which appears due to the expansion of the exact
propagator, and (b) two diagrams with one magnetic cou-
pling from the expansion of the exact wave function. In
Fig. 2 the thick lines symbolize the exact propagator or
wave function in the Coulomb-like electrostatic field. In
our approximate numerical elaborations the loop propa-
gator is taken in first order in the external field. This
transforms diagram 2a to an Uehling-like contribution,
which couples to the magnetic field. In Fig. 2(b} the loop
part of the diagram reduces to the ordinary Uehling part.
We denote these two energy shifts bEMi and EEai,
where the suffices ML and EL indicate the magnetic loop
and the electrostatic loop contribution, respectively. The
total energy shift is bE =hEM„+ EEEi .

RADIATIVE CORRECTIONS

The problem of an electron moving in the central field
of a nucleus belongs to the more general bound-state
QED. The QED corrections to the hyperfine splitting
generally are calculated in the nonrecoil limit
(m, /mz —+0), where the nucleus is reduced to an exter-
nal electromagnetic field. For hydrogen or very light ele-
ments the QED corrections to the bound electron, e.g.,
the Lamb shift, traditionally are expanded in the efFective
coupling constant Za. In the context of the hyperfine
structure pioneering investigations were performed by
Kroll and Pollock [15] and by Karplus and Klein [16],
who calculated the level splitting in a series expansion to
order a(Za). This series expansion was later extended
by Brodsky and Ericson [17] and by Sapirstein [18]. Un-
fortunately, these extensive calculations are not applica-
ble to medium-Z or high-Z atoms, since the series expan-
sion would converge rather slowly when Za approaches
unity. This behavior was also discovered in the computa-
tion of the Lamb shift. For that reason, methods were
developed to treat the propagator in the spherical sym-
metric Coulomb field of the nucleus exact to all orders in
Za.

To compute radiative corrections for bound electrons
within the external field approximation one is led to the

(a)

(c)

FIG. 1. Graphical representation of radiative corrections to
the hyper6ne structure within the Furry picture. Double lines
indicate exact wave functions and exact propagators in the
external electromagnetic 6eld, respectively. (a) is the self-
energy, (b) is the divergent mass-renormalization diagram,
which cancels with an identical divergency appearing in (a), and
(c) represents the vacuum-polarization part.
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At first we consider the magnetic contribution. In
momentum space the induced vacuum-polarization po-
tential A „(q)of order a is given by [17]

~ ~ —i .sqXm=i e
Bs

Xm

where A(q) = —25(qo)i (qXm)/q .
Fourier transform A „(x)by

d4
g vP(x) — 0 ei xQ vP(q)

(2~)'

Introducing the

and interchanging differentiation and integration, one can
make use of the integral formula

~

~

iqr 1
—a Irl

(10)
(2m) a +q

The final expression for the vacuum-polarization vector
potential in position space reads

1/2

one obtains the magnetic part of the vacuum-polarization
potential

A (r)= A(r}f dz 1—
3m 1 2z

1+ 1 1

2z2 z

A (r)=—

Writing

3

0

2u (1—u /3)
4m, +q(1 —u )

Xe ' [2m, rz+1] .

Here, the vector field A(r)=(mXr)/r is the only
operator acting on the wave functions. Hence, according
to the result within the framework of first-order perturba-
tion theory we deduce that the integral in Eq. (1) has to
be exchanged with

' 1/2
00 1 2 a ~ 1f G(r)F(r) dr ~ —f d—z —1—

0 p 3' 1 222
1+ —f dr G(r)F(r) e' —[2m, rz+1]

2z2 z 0 2
(12)

in order to derive the corresponding expression for the vacuum-polarization energy shift. If one expands the analytical-
ly known product GP " (r)FP" (r) for the ls wave function into a series in Za one obtains (m, =1)

G(r)F(r) = —2(Za) Zae "[1—[ —,', + —,'(2yz —3)+In(2Zar)](Za) + —,'(Za) r+ (13)

where all terms are expanded except for the exponential
e ". y =0.577215. . . is Eulers constant, . If one
writes

G(r)F(r)r = A, + A2(Za) +

then it is obvious that

(14)

A = —2(Za) (Za)e '"=m (qi (r))2ZQP— (15)

where
' 1/2

qs(, )= (Za)
e

—Zar

is the ls Schrodinger wave function. So, in the (Za) ex-
pansion of the product of the radial Dirac wave func-
tions, the first term will yield the nonrelativistic formula
derived by Zwanziger [19]. The second term represents a
first relativistic correction factor. In Figs. 3(a) and 3(b)
the magnetic part of the vacuum-polarization energy
shift bEML, normalized to hE (3/8)a(Za), is presented
for different ranges of the nuclear charge number Z. The
full line signifies the relativistic calculation and the
dashed line is addressed to the nonrelativistic calculation
with Schrodinger wave functions. Additionally, the dot-
ted line corresponds to the series expansion up to the or-
der u(Za) while the dashed-dotted line indicates the
computed value incorporating the relativistic correction
factor deduced from the Dirac wave function expansion.

FIG. 2. Depiction of the two resulting contributions from the
expansion of the vacuum-polarization correction [Fig. 1(c)] in

first order in the external magnetic field. Thick lines refer to ex-

act wave functions or exact propagators in the electrostatic
field. The magnetic part (a) results from the expansion of the

propagator and (b) is obtained from an expansion of the wave

functions.
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One easily verifies that all evaluations yield nearly the
same result for hydrogen and that the relativistic correc-
tion is not negligible for high-Z nuclei. In contrast to the
result given in the paper by Brodsky and Ericson [17]we
found that the series expansion of the nonrelativistic
point nucleus formula for the magnetic energy shift yields

hE =b,E —a(Za) ———(Za)F 4 a
ML 8 5 m

(16)

where hE denotes the nonrelativistic first-order result of
Fermi [20]. The difference to the expression from Brod-
sky and Ericson is provided by the factor —

~4 in front of
the a(Za) term, which was quoted to be —

—,'.
As one learned from Uehling-shift calculations, the

finite size of the nucleus modifies the point-nucleus re-
sults by a significant amount for medium to high-Z
atoms. Figure 4 presents a comparison between the rela-
tivistic point-nucleus calculation (dashed line) and the
relativistic values for extended nuclear charge distribu-
tions (full line).
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FIG. 4. The splitting energy AE«displayed with the same
normalization as in Fig. 3. The dashed line refers to the relativ-
istic point nucleus result and should be compared with the full
line, which indicates the corresponding value for the extended
nucleus. The full line exhibits some slight structures because of
the nonanalytical behavior of the nuclear radii. The difference
between the result for a point nucleus and an extended nuclear
charge distribution is notable and seems to be even more pro-
nounced compared with the outcome of the lowest-order calcu-
lation.
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The influence of the electrostatic vacuum polarization
on the hyperfine splitting is numerically included by add-
ing the Uehling potential to the static potential V(r)
entering the Dirac equation. The resulting wave func-
tions are applied to the first-order calculation. The
difference to the ordinary first-order result yields bEE„.

In Fig. 5 the total normalized energy shift, summing
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FIG. 3. The magnetic part of the hyperfine splitting energy
B,EMI, normalized to 8

a(Za)EE', as a function of the nuclear

charge number Z. In Fig. 3(a) the full range 1 ~ Z ~ 100 is con-
sidered, Fig. 3(b) shows a magnification of the low-Z area
1~Z ~10. The full line represents the relativistic calculation
while the dashed line corresponds to the Schrodinger wave-
function calculation. Additionally, we plot the result for the
series expansion up to order a(Za) (dotted line) and the rela-
tivistically corrected result (dashed-dotted line). All energy
shifts are derived for point nuclei.

FIG. 5. The total-energy shift hE due to vacuum polariza-
tion, normalized to 3/4a(Za)EE', as function of the nuclear
charge number Z in the range 1 ~ Z & 100. The dashed line cor-
responds to the outcome for a point nucleus and the full line
signifies the energy shift for an extended nucleus. The evident
discrepancy between the exact results and the series expansion
prediction can be traced back to the EL term, in which the ex-
act propagator in the Coulomb field is taken into account
effectively by employing the wave functions generated by the
static potential V(r) supplemented by the Uehling potential.
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up the magnetic and the electric part of the vacuum-
polarization part, is plotted for the point-nucleus poten-
tial (dashed line) as well as for the potential of a finite-size
nucleus (full line}. Here, the difference between these two
results is most pronounced.

SUMMARY

We presented a first calculation of the vacuum-
polarization contribution to the ground-state hyperfine-
structure splitting as a function of the nuclear charge
number Z. One major uncertainty of our calculation still
results from electrostatic couplings within the electron-
positron loop.

The computation of the self-energy contribution is in
progress. A more ambitious evaluation of the influence
of the extended magnetization distribution might be a
first essential step in understanding the experimental
value of b, A, =243. 87(4 } nm for the ground-state
hyperfine splitting of Bi+
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