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In this paper fully ab initio calculations of the electric dipole moment {EDM) of atomic rubidium due
to two possible mechanisms —the intrinsic electric dipole moment of the electron and the scalar-
pseudoscalar coupling between the electrons and the nucleons —are presented. The calculations were
carried out using an approach which is a hybrid of the diagrammatic many-body perturbation theory
(MBPT) and the multiconfiguration Dirac-Fock method. These calculations, unlike any of the previous
MBPT calculations for the rubidium atom, also take into account the effects of electron pair correlations
on the atomic EDM. Our results demonstrate that these effects can make significant contributions to the
EDM of alkali-metal atoms.

PACS number(s): 31.20.Lr, 31.20.Tz

I. INTRODUCTION

A nonzero electric dipole moment (EDM) of any
quantum-mechanical system, in general, and an atom, in
particular, will be a signature of nonconservation of pari-
ty and time-reversal symmetries [1,2]. The phenomenon
of parity nonconservation, ever since its first observation,
has been extensively tested in a variety of systems [3];
however, the only evidence of a time-reversal violation,
so far, has come indirectly from the CP-violating decay of
E Emesons —[4]. Therefore, the observation of a
nonzero EDM of an atom, besides being direct evidence
of T violation, can also throw some light on the mecha-
nisms giving rise to it.

There are several mechanisms that can give rise to the
EDM of an atom. Some of them are (i) the intrinsic
EDM of an electron, (ii) the intrinsic EDM of nucleons,
(iii) P- and T-violating electron-nucleon interactions, (iv)
P- and T-violating electron-electron interactions, and (v)
P- and T-violating nucleon-nucleon interactions. Any
combination of these mechanisms can also give rise to an
atomic EDM. However, in this paper we will report the
calculations of the EDM of the rubidium atom due to
mechanisms (i) and (iii), treating their efFects separately.
We have considered these effects for atomic rubidium be-

cause they are the dominant sources of the EDM of
alkali-metal atoms. A brief discussion of the two mecha-
nisms follows.

The Kobayashi-Masakawa mechanism [5], which ex-
plains CP violation in the standard model of electroweak
interactions, predicts an intrinsic EDM of an electron of
the order of 10 e cm [6]. However, certain nonstan-
dard models predict it to be about ten to twelve orders of
magnitude larger than its standard model value [7]. Vari-
ous supersymmetric models [8], and models where neu-
tral Higgs boson exchange leads to CP violation [9], are
of particular importance, as they can lead to the values of
the intrinsic EDM of the electron which may be well
within the reach of present generation of experiments
[10]. If an electron indeed possesses an intrinsic EDM, it
will interact with an electric field in much the same way
as its magnetic dipole moment interacts with a magnetic
field. This interaction can be expressed as an extra term
in the field-theoretic Lagrangian of an electron interact-
ing with the electromagnetic field [11]. This extra term
gives rise to parity and time-reversal violating terms in
the atomic many-body Hamiltonian. In general, these
terms correspond to two-body interactions, but the
lowest-order term can be reduced to an effective one-body
operator [12]. This operator is given by

HFrv —2lcd g jg.p5.p.
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where the subscript PTV refers to the violation of parity
and time reversal symmetries, d, is the intrinsic EDM of
the electron, the subscript i runs over the electrons in the
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atom, p,. is the momentum of the ith electron, and P and

y5 are the Dirac matrices. This term warrants a fully rel-
ativistic treatment within Dirac many-body formalism, as
any nonrelativistic treatment of this term leads to a zero
EDM of the entire atom [13,14]. What one calculates for
the atom is the enhancement factor [12], which is the ra-
tio of the atomic EDM to that of the electronic EDM,

trate only on the scalar part of the interaction, and as-
sume cT( ) =cp( )

=0. Furthermore if we use the approxi-
mations that the coupling strengths of both the nucleon
species are approximately the same

cs =cs(,n] =cs(p)

and that nucleons can be treated nonrelativistically

(EDM of the atom in state f)
(2) (N;N; )= Ap)v(r),

i =p, n

For an alkali-metal atom such as rubidium, the enhance-
ment factor scales as -Z a [12], where Z is the atomic
number of the atom and a is the fine-structure constant.
This dependence on Z is the reason that experimental
searches for an EDM are generally performed on heavy
atoms.

A P- and T-violating interaction between electrons and
nucleons (protons and neutrons) can arise both from a
coupling between scalar and pseudoscalar currents and
between tensor currents. The most general short-range
neutral current interaction, which does not involve
derivative couplings, can be written in the second-
quantized form as [15]

we get the erst qua-ntized form of the parity and time-
reversal violating interaction

GF
HpTv ics —A g p)v(r, . )P;y5,

2
(4)

where p)v(r) is the density distribution of the nucleons
and A is the total number of nucleons in the isotope un-
der consideration. In our calculations, we have used a
Fermi distribution for the nucleon density.

The effect of the P- and T-violating interaction of Eq.
(4) for rubidium atom has been evaluated in form of the
ratio (we will call it S)

GF
~pTv g s(') —(N, N; )(eiy, e)

/ =P, ll

GF+cp( )
—(N, i y 5N( )( ee)
2

GF
+cr(;) —(N, iy5o„+, )(ecr"'e)

2

cg(.) cp( j and cT(;~ are dimensionless constants which
determine the strengths of interactions of, respectively,
the scalar, the pseudoscalar, and the tensor currents in
the nucleonic sector with appropriate electronic currents,
and GF is the Fermi coupling constant. The symbols N;
and e represent the field operators of nucleons and elec-
trons, respectively. Similar to the case of P and T viola-
tion due to an intrinsic electronic EDM, different terms
in the P and T-violating-Hamiltonian of Eq. (3) also owe
their existence to various models of CP violation in parti-
cle physics. Therefore, the study of an atomic EDM due
to this interaction can also facilitate a better understand-
ing of the fundamental interactions leading to CP viola-
tion in nature. In principle, all the terms of Eq. (3) will
contribute to an atomic EDM; however, relative magni-
tudes of different contributions vary from atom to atom.
For paramagnetic atoms such as rubidium, it is the scalar
part of the interaction which is the main contributor [15].
Moreover, Barr [16] has shown that in the models where
the exchange of neutral Higgs bosons mediates the CI'
violation (specifically, the two Higgs doublet models), the
contribution of the scalar interaction to an atomic EDM
can exceed that due to the electronic EDM for certain
values of model parameters. However, even though the
precision measurements of the EDM of the rubidium
atom are underway [17], no theoretical study of this po-
tentially dominant source of its EDM has been conducted
before [18]. Therefore, in our calculations we concen-

(EDM of the atom in state li)
GF

csW
2

The purpose of the present paper is to report a fully ab
initio calculation for atomic rubidium within the Dirac
many-body framework, in which these two CP-violating
effects were treated separately and their contributions to
the atomic EDM were computed. Though the EDM of
atomic rubidium due to the intrinsic EDM of an electron
has been evaluated before (see, for example, Refs.
[19,20]), to the best of our knowledge this is the first cal-
culation for Rb to take into account a possible P- and T-
violating interaction between electrons and nucleons.
The method of calculating the EDM is a combination of
variational principle and the diagrammatic many-body
perturbation theory (MBPT) [21]. The calculations begin
at the level of the independent-particle approximation
and systematically take into account higher-order effects
including pair correlation. We have demonstrated that
the contributions of pair correlation to the atomic EDM
can be significant; they were found to be approximately
18% of the total atomic EDM for the two cases.

The other purpose behind choosing the Rb atom for
our calculations is the following. Theoretical values of
the enhancement factor R and the ratio S, in conjunction
with the experimental limits on the atomic EDM, can be
used to set limits on fundamental quantities d, and cz.
Therefore, by performing calculations on a variety of sys-
tems and comparing them with the corresponding experi-
mental results, one can set independent limits on the
same fundamental quantities. A comparison among the
limits obtained on cz and d, from a variety of systems, in

our opinion, is the best way to judge the theory as well as
the experiments in this field. Our calculations for Rb can
be combined with the results of experiments currently un-
derway [17],to get new limits on the values of d, and cs.
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The paper is organized as follows. In Sec. II we discuss
the basics of Dirac many-body theory followed by a
description of the theoretical framework outlining our
calculations in Sec. III. In Sec. IV we report and discuss
the results. In Sec. V we summarize our findings and give
an outline for future directions.

II. THEORETICAL BACKGROUND

Hp =g [ca;.p;+P;mc + V„„,(r, ) ]+g
l ij IJj(i

and ~g) is, in general, a linear combination of Slater
determinants composed of one-electron spinors of the
form

P (r)y„(8,$)

r ig (r)X „(8,$) (8)

These spinors are supposed to be eigenfunctions of angu-
lar momentum operators j and j„parity operator P, and
the operator K =P(1+cr L) In E.q. (8) ~ and m refer re-
spectively to the eigenvalues of E and j,. In addition, the
many-electron state ~g) is also an eigenstate of the total
angular momentum and the parity operators.

However, if the parity and time reversal symmetries
were being broken by an interaction H»v, then, in the
presence of an external electric field E (in the z direction),
the total atomic Hamiltonian will be

H =Hp g ez E +H»v

where g; ez;=D is the electric dipole operator of the
atom. If an atom has a permanent EDM, there will be a
shift in its energy when it is exposed to an electric field.
If the applied field is sufficiently weak, the shift in the en-
ergy will be linear with respect to the field strength. If
the change in the energy is 8', the electric dipole mo-
ment of the atom is defined as

are'D=lim
E~p BE

(10)

Here we give a brief review of the mathematical as-
pects of Dirac many-electron theory, which is the corner-
stone of our calculations. We assume that the unper-
turbed ground state of a many-electron atom is described
by the eigenvalue problem

H. ly& =El'&,
where Ho is the so-called Dirac-Coulomb Hamiltonian
for the atomic system

Here the E& 's are the energies corresponding to the in-
c

termediate states ~g, ) and E& is the energy of the state
~g). Clearly, for W to have nonzero value, the parities
of the intermediate states

~ g, ) must be opposite that of
the unperturbed state ~P). Using Eq. (10), we get the ex-
pression for the EDM of the atom,

&VIH»vie, &&e,

lopez,

le&

(12)+c.c.
E~ E—

~

In the next section we describe the approach used in cal-
culating the most important terms in the perturbation
series of Eq. (12).

III. METHOD OF CALCULATION

The method we have adopted to calculate the EDM of
the alkali-metal atoms is a combination of the variational
principle and the diagrammatic many-body perturbation
theory [21]. In this approach, the expectation value of
the EDM is calculated by expressing the atomic wave
function in accordance with MBPT, while the unoccu-
pied orbitals needed to compute it are obtained by the
multiconfiguration Dirac-Fock (MCDF) method. The
computer code implementing the MCDF method used in
our calculations used the program by Desclaux [22] to
solve the radial difference equations, while employing the
McT and Mcp packages of Dyall et al. [23] to evaluate
various angular coefficients. The method presented here
can be applied to all alkali-metal-like atoms. Next, we
describe the application of the above-mentioned ap-
proach in evaluating the most important MBPT diagrams
in the perturbative expansion of an atomic EDM.

A. Independent-particle approximation

The independent-particle approximation is the lowest-
order e8ect giving rise to the atomic EDM. In this ap-
proximation, the unperturbed ground state of the atomic
system is solved by approximating the eff'ects of electron-
electron interaction by means of a central-field potential.
Clearly, under the influence of such a potential, electrons
move eff'ectively independent of each other, thus justify-
ing the same independent-particle approximation. In our
case, we have chosen this central-field potential to be the
Dirac-Hartree-Fock potential. The P- and T-violating
Hamiltonian Hpzv causes the mixing of the
independent-particle ground state with configurations of
opposite parity, giving rise to a nonzero expectation value
of the EDM. The MBPT diagrams which represent this
process are shown in Fig. 1. Here u represents the

Clearly, the first nonvanishing contribution to the energy
shift, which is linear in the strength of the external elec-
tric field, is obtained in the second order of the perturba-
tion theory

(p (p

&@IH
(a) (b)

E~—E~
+c.C.

FIG. 1. Lowest-order diagrams.
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valence orbital which is 5s for the Rb atom, lp* is an
unoccupied p&&2 orbital, hprv is the single-particle P- and
T-violating perturbation Hamiltonian, and d =ez is the
electric dipole operator corresponding to a single elec-
tron. Either the P- and T-violating Hamiltonian HpTv or
the dipole operator g; ez; could be treated as perturba-
tion, and the perturbed wave function could be used to
calculate the expectation value of the other operator, to
yield the value of the EDM of the atom. However, to
make the computations simpler we have treated the di-
pole operator as the perturbation, i.e.,

where
I Po ) is the Hartree-Fock ground state of the atom

and IP,"~ ) is the singly excited configuration state ob-
tained from

I /0) by replacing the valence orbital
I
u ) by

the unoccupied orbital Ikp'). To solve for Ikp*), we
minimize the energy functional with respect to variation
in

I kp
* ), under the orthonormality constraints,

S„.[(ylHly) —X&kp*lkp*) —y X„(kp*lk,p') ~=0,
k

(19)

H;„,=fez, .
where k, represents occupied orbitals and

(13)
H =Ho+H;„, , (20)

(ulhpTvllp*&(lp" Idlu &D(0)—
(e„—e, ~)

(14)

Clearly, H;„, can be seen as the perturbation Hamiltonian
corresponding to the external electric field of unit
strength, acting on the atomic system. With this in mind
and using the rules of the diagrammatic MBPT, we get
the expression for the diagram in Fig. 1(a) to be

where Ho and H;„, were defined in Eqs. (7} and (13), and
X and kk are the Lagrange multipliers that ensure the

C

orthonormality of I
k'p ' ) with respect to the occupied

orbitals of the same symmetry.
It is easy to see that the minimization of the energy

functional of Eq. (19) with respect to both the orbital

Ikp * ) and the configuration coefficients Ci and C2 leads
to the equation

where c„c,
t , etc. are the energies associated with the

corresponding orbitals. If we define
C2

(ho —s, ) Ikp*) = —dlu ),
1

(21)

we get

Ilp'&&lp" Idlv &

'I '
1p

(15)

(16)

where ho is the single-particle DHF Hamiltonian defined
earlier and the coefFicients C, and C2 are determined by
diagonalizing the atomic Hamiltonian in the two-
dirnensional configuration space spanned by Igv) and

). By comparing Eq. (21) with Eq. (17), we con-
clude

We take the unoccupied orbitals
I
lp" ) to be the solutions

of Dirac-Hartree-Fock (DHF) equation

hollp") =e, .Ilp'&,

where ho is the single-particle DHF Hamiltonian given

by

Ilp*&= 'Ikp'&.
Ci

If we substitute this in Eq. (16), we get

C2D"'=
& vlhprv lkp' &

(22)

(23)

vHFIi&= X
a Ecore

aWi

(ul l~)li &
—(~l li)l~)1 . 1

12

then by multiplying Eq. (15) on both the sides by
(ho —E, ), we get

(h, —E, )ll p'&= —dlu) . (17)

Therefore if one could solve the differential Eq. (17) to get
I
l'p* ) and substitute that into Eq. (16), one would get the

contribution of the lowest-order MBPT diagram without
explicitly performing a sum over the unoccupied states.

We use the MCDF approach to solve for Il'p*). We
assume the atomic wave function to be a linear combina-
tion of two configuration states

Iq) =c, ly, &+c, ly",& ),

ho=(ca p+Pmc +vH„)

and UH„—the Hartree-Fock potential —is defined by its
action on a Hartree-Fock orbital Ii ),

Therefore, after evaluating all the quantities, we can cal-
culate the contribution of the lowest-order efFect
represented by the diagram in Fig. 1(a} to the atomic
EDM in a straightforward manner by means of Eq. (23).
The expression for the diagram in Fig. 1(b) is nothing but
the complex conjugate of the one corresponding to the di-
agram in Fig. 1(a), as both diagrams differ from each oth-
er only in the relative time ordering of the hprv and the d
operators. Since the expectation value of a Hermitian
operator is a real quantity, the numerical contribution of
the complex-conjugated diagram will be the same as that
of the original one. Therefore, the total numerical contri-
bution of the two lowest-order diagrams shown in Fig. 1

can be obtained by simply doubling the contribution cor-
responding to Eq. (23).

B. Core-polarization effects

Here we describe the evaluation of the core-
polarization effects in ascending order of perturbation
theory.
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1. Lou)est-order core polarization

(,)
&vldlk, p'&&k, p'lhpTvlv &

k, k p

(24)

where lk,p'& represents a core p' orbital. The evalua-
tion of this diagram is fairly straightforward as it does

Since the outermost shell of an alkali-metal atom is
partly filled, a core electron of opposite parity, perturbed
by the external field, can get excited and fill the vacancy
in the valence shell, thereby leading to a mixed parity
atomic state and consequently a nonzero expectation
value of the atomic EDM. This is represented by the
MBPT diagrams shown in Fig. 2. The expression for the
diagram in Fig. 2(a) is

not involve the calculation of any unoccupied orbitals.
The most important contribution comes from the outer-
most p' shell, which is 4p' for rubidium atom. The dia-
gram in Fig 2. (b), which is obtained by the opposite time
ordering of the hpTv and the d operators, can be evalu-
ated in an equally straightforward manner.

2. First-order core polarization

Typical first-order core-polarization diagrams are
shown in Fig. 3. Here we have one order of perturbation
by the Coulomb interaction in addition to the perturba-
tion by the external field.

To illustrate our method of calculation, we will consid-
er the direct diagram shown in Fig. 3(a). The mathemati-
cal expression corresponding to the contribution of this
diagram to the EDM expectation value is

(1)
Dc-po(=X X

I m

& k,p* lb pTv lms & & vms
I I lp k,p

*
& & Ip

'
Id l v &

12

(s„—s, +)(s„~—e, )
(25)

D(1)
c-po1

& k,p'lhpTvlms & & vms
l

ll'p'k, p' &

12

&ms
cp

(26)

We recall the definition Eq. (15), and hence the
differential equation satisfied by ll'p' & will be the same
~s Eq. (17). With this we get

If we have already solved for ll'p' &, we can substitute it
into Eq. (29) to get a solution for lm's &, which in turn
can be substituted into Eq. (28) to get the contribution to
the EDM expectation value.

To solve for ll'p* & and lm's &, we again use a varia-
tional approach. We achieve this by minimizing two
different energy functionals with respect to these orbitals.
To obtain

l
1'p*

& we assume the atomic wave function to
be

Now we can define ly("& =c, ly, &+c,ly„"'"& (30)

lm's &=
lms&&vmsl ll'p*k, p'&1

12

ms
cp

(27)

and minimize the energy functional with respect to varia-
tion in lk'p' &, i.e.,

so that we eventually get

D,",'., =&k,p'lh~vlm's & . (28)

—y~„&k,p*lk p'&~=0.
k

From Eq. (27) it is clear that the differential equation
satisfied by lm

's
& is

Again, k, runs over the core orbitals only and k and A, k
C

are the Lagrange multipliers imposing orthonormality

(h, —E, , )lm's&= —lk,p*&&vl li'p'& .
1

C 12
(29)

——-h
PTV hi lv

' I')'v

v/ V /

/X lp

p

(a)

FIG. 2. Lowest-order core-polarization diagrams. FIG. 3. First-order core-polarization diagrams.
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constraint.
The unoccupied orbital Im's ) is obtained by assuming

the wave function to be
+pl

/4

h )' i 4'

--- - -- j-),„
n C

lq'2') =c ly"'~ )+g ly"'' )
C

(31)

and varying the energy functional with respect to Ik's ),
i.e.,

/'4 V ihv

g, [(y"'l~ll("') —
A, '(k's Ik's )

m

(m, s k's)]=0,
FIG. 4. Core-polarization diagrams which, when added, can

be effectively represented by the so-called "pseudodiagram. "

where Im, s) are the core s orbitals and Lagrange multi-

pliers A, ensure the orthogonality of unoccupied Ik's)
C

orbitals to the core s shells. In addition, the two energy
functionals above are also minimized with respect to
coeScients C1, C2, and C3. This can be achieved by a
single diagonalization of the total Hamiltonian in the
three-dimensional space spanned by I Pu ), I

P„"~ ), and

If'
'

e ); by setting the Hamiltonian matrix elements be-
k p

tween
I Pu ) and I Pk

'
e ) to be zero [in agreement with

k p

MBPT diagram of Fig. 3(a)]; and by taking the coupling
between

I $0 ) and
I Ps ~ ) to be weak (as it is mediated by

the perturbation H;„, ). Under these assumptions the
differential equations are found to be

atomic EDM. In a similar manner, we can evaluate the
exchange core-polarization diagrams.

3. The "pseudodiagrams"

k, c, m

& ulh prv lk & ( cl dim & & km
I I vc &

r12,

(c,„+c,—c,„—c )(c„—cl, )
(37)

Now we discuss the contributions of the core-
polarization diagrams, shown in Fig. 4, to the EDM ex-
pectation value. The expressions for the diagrams in
Figs. 4(a) and 4(b) are, respectively,

and

C2
(h —c e) k's)= — (u

k,p*
r12

C2
(hu —c„) Ik'p" &

= —dlv &

1

k'p*) lk,p* & .

(32)

(33)

and

k, c, m

(vlhpTvlk )(cldlm )(kml Ivc)
r12

(c„+c,—c„—c )(c,—c, )
(38)

By adding Eqs. (37) and (38), we get the total contribu-
tion for the two diagrams,

Therefore, as before, we get

IIp')= 'Ikp').
C1

This, when substituted into Eq. (33), gives

D(pseudo)

k, c, m

&ulhprv k)&cldlm&&km

(cl, —c, )(c —c, )

l
uc&

12

(39)

(ho —ck, ) I
k's ) = —

& u
I I

I'p *
& I k,p *

&

C3 r12

or

(ho —c„*) ' Ik's &
= —

&ul II'p' & lk,p' & .
kcI' C, r„

By comparing it with Eq. (29), we get

C3
Im's ) = Ik's &,

C1

and hence

C3
D,",'., = &k,p*lhpTvl 's) .

1

(34)

(35)

(36)

The mathematical expression shown in Eq. (39) can be
represented by the MBPT diagram in Fig. 5. We have
called this diagram a "pseudodiagram" because in it the
core orbital c is represented by an upward arrow and the
unoccupied orbital m is represented by a downward
arrow —both contrary to the conventions of the diagram-

Therefore, by substituting the values of various quantities
into the expression above, we can evaluate the contribu-
tion of the direct core polarization to the value of the FIG. 5. The pseudodiagram.
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(ij Ilk' &
=

& ij I
1k' &

—
& ijl

12 12

&k I. II i j) The pair-correlation effects in Eq. (40) can be isolated in
the form of a quantity called the pair function and defined
as

FIG. 6. Antisymmetrized Coulomb vertex used in the pair-
correlation diagrams.

Iij &(ijlluc &

(e„+e,—e; —e )

With this Eq. (40}becomes

(4l)

matic MBPT. The numerical contributions of the pseu-
dodiagram, and hence those of the two regular diagrams
it represents, can be very easily calculated using the com-
putational approach we described in Sec. III B2. Natu-
rally, such an approach leads to a substantial reduction in
the number of MBPT diagrams one needs to evaluate.

& Ulh»v li & & ildlk & & « lip., &

Dpair-cor (e„—e) )(e„—ek )
(42)

It is possible to calculate the pair function as defined in
Eq. (41) explicitly, using a basis set. However, we have
adopted a variational-principle-based approach where the
pair function is defined as

C. Pair-correlation effects Ip..& =X C(l;)'Iij & (43)

Now we turn to the discussion of the calculation of the
pair-correlation effects. Here we will use a diagrammatic
convention which utilizes the antisymmetrized Coulomb
vertices similar to the one illustrated in Fig. 6. Most im-
portant contributions of the pair-correlation effects come
from what are known as the Brueckner diagrams [24].
These diagrams are shown in the Fig. 7. We will discuss
the evaluation of both the lowest-order pair-correlation
effects as depicted in Fig. 7(a) and the higher-order pair-
correlation effects as shown in Fig. 7(b).

1. Lowest order pair-correlatio-n sects

Now we will discuss the evaluation of the pair-
correlation diagram shown in Fig. 7(a). There are several
ways by which one can approach this problem. One of
the most frequently used approaches is that of the di-
agrammatic MBPT using a basis set [25]. According to
the rules of the diagrammatic MBPT, the expression for
this diagram is

&i)lh»vli && ildlk &&«llij &&tjllUc &

(e„—e()(s„—ek )(e„+e,—e; —e, )

where Ii & and Ij& are calculated by the MCDF ap-
proach. This is achieved by minimizing the energy func-
tional with respect to the state function

& =c, I&,&+X c('„)Ig, & (44)

ly("& =c, ly, &+c, ly'~ & . (45)

The relationship between this variational approach and
the perturbative approach described earlier is elaborated
in the Appendix.

We can rewrite the Eq. (42) as

&UliipTvli && ildlk") &

+pair-cor (46)
I U

and the coefficients C((,"')', etc. are obtained by diagonaliz-
ing the Hamiltonian in the configuration space spanned
by 1&0& and I+, &'s.

Lowest-order pair-correlation effects are evaluated by
carrying out the above-mentioned procedure on the wave
function

(40) where

In this equation the antisymmetrized matrix element is
defined as

lk &(kcllp„, &

k, ~ ev

Clearly
I
k (*)

& satisfies the differential equation

(47)

I I }&q y

cI

(E.—ho)lk" &=y &clip., &,

where, in general [from Eq. (43}],

(4g)

/4 i J
&clip., &=pc((,",')' &cl li&lj& —&cl Ij&li&

j F12 12

(49)
(b)

FIG. 7. Brueckner pair-correlation diagrams.

Now Eq. (46) can be written as

D~„,„,= &Ulh»vli"'&, (50)
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where

l

(, )&
ll &&lldlk'*')

(E, —E, )
(5l)

It is obvious that
l

1'*') satisfies the differential equation

6„[(P"'lH P"'& —
A, & k'lk') g A,„(k'lk, &]=0,

k,

where

(52)

However, we calculate the orbitals lk'*') and ll'*') by a
variational approach, a brief discussion of which follows.

The orbital lk'*') is calculated by minimizing the en-
ergy functional, i.e.,

(., —h, )l! &=
C4

where c,I. is the unknown energy associated with the or-
bital ll'). However, as before, we set sl =E„and use Eq.
(57) to get

(e, —ho) 1') =dlk'*') .
C4

1

(59)

6, , [(t1"'lHly'"& —X(1 l1 &
—y X, &1 l1, &]=0,

C

where
l 1, ) represents the core orbitals of the same sym-

metry as ll'). We get the differential equation satisfied
by ll') to be

y"'& =c, ly',~, &+c, l(t"'& (53) Comparing this with Eq. (52) we get

and k, stands for the core orbitals of the same symmetry
as

l

k' ) orbital. The variation with respect to
l

k' ) leads
to the differential equation

(e„—h, )lk')= &cl l~&lj& —
&~l Ij&l~'&

1 . . 1
k 0

~12

C4

C1
(60)

By substituting it into Eq. 950) we get the expression for
the EDM contribution due to the lowest-order pair-
correlation effects to be

(54)
C4

D „,„„= (vlhpTv I ) .
1

(6l)

where the energy ck. is the DHF energy associated with
the unoccupied orbital k'). From the expression for the
variational wave function of Eq. (45) it is clear that the
pair function is given by

In a pure MCDF calculation, the coefficients C1, C2,
C3, and C4 are determined by diagonalizing the atomic
Hamiltonian in the four-dimensional space spanned by

C2p„= 11j& .
1

(55)
H11 H12 H13 H 14 C C1

Using this, Eq. (54) can be rewritten as

C3
lk ) =(clip„& . (56)

' (.lip„) .
3

In this equation both the orbital lk') and the energy c~
are unknown parameters and can be solved iteratively.
However, if we replace unknown c.k by the known pa-
rameter c.„where c., is the DHF ground-state energy of
the valence orbital, the differential equation satisfied by
lk') becomes

H21 H22 H23 H24 C2 C2

H31 H32 H33 H34 C3 C3

H41 H42 H43 H44 C4 C4

where H», H ~2, etc. are defined in Eq. (A3) and

H„= & y',j, IHly.'&,
H„=&y,"'lHly,"'&,

H,„=(y,"'lHly", ) =(k'ldl1 &,

H„= & y'„'lHly,"&,

(62)

(63)

lk'*') = lk & .
C3

C1
(57)

In order to obtain the orbital ll'*') we assume the
atomic wave function to be

l~"'&=c, l~" +c l~' (58)

and vary the energy functional with respect to the orbital
ll'&, i.e.,

By comparing Eqs. {56) and {48), we obtain the relation-
ship between the perturbationally and the variationally
solved orbitals to be But it is clear from Fig. 7 that in the diagrammatic

MBPT, unlike MCDF, there is no mixing between the
configurations one and three, one and four, and two and
four. Since our calculation is based on the diagrammatic
MBPT, we set

H31 =0 H14 =H41 =0 H24 =H42 0

and the coupling between configurations two and three is
considered to be weak, i.e., H23 =0, again in accordance
with the perturbation theory. With this we finally get
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'H}} H}2 0 0 C} C}'
H2} H~2 0 0 C~ C2

0 0 H33 H34 C3 C3

0 0 H43 H44 C4 C4

(64)

(68)

Therefore, one can solve the Eq. (64) to get all the C
coefficients, which in turn can be substituted into Eq. (61)
to get the contribution of the pair-correlation diagram to
the EDM expectation value.

2. Higher order -pair correl-ation sects

In our calculations we have calculated up to the
second-order pair-correlation effects. A typical diagram
representing such effects is shown in Fig. 7(b). Now we
will brieRy outline the method of evaluation of these dia-
grams.

The orbital pairs ~i ), ~j ) and ~i '), ~

j' ) are calculated in
a self-consistent manner using the MCDF method.
Apart from the rules of the angular momentum algebra,
there is no restriction on the angular symmetries of these
orbitals. But we have restricted ourselves to the dia-
grams where the orbitals ~i'),

~
j') have the same angular

momentum values as the orbitals ~i ), ~j ), i.e., they differ
from each other only in their principle quantum number
n. The reference atomic wave function for the MCDF
calculation of these orbitals is taken to be

(6S)

Orbital ~k) is calculated by minimizing the energy
functional with respect to the wave function

while the orbital ~1) is evaluated by taking the wave
function to be

(66)

The C coeScients appearing in the expression above are
obtained by solving the equations

H}} H}2

H22

H3} H32

0 0

0 0

where

H}3 0 0

H23 0 0

H33 0 0

0 H44 H45

0 H54 H55

C2

C3 =E C3

C5

and varying the energy functional with respect to ~l').
The differential equations satisfied by the orbitals ~k')
and ~1') come out to be identical to the ones in the
lowest-order case. By following the same steps, we can
show that the expression for the EDM contribution of
this diagrain is

IV. RESULTS AND DISCUSSIONS

In this section we report and discuss the results of our
calculations of the electric dipole moment of the atomic
rubidium. We also compare our results for the rubidium
EDM, due to the intrinsic EDM of the electron, with
other published calculations. However, for the case of
the rubidium EDM due to P- and T-violating interaction
between the electrons and the nucleons, such a compar-
ison is not possible because of the lack of any prior calcu-
lations. All the numerical values that we are reporting
are expressed in the atomic units. In what follows we
systematically describe our results in the order of impor-
tance of the MBPT diagrams they represent.

A. Lowest-order efFect

This effect, which is represented by the MBPT dia-
grams shown in Fig. l, is the most important in terms of
its contribution to the total electric dipole moment of the
rubidium atom. As is clear from these diagrams, this
effect arises due to direct interaction between the valence
electron (u =Ss) of the rubidium atom and either the P-
and T-violating Hamiltonian hFrv or the external field
Hamiltonian d. As a result of this interaction, the
valence electron, which is bound very weakly to the
atom, is now described by a mixed-parity single-particle
state (in this case a mixture of Ss and ip' orbitals). This
implies that the atom —no longer in a definite parity
state —will have a nonvanishing expectation value of the
electric dipole moment. The results we obtained for these
lowest-order calculations for the ground state of the rubi-
dium atom are as follows. The value of the enhancement
factor R, which is the ratio of the atomic EDM to that of
a single electron, was evaluated to be

R' '=19.8087 .

The value above is within 2% of the results of a prior cal-
culation by Das, Johnson, and Idrees [26]. For the case
of the EDM due to a P- and T-violating electron-nucleon
interaction, the S ratio, which is defined as the ratio of
the total atomic EDM to the scalar-pseudoscalar cou-
pling constant cz, was found to be

S' =12.2568 .

B. Core-polarization efFects

In what follows, we will discuss various mechanisms
which lead to core-polarization eS'ects and also their nu-
merical contributions.
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TABLE I. Contributions of the lowest-order core-
polarization MBPT diagrams shown in Fig. 2.

Core orbital k,p*

4
3p
Total

Enhancement factor R

0.9434
0.009
0.9524

S ratio

0.5838
0.0056
0.5894

1. Lowest-order core polarization

These effects are different from the lowest-order core
polarization in that in addition to h PTv and d, one order
of Coulomb interaction is also involved in the process.
Now we will describe various types of diagrams which
come under this category.

(a) EDM core polarizati-on sects Various .MBPT dia-
grams that represent this efFect are shown in Fig. 8. For
example, if we look at the diagram in Fig. 8(e), it is clear
that a core electron (labeled c) is excited into an unoccu-
pied orbital (labeled m) of opposite parity by means of its
interaction with hpTv ~ Next, the electron in the orbital m

interacts with the valence electron by means of Coulomb
interaction resulting in the deexcitation of the valence

The valence shell Ss for the rubidium atom in its
Dirac-Fock ground state is not a completely filled shell.
Therefore, an electron from one of the core p* orbitals,
by interacting with either the parity and time-reversal
Hamiltonian or the external field, can get excited into the
valence shell, thus contributing to the atomic EDM. The
MBPT diagrams which depict these processes for a gen-
eral core p' orbital k,p' are shown in Fig. 2. The results
of these calculations are described in Table I. It is clear
from the results that the largest contribution to this set of
diagrams, as expected, comes from the one involving the
excitation of 4p

' orbital. The contribution of the next di-
agram, in which 3p orbital is excited, is two orders of
magnitude smaller than the largest one. This clearly
demonstrates the rapid convergence of the calculations
for this set of diagrams.

2. First-order core polarization

electron into the core shell c and transition of the elec-
tron in the orbital m to the orbital kp'. This kp* orbital
is the same as the one in the lowest-order case. Finally,
the electron in the orbital kp* is deexcited into the
valence shell because of its interaction with the external
field Hamiltonian d. Since in these processes a core elec-
tron is excited into an unoccupied orbital of opposite par-
ity by means of its interaction with h prv (the EDM caus-
ing perturbation Hamiltonian), these diagrams are re-
ferred to as the EDM core-polarization diagrams. In
general, all the diagrams shown in Fig. 8 are supposed to
contribute to the atomic EDM, but for the special case of
the EDM core-polarization diagrams, the contribution of
the direct diagrams (both regular and pseudo) is identi-
cally zero [27].

(b) External fi'eld -core polarization. The diagrams
representing this effect are shown in Fig. 9. As is clear
from the diagrams, here the core electron (labeled c) is
excited into an unoccupied orbital (labeled m) of opposite
parity by means of its interaction with the external field
Hamiltonian d, thus justifying the name external fteld-
core polarization. Including the contributions of this type
of diagrams amounts to including the eFects of EDM
shielding due to the presence of an external field. This is
manifested in the numerical results in that the contribu-
tion of this class of diagrams is opposite in sign compared
to the contribution of the EDM core-polarization dia-
grarns. Since the dipole operator d is a vector operator, it
can connect states of opposite parities which satisfy the
angular momentum selection rule bj=0, 1. When we
compare this to the case of EDM core polarization,
where the corresponding selection rule was Aj =0 owing
to the fact that h PTv is a scalar operator, it becomes obvi-
ous that for the case of the external-field core polariza-
tion, there are more possible values of m and c. In addi-
tion to this, unlike EDM core-polarization diagrams,
direct external field core-polarization diagrams shown in
Figs. 9(a)—9(d), in general, have nonvanishing contribu-
tions. Therefore, the number of the MBPT diagrams that
contribute to external-field core polarization is more
compared to the ones which contribute to the EDM core
polarization.

S
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FIG. 8. EDM core-polarization diagrams.
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FIG. 9. External-field core-polarization dia-
grams.
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6 Ii'I y

(hp & )lw &
= hprvlv &

—
vHF Iu & (69)

where hp is the single-particle Hartree-Fock Hamiltoni-
an, s„ is the orbital energy of the valence orbital

~
v ), and

u H„' is the first-order (in h PTv ) correction to the Hartree-
Fock potential which takes into account the efFects of
h pTv on the core orbitals. The corrections included in

UHF are shown diagrammatically in Fig. 10. From these
diagrams and Eq. (69) it is clear that the lowest-order re-

3. Core-polarization sects: Results and comparison

The final contributions of different types of core-
polarization efFects to the electric dipole moment of the
rubidium atom are presented in Table II. Now we will
compare our lowest-order and core-polarization results
with other similar calculations. Johnson et a/. in their
two papers [19,20] have presented the results of their cal-
culations of the enhancement factor R of the rubidium
atom. The first of these papers [19]presents the results of
their "lowest-order" calculations. The philosophy behind
their approach is similar to the one behind our lowest-
order calculations in that they assume that the main con-
tribution to the atomic EDM comes from the perturba-
tion caused to the valence orbital due to hPTv. They as-
sume the perturbed valence orbital

~

v' ) to be

I

v'
&
=

I
v &+ I

w & ~

Here ~u ) is the unperturbed valence orbital (Ss for Rb)
and ~w ) is perturbation correction, of opposite parity,
caused by its interaction witli hprv. The differential
equation, sometimes referred to in the literature as the
parity-nonconserving-Hartree-Fock (PNC-HF) equation
[27], which ~w ) satisfies is

suits of Johnson et al. contain EDM core-polarization
efFects which include certain terms to all orders in
Coulomb interaction. In their second paper [20], they go
beyond their lowest-order calculations by doing MBPT
calculations which include the external field core-
polarization effects to the first order in the Coulomb in-
teraction with an external field vertex (i.e., d vertex)
modified in accordance with the random-phase approxi-
mation (RPA). Using an RPA-modified vertex results in
the inclusion of some terms of second- and higher-order
perturbation theory in the Coulomb interaction.

This is to be contrasted with our approach, where the
lowest-order calculations are carried out by evaluating
the perturbation correction to the valence orbital, by
solving the differential equation

(hp &. )Iw &
= hpTvlv & . (70)

A comparison between Eqs. (69) and (70) tells us that our
lowest-order result, unlike that of Johnson et al. , does
not include the EDM core-polarization effects. In our
calculations, EDM core polarization and external-field
core polarization are treated on equal footing in that both
these effects are evaluated as perturbations beyond the
lowest-order calculations, including the effects of
Coulomb interaction only to the first order. Keeping
these differences in mind, it is valid to compare the
lowest-order results of Johnson et al. , with our lowest
order + EDM core polarization -results. The final results
of Johnson et al. [20] will be compared with our lowest
order + EDM core polarizatio-n + external-jteld core
polarization results. In addition to this, we also mention
the results of the calculations by Sandars [28]. Since
these calculations were carried out using a local-potential

TABLE II. Final contributions of both types of core-polarization effects to the EDM of the Rb
atom.

Type of effect

Lowest-order core polarization
EDM core polarization
External-field core polarization
Total

Enhancement factor R

0.9524
2.3847

—1.2537
2.0834

S ratio

0.5894
1.4392

—0.7758
1.2528
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' PTV

l& T v

h pTV

pTv h pTv

tx v FIG. 10. First row of diagrams defines the
terms in perturbation theory corresponding to
UHF. Subsequent rows define the dressed ver-
tex occurring in the first row [19].

h P I i PTV

based approach, it is difBcult to make an exact compar-
ison with our results. However, a rough correspondence
can be established by recognizing that the "shielded" re-
sults in these calculations were arrived at by taking into
account the effects of the polarizability of the atotnic core
(under the influence of the external field), unlike the
"unshielded" case. The results of our calculations are
presented alongside those of the calculations mentioned
above in Tables III-V. The difference between the re-
sults can probably be explained by the fact that our cal-
culations of the EDM core-polarization effects are only to
the first order in the Coulomb interaction, while those of
Johnson et al. contain certain effects that include the
Coulomb interaction to all orders in perturbation theory.
But still, at every stage, the two results are within 15% of
each other. We describe the efFects of pair correlation in
the next section.

C. Pair-correlation e8'ects

The ground-state wave function of the rubidium atom
that we have used in our calculations is calculated under
the Hartree-Fock approximation, which is a central-field
approximation and takes into account the effects of
electron-electron interactions only in an average manner.
In order to account for this shortcoming of the atomic
ground state, and to see as to how the inclusion of the
electron correlation effects affects the value of the atomic
EDM, one should evaluate what are called the pair
correlation diagrams Various t.ypes of MBPT diagrams
representing the pair-correlation effects are shown in
Figs. 11 and 12. In the diagrammatic language, these di-
agrams take into accoUnt the e8'ects of excitation of two
electrons simultaneously from the Hartree-Fock ground

state, under the inhuence of mutual Coulomb repulsion.
In principle, these two electrons could be any two elec-
trons belonging to the ground state of the atom, but it is
clear that the most important effects for alkali-metal
atoms will involve a valence-core correlation, i.e., when
one of the excited electrons is the valence electron. The
pair-correlation effects not only provide important contri-
butions to the unperturbed ground state but also to the
ground state already perturbed by the hpTv or d opera-
tors. Such effects are represented, for example, by the di-
agrams shown in Figs. 11(e), 11(f), 12(e), and 12(f). In the
preceding sections, all the cases we discussed involved the
single excitations, i.e., at one point only one electron
(core or valence) had been excited from the ground state.
Therefore, while doing the pair-correlation calculations,
we have evaluated the terms in the perturbation series
which correspond to the simultaneous excitation of both
the core and the valence electrons. We call the diagrams
that contain two orders of Coulomb interaction, shown in
Fig. 11, the lowest order pair -correla-tion diagrams The.
diagrams that contain three orders (or more) of Coulomb
interactions as shown in Fig. 12 will be referred to as the
higher-order pair correlation dia-grams. As we shall see,
the main contribution to the pair-correlation effects
comes from the lowest-order diagrams. But we have
evaluated selected higher-order diagrams to demonstrate
the completeness and the convergence of our calcula-
tions. Now we will describe our results for both types of
diagrams.

I Lowest order p. air correlati-on eQects-

If we consider a typical lowest-order pair-correlation
diagram, for example, the one in Fig. 11(a), it is clear that

TABLE III. Comparison between our calculations inclusive of the EDM core-polarization effects
and the calculations of Johnson et al. [19]and Sandars [28] for the enhancement factor R.

Our calculations
Lowest order + EDM core polarization

Other calculations
PNC-HF [19] Unshielded [28]

23.1 26.6 27.5
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TABLE IV. Comparison between our results of the external-
field core-polarization corrections to R and the similar calcula-
tions of Johnson et a!. [20].

5s

/x Qp
I I p'rv

/x Ls

/X
5s

/%i J

/4

5s
& ~PTV

/g k'p----- cI
/x Is

Our calculations

—1.2

Other calculations [20]

—2.0
/X & J

/x5s

(c)
V

/X

(b)

'r iprv.
/x kp'
—————d

/y5s

one of the core electrons (labeled c} interacts with the
valence electron (Ss) via Coulomb interaction resulting in
the excitation of both the electrons to unoccupied shells
labeled i and j. In mathematical terms, this amounts to
nothing but adding a doubly excited (relative to the
Hartree-Fock state) configuration state function to the
Hartree-Fock ground-state wave function, as discussed in
Sec. III C l. These two electrons interact again via the
Coulomb interaction leading to the deexcitation of one of
the electrons back to the core shell c while the other elec-
tron makes a transition to another unoccupied s shell la-
beled Is. Beyond this, the action of h PTv and d vertices is
similar to the one in the lowest-order case discussed in
Sec. III A. We expect to see the trend that the most im-
portant contributions to this effect should come from the
diagrams which involve the excitation of the outermost
core electrons, with the contribution decreasing succes-
sively as one goes deeper in the core. DifFerent core-
valence pairs were considered in our calculations. Corre-
sponding results for various diagrams are presented in
Tables VI-VIII. The total first-order pair-correlation
contributions are listed in Table IX.

2. Higher order pair c-orrelation -sects

In principle, one could evaluate the pair-correlation
effects up to any order in Coulomb interaction, but we
will confine our discussion to the higher-order effects that
are third order in Coulomb interaction. As we shall see,
the contribution of these terms comes out to be only a
fraction of the contribution of the lowest-order terms,
thus justifying the neglect of the higher-order terms.
These terms are shown in the diagrammatic form in Fig.
12. It is clear from these diagrams that these effects arise
when the pair of electrons which interact with each other
to give rise to the lowest-order effects interacts once more
via the mutual Coulomb interaction. In mathematical
terms this amounts to adding another doubly excited
configuration state to the ground state a1ready perturbed
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/X i J
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FIG. 11. Lowest-order pair-correlation diagrams.

3. Pair correlation: Final results

The final results of our calculations of the contribu-
tions of the pair-correlation effects to the electric dipole
moment of the atomic rubidium are presented in Tables
XIV and XV. Table XIV lists these contributions
classified according to the orders of pair correlation and
also the core orbitals that were involved in the process.
Table XV shows the total contributions to the atomic
electric dipole moments which arise from different orders
of pair correlation.

The trend that is quite evident in these tables is that at
the level of every order of electron correlation (as it was
at the level of the individual diagrams also}, the diagrams

by the lowest-order effect. In principle, the second pair
of orbitals i' and j' can be of any angular symmetry con-
sistent with the angular momentum selection rules. In
our calculations, however, we have evaluated only those
diagrams in which the angular symmetries of i ' and j' are
same as those of i and j, i.e., i' and j' differ from i and j
only in the principle quantum number. We have evalu-
ated the higher-order diagrams corresponding to only
those lowest-order diagrams whose contributions were
significant. Corresponding results for various diagrams
are presented in Tables X—XIII.

TABLE V. Comparison between our results inclusive of both the EDM and the external-field-
induced core-polarization efFects and the calculations of Johnson et ai. [20] and Sandars [28] for the
enhancement factor R.

Our calculations

Lowest order
+EDM core polarization

+external-field core polarization

21.9

Other calculations

PNC-HF
+external field

core polarization [20]

24.6

Shielded
[28]

24



1168 ALOK SHUKLA, B. P. DAS, AND J. ANDRIESSEN 50

/i kp
——h 1'1 V
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TABLE VII. Total contributions of the pair-correlation dia-
grarns of the type shown in Figs. 11(c) and 11(d). Results are
classified according to the core orbital that was involved in the
pair-correlation process.

/ikp I'T V

/%55

(c)

Core orbital c

4p
4
4s
Total

Enhancement factor R

—0.5027
—0.3466
—0.0023
—0.8516

S ratio

—0.311
—0.2145
—0.0014
—0.5269
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TABLE VIII. Total contributions of the pair-correlation dia-
grams of the type shown in Figs. 11(e) and 11(f), classified ac-
cording to the core orbital.
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FIG. 12. Higher-order pair-correlation diagrams.

4p
4p
4s
Total

1.6257
1.0321
0.0092
2.667

1.0058
0.6386
0.0057
1.6501

which involve 4p orbital in the pair-correlation process
contribute the most, followed by those involving 4p*.
The contribution of the diagrams involving 4s orbital is
extremely small and insignificant compared to the other
two. This trend can be easily understood if we consider
the fact that of the three orbitals 4p is the least tightly
bound to the nucleus while 4s is the most. Therefore, an
electron in the 4p orbital is most easily excitable to an
unoccupied orbital because of the pair-correlation pro-
cess (which involves Coulomb repulsion) with another
electron (valence or excited), as compared to the elec-
trons in the other two shells, thus explaining the highest
contribution of the 4p electrons. The fact that the contri-
bution of the 4s electron is so much smaller (only a frac-
tion of a percent of the total contribution), we are
confident that our calculations, which take into account
the effects of valence-core correlation, are essentially
complete and that we do not need to go any further into
the core.

The other result that is quite obvious is that the total
contribution of the higher-order pair-correlation dia-
grams is only a small fraction of their lowest-order coun-
terparts. From this we conclude that the most important
contributions to the atomic EDM due to pair-correlation
effects arise from the lowest-order diagrams and that the
contributions will decrease rapidly as we go to the higher

Core orbital c Enhancement factor R S ratio

4p
4
4s
Total

2.7866
1.5246
0.0367
4.3479

1.7242
0.9433
0.0228
2.6903

TABLE X. Total contributions of the pair-correlation dia-

grams of the type shown in Figs. 12(a) and 12(b), classified ac-
cording to the core orbital.

Core orbital c Enhancement factor R S ratio

4p

Total

0.2608
0.0799
0.3407

0.1614
0.0494
0.2108

TABLE XI. Total contributions of the pair-correlation dia-

grams of the type shown in Figs. 12(c) and 12(d), classified ac-
cording to the core orbital.

Core orbital c Enhancement factor R S ratio

4p
4
Total

—0.035
—0.0128
—0.0478

—0.0217
—0.0079
—0.0296

TABLE IX. Total contributions of the lowest-order pair-
correlation diagrams of the type shown in Fig. 11, classified ac-
cording to the core orbitals.

Core orbital c Enhancement factor R S ratio

TABLE VI. Total contributions of the pair-correlation dia-

grams of the type shown in Figs. 11(a) and 11(b), classified ac-
cording to the core orbital c.

TABLE XII. Total contributions of the pair-correlation dia-

grams of the type shown in Figs. 12(e) and 12(f), classified ac-
cording to the core orbital.

4p
4
4s
Total

1.6636
0.8391
0.0298
2.5325

1.0294
0.5192
0.0185
1.5671

Core orbital c

4p
4
Total

Enhancement factor R

0.1164
0.0275
0.1439

S ratio

0.0721
0.0177
0.0898



50 RELATIVISTIC MANY-BODY CALCULATION OF THE. . .

TABLE XIII. Total contributions of the higher-order pair-
correlation diagrams of the type shown in Fig. 12, classified ac-
cording to the core orbital.

Core orbital c

4p
4
Total

Enhancement factor R

0.3422
0.0946
0.4368

S ratio

0.2118
0.0592
0.271

h prv

orders in Coulomb interaction. This clearly demon-
strates the rapid convergence of the perturbation series as
far as this type of pair-correlation efFect is concerned.

V. SUMMARY ————— h prv p rv

In Table XVI we summarize our calculations of the
electric dipole moment of atomic rubidium both due to
the intrinsic electric dipole moment of the electron and
the P- and T-violating interaction between the electrons
and the nucleons. It is quite clear from the results that
the contribution of the pair correlation to the electric di-
pole moment of atomic rubidium can be quite significant.
Though, our calculations probably underestimate the
core-polarization effects; however, results suggest that
pair-correlation effects can be as significant as core polar-
ization. In what follows we describe some of the limita-
tions of our calculations which could possibly be over-
come by further efforts in the future.

As we have mentioned before, one of the major limita-
tions of our calculations is that we have taken into ac-
count the effects of core polarization only to the first or-
der in the Coulomb interaction. One could, in principle,
account for these effects to all orders in Coulomb interac-
tion using either a differential-equation-based approach
or an MBPT-oriented approach using dressed vertices for
the d operator or ApTv [1920].

In the pair-correlation calculations, our correlation or-
bitals i and j, though calculated in a self-consistent
manner with each other, are not calculated self-
consistently with the occupied orbitals of the atom. We
solve for orbitals i and j using the unperturbed ground-
state (i.e., Hartree-Fock state) solutions of the core and

FIG. 13. Some of the pair-correlation diagrams that were not
included in the calculations.

valence orbitals. However, we did check our solutions of
orbitals i and j for a given diagram for orthogonality with
other (both occupied and unoccupied) orbitals of the
same symmetry. Similarly, correlation orbitals of the
same angular symmetry, but calculated for different dia-
grams, are quite different from each other. This is due to
the fact that the correlation orbitals are calculated by
means of an MCDF calculation (see Sec. III C 1), which is
unique to every diagram. This feature of our calculations
makes them different from the diagrammatic MBPT cal-
culations done using a basis set where the same set of or-
bitals are used in different calculations. In our pair-
correlation calculations, we have taken into account only
those diagrams which involve core-valence correlation;
i.e., we have completely ignored the core-core correlation
effects. It is our belief that these effects will be small be-
cause most of the contribution to the atomic EDM comes
from the diagrams where the valence electron is per-
turbed. But, for the sake of completeness, one may wish
to verify this by means of actual calculations. Also ig-

TABLE XIV. Total contributions of all the pair-correlation diagrams combined, classified in accor-
dance with the core orbital and the order of correlation. The dash denotes a contribution not evalu-
ated.

Core orbital c Order of correlation Enhancement factor R S ratio

4p Lowest
Higher

2.7866
0.3422

1.7242
0.2118

4

4s

Lowest
Higher
Lowest
Higher

1.5246
0.0946
0.0367

0.9433
0.0592
0.0228

Total 4.7847 2.9613
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Order of correlation Enhancement factor R 5 ratio

Lowest
Higher
Total

4.3479
0.4368
4.7847

2.6903
0.271
2.9613

TABLE XV. Total contributions of all the pair-correlation
diagrams combined, classified according to the order of correla-
tion.

lq"'& =c, Iy, &+c,lyj, &, (Al)

where Ii & and
Ij & are unoccupied orbitals which are

evaluated by the MCDF method. Minimizing the energy
functional with respect to the coeScients C, and C2
amounts to diagonalizing the atomic Hamiltonian in the
two-dimensional space spanned by lgo& and IP",, & and
leads to the condition

nored in our calculations were the diagrams which do not
belong to the category of Brueckner pair-correlation dia-
grams. Some of these diagrams are shown in Fig. 13.
Some of these diagrams could also provide important
contributions to the atomic electric dipole moment.
Bearing in mind all the limitations of our calculations
mentioned above, we do not intend to present our results
as the last word on the evaluation of the EDM of the ru-
bidium atom. However, we do believe that our calcula-
tions have demonstrated that the contribution of the
pair-correlation effects to the atomic EDM can be
significant and therefore should not be ignored.

The above discussion exposes one of the largest
weaknesses of the diagrammatic MBPT—the large num-
ber of diagrams one has to evaluate to bring the calcula-
tions anywhere near complete as far as a given order of
the perturbation theory is concerned. And to make
matters worse, the number of possible diagrams proli-
ferates tremendously as one goes to higher order in per-
turbation theory. However, there is an alternative non-
pcrturbative approach to many-electron systems which
shares the desirable property of "size extensivity" with
MBPT, but with a much simpler diagrammatic "book-
keeping. " This approach is called the coupled-cluster ap-
proach [29], and in future publications [30] we intend to
pursue its implementation to the problem of the electric
dipole moment of alkali-metal-type atoms.

APPENDIX: LOWEST-ORDER
PAIR CORRELATION:

RELATIONSHIP BETWEEN THE PERTURBATION
AND THE VARIATIONAL APPROACHES

Lowest-order pair-correlation effects are evaluated by
working in a two-dimensional configuration space. Now
we will examine the connection between our variational
approach and the perturbation approach we outlined in
Sec. III C 1. The atomic state function used in our calcu-
lation is of the form

TABLE XVI. Final contributions of various effects to the EDM
of the Rb atom.

r

H12 C1 C
=E (A2)

where

H» =
& NolHI&o &

H„=&p.iH p.", &=&-II j&,
=&0'J IHIPo &

= &'jlluc &,

H„=&y„,lH y.", & .

(A3)

We can solve Eq. (A2) to get

C2

C1

(H, i
—H~2)

2H12

z2) 4IHi2I1+2H„(H, i
—H, 2

)'

' 1/2

(A4)

IHizl ( ii z2) (A5)

we can binomially expand the right-hand side of Eq. (A4)
to get

(Hii —Ht2)+ 1+
C1 2012 2012 (H „—H22 )

The solution consistent with the weak coupling will be

+(higher-order terms in H, z) .
(H „—H2~ )

C2

C1

(A6)

If we assume the intermediate normalization for the wave
function Ig&, and substitute this in Eq. (Al), we get

I

ii 22

+(higher-order terms in H, z) .

If the coupling between the configurations is not too
strong (which is what is assumed in a perturbation treat-
ment of correlation), i.e.,

Type of effect

Lowest order
Core polarization
Pair correlation
Total

Enhancement factor R

19.8087
2.0834
4.7847

25.6768

S ratio

12.2568
1.2528
2.9613

16.4709

However, we know that

H„H„=& y„HIy, &
—&y'„,

IHIP''„&

. —

If we make the crude approximation [31],

H11 H22 E~ + EU C; Cj
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and use Eq. (A3), we get above

+ Vll

6„+E,
C 8; EJ.

+(higher-order terms in H, 2) . (A7)

If we compare Eq. (A7) with Eq. (41), we begin to see
similarities between the variational wave function and the
perturbation wave function in the first order of electron
correlation. But, as is obvious above, the variational
wave function, unlike its perturbation counterpart, also
contains higher-order terms in the electron correlation.
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