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Chaos-induced avoided level crossing and tunneling
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We study the quantum effect of chaos on dynamical tunneling in the driven pendulum. We analyze
the avoided level crossing between the Floquet states associated with the chaotic part of the phase
space and a member of the quasidegenerate doublet. As a result of the interaction, the doublet state
whose Husimi distribution was initially localized on symmetric Kolmogorov-Arnold-Moser islands
exchanges its structure with the chaotic state. We investigate the implications of this kind of avoided
crossing on the quantum dynamics of a wave packet initially centered on one of the symmetric islands.

PACS number(s): 03.65.—w, 05.45.+b, 73.40.Gk

I. INTRODUCTION
Despite significant recent progress, relatively little is

known about the effects of chaos on a purely quantum
mechanical process such as tunneling. Herein we adopt
a broader definition of tunneling which comprises not
only the conventional penetration of a classically insur-
mountable potential barrier but also the quantum motion
between classically disconnected phase space nonlinear
resonances [Kolmogorov-Arnold-Moser (KAM) islands].
The latter phenomenon was investigated by Davis and
Heller as early as 1981 and is frequently referred to as
dynamical tunneling [1].

The interplay between chaos and tunneling was the
subject of the recent work by Lin and Ballentine [2, 3],
who investigated a monochromatically driven particle in
a double-well potential. The Poincare surface of section
of this system for a particular choice of model param-
eters has a small regular island in each well immersed
in a chaotic sea, which extends over both wells. Lin
and Ballentine show numerically that a wave packet ini-
tially centered on one stability island tunnels into the
other one. The tunneling between the classical phase
space structures retains its coherent, oscillatory nature
despite the fact that the wave packet is not completely
enclosed by the KAM surfaces. The driven tunneling
phenomenon has a rate 10 faster than that for the un-
driven case. Peres [4] pointed out that the observed tun-
neling is due to a dynamical symmetry of the Hamil-
tonian, which remains invariant under combined spatial
reBection and time translation. Consequently the eigen-
functions of the corresponding Floquet operator may be
classified into even and odd states with respect to a gen-
eralized parity operator. In further investigations Plata
and Llorente [5] demonstrated that the tunneling rate is
determined by the splitting of a pair of Floquet states
localized on two stability regions. Symmetric and an-
tisymmetric combinations of these states yield packets
initially localized in each well which in the course of time
oscillate between the stability regions. Grossman et al.
[6—9] studied the driven double well madel with different
values of the &equency and amplitude of the perturbation
and showed that the external Geld can also decrease the
tunneling rate and with the appropriate choice of model

parameters it is possible to even suppress the tunneling
altogether. The total inhibition of the tunneling occurs
at the exact crossing of the even and odd Floquet states.
Utermann et al. [10] found a very strong correlation be-
tween the tunnel splitting and the overlap of the Husimi
distribution of the doublet states with the chaotic layer.

The problem of phase space tunneling has been stud-
ied for many quite diverse physical systems. For example,
Roncaglia et al. [11],using the kicked Harper model in
the regime of weak chaos, examined the dependence of
the splitting of the near!y degenerate doublet on the ef-
fective value of the Planck constant. They found that
this dependence significantly difFers from the prediction
of the theory developed earlier by Wilkinson [12, 13] and
argue that the observed difference is the result of chaos.

The behavior of the splitting of quasidegenerate dou-
blets has also been the subject of the recent paper by
Bohigas et al. [14]. Using the autonomous system of
two coupled quartic oscillators they demonstrated that
tunneling is strongly affected by classical integrability
of the Hamiltonian system. Beyond the quasi-integrable
regime the splitting becomes extremely sensitive to vari-
ations of the external parameter. To quantify the ob-
served phenomenon they considered a three-level model
which describes the interaction of the chaotic eigenstate
with the quasidegenerate doublet. They conclude that
"the major consequence of chaos is enhanced tunneling
between islands by allowing transport across regions in
phase space. " In a previous paper [15] we pointed out
that the above scenario is valid only for sufBciently small
coupling between the regular doublet and the chaotic
state, a condition which may be satisfied far enough from
the center of the avoided crossing. In the neighborhood
close to the center of the crossing quantum dynamics
is very difFerent. This difference is associated with the
interchange of the structure of the interacting states, a
generic quantum property of a two-level system.

The purpose here is to present a thorough discussion
of the avoided level crossing involving a regular doublet
state localized on symmetric KAM islands and a third
chaotic state. We refer to this type of avoided crossing
as chaos-induced avoided level crossing or chaotic avoided
level crossing [15] and examine its implications on the
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phase space tunneling. Herein we analyze the part of
the Floquet spectrum different &om that used previously
[15]. This choice is somewhat more suitable for the dis-
cussion of phase space tunneling than that used previ-
ously.

The paper is organized as follows. In Sec. II we in-
troduce our model system —the harmonically driven
pendulum —and give a brief review of the Floquet for-
malism. We describe the algorithm used to generate the
Husimi representation of quasienergy states and wave
functions. Section III is devoted to the analysis of the
chaotic avoided level crossing phenomenon. We begin
with a discussion of the general characteristics of the
quasienergy states of the driven pendulum. Then using
the Husimi representation of quantum mechanics we elu-
cidate the relation between the structure of the Floquet
states involved in the avoided crossing and the Poincare
surface of section of the driven pendulum. In Sec. IV we
study the quantum dynamics of wave packets originally
localized on the symmetric KAM islands. Such packets
were formed by taking symmetric or antisymmetric com-
binations of the doublet states far away &om the crossing.
We show that as a consequence of the avoided level cross-
ing phenomenon the initial simple two-level dynamics is
replaced by the much more complicated dynamics involv-
ing three quasienergy states. This three-level dynamics
can give rise to a variety of different quantum motions.
In particular, in the center of the avoided crossing, i.e. ,
the point where the energy differences between states are
equal, the rate of the tunneling may be significantly en-
hanced. Away &om the center the quantum dynamics
is usually quasiperiodic, but in some cases it is intricate
and very different from the simple dynamics usually as-
sociated with tunneling. In Sec. V we draw some conclu-
si.ons. The procedure used to numerically integrate the
time dependent Schrodinger equation is discussed in the
Appendix.

II. DRIVEN PENDULUM MODEL

As our model system we choose the driven pendulum

H = Ho —ppqcos(Ot),

where the unperturbed Hamiltonian Ho reads

A'(t) = A(t) + —y(q, t) = — sin(Ot),
Bq

'
O

0
V'(q) = V(q, t) ——y(q, t) = p(1 + cos q), (5)

where g(q, t) = ppqsin(Ot—)/O, the vector potential
A(t) is identically equal to zero, and V(q, t) = p(1 +
cos q) —ppq cos(Ot). Then the gauge invariant Hamilto-
nian H„is given by

H„=—[p —A'(t)]' + V'(q) (6)
2p

and the solution of the time-dependent Schrodinger equa-
tion corresponding to (6) may be formally written as

t

~Q(t)) = exp [
—i H„(t')dt']~@(0)).

0
(7)

In the above equation and the rest of this paper Planck's
constant was set to unity. In the most straightforward
approach the wave function (7) is expanded in the basis
of the eigenfunctions of the angular momentum operator
p 0

quantum properties of the model. In all classical and
quantum simulations discussed in this paper 0 = 2 and
p, = 5. The unperturbed Hamiltonian Ho, i.e. , the pen-
dulum, has become the paradigm for nonlinear dynamics
[16]. The driven model has also been extensively studied
in the context of particle beam stability in large accelera-
tors [17,18]. Using the Wigner and Husimi representation
of quantum mechanics I ee and Feit [19] have recently in-
vestigated quantum manifestations of chaos in systems
described by the driven damped pendulum.

The Hamiltonian (1) remains invariant under the fol-
lowing set of the symmetry operations:

q ~ —q, t m t + vr/O.

The dynamical symmetry (3) is identical to that of the
driven double well potential and we expect that the
generic properties of the driven pendulum hold true for
a large class of bounded Hamiltonian systems exhibiting
this kind of symmetry. In order to optimize the quantum
mechanical calculations we use a gauge invariant form of
the Hamiltonian (1) generated by the following transfor-
mations:

= p'
Hrj ———+ p(1+ cosq),

2p
(2) l&(t)) =

&max

c-(t) I&-). (8)

p is the peak amplitude of the driving force, and 0 is its
frequency. Performing the trivial scaling of the angular
momentum by the parameter p, p' = p/p, the Hamilton's
equations of motion generated by (1) may be expressed
in a form independent of p. In the quantum domain
this scaling parameter plays a much more significant role.
It may be interpreted as the inverse of the "effective"
Planck's constant since the limit p —+ oo is equivalent
to the semiclassical limit. The angle varies between 0
and 2m contrary to the conventional range [

—vr, m]. This
modification was introduced to facilitate quantum cal-
culations, but otherwise does not affect the classical or

The detailed discussion of the n»clerical procedure em-
ployed to solve the time-dependent Schrodinger equation
is presented in the Appendix.

The periodicity of the Hamiltonian (1) enables us to
describe quantum evolution in terms of the Floquet the-
ory. An extensive review of this approach is given by Chu
[20]. Within the framework of the Floquet formalism the
time evolution is determined via successive application of
a one-cycle unitary propagator C, which maps the wave
function at time t into the wave function at time t + T.
The eigenvalue problem for the propagator C may be
written as
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C]A„)= exp( —iE„)1A„), (9)

(& I&(T)) = ):(4g Ic14i ) (&i 14(o)) (io)

and if we choose the initial state such that

(4'~l@(o)) = ~~,'
then

where the E„arecalled quasienergies and for a bounded
system are real numbers. The corresponding eigenfunc-
tions 1A„)are referred to as quasienergy states or Floquet
states. It may be shown that they are the eigenvectors
of the Hermitian operator II —ih8/Bt and consequently
form a complete orthonormal basis. In the case of the
driven pendulum the Floquet states may be classified into
states of even and odd parity with respect to the gener-
alized parity transformation (3). To obtain the matrix
representation of C in the angular momentum eigenbasis
notice that

functions. The problem of selecting a value of coarse
graining parameter in the Husimi representation is dis-
sussed in more detail in Refs. [24, 25]. Using the expan-
sion (8) we may rewrite (14) as

~(~ p t) =
—, ) .c.'(t) (4-IO .) (i6)

III. CHAOTIC AVOIDED LEVEL CROSSING

Thus the evaluation of the Husimi distribution essentially
amounts to the calculation of the Fourier spectrum of the
coherent state. We do not write down the lengthy ana-
lytic expression for the Fourier coeKcients since they may
be readily obtained with the help of many symbolic al-

gebra packages (e.g. , Mathematica). The fast Fourier
transform algorithm provides an alternative numerical
and very efBcient method of determination of the Fourier
coeflicients.

(4~1@(T))= (&~ICI&~ ). (12)
rh

Thus the j' column of the matrix representation of C
may be calculated using the initial conditions (11)and in-

tegrating the time-dependent Schrodinger equation over
one period of the perturbation. We can then numeri-
cally solve the eigenvalue problem (9). For times t = kT,
k = 1,2, . . . the wave function may be written as

1@(kT)) = ) exp( —iE„k)1A„)(A„]g(O)). (13)

S(&») =
2

IH'IC'~q)l

where

(14)

-(e' —e)'
Opq(q') = exp z + &pp'

2&CD 4cr2
(15)

is the coherent state and 0 is a coarse graining parame-
ter. For all Husimi distributions displayed in this paper
o = 0.07. This choice assured faithful phase space rep-
resentation of all presented quasienergy states and wave

It is apparent from (13) that only the Floquet states over-

lapping the initial wave function contribute to its subse-
quent time evolution. These states are frequently referred
to as the Floquet spectrum of the wave function.

Properties of classical dynamics are conveniently stud-
ied in a phase space representation. The uncertainty
principle precludes the direct transfer of this concept
and that of distribution functions to quantum mechan-
ics. Nonetheless the so-called quasiprobability distribu-
tion functions [21] have proved to be extremely useful in
studying the correspondence between classical and quan-
tum mechanics. They provide also deep insight into the
morphology of quasienergy states (their relation to the
structure of the corresponding classical phase space). In
this paper we adopt the Husimi representation [22, 23],
which for a system in state 1g) may be defined as

The Floquet spectra of one-dimensional driven systems
are usually intricate functions of the amplitude of the
perturbation. For small amplitudes of the driving force
it is possible to establish a connection between individ-
ual quasienergy states and the stationary eigenfunctions
from which they evolve. The Floquet states undergo a
series of apparent level crossings and avoided level cross-
ings which renders this analysis increasingly formidable
as the perturbation strength increases. In Fig. 1(a) we
present a portion of the Floquet spectrum of the driven
pendulum which was obtained via numerical diagonaliza-
tion of the one-cycle propagator C. While some of the
quasienergy states remain weakly affected by the pertur-
bation and form characteristic horizontal bands others
are strongly inBuenced as indicated by the rapid change
of the corresponding quasienergies (note that the entire
spectrum is confined to the interval[ —x, vr]). What ap-
pears as two of the quickly evolving states "cross" in the
central part of the Fig. 1(a) bounded by the rectangle.
The enlargement of this region given in Fig. 1(b) reveals,
however, the characteristic double cone structure of the
avoided level crossing [26, 27] which originates as a result
of interaction between a member of the nearly degener-
ate doublet A and the quasienergy state B, both having
the same symmetry. The other member of the doublet,
labeled in Fig. 1(b) by C, has a dynamical symmetry op-
posite to those of states A and B. If one approximates the
observed crossing with the help of a three-level model, for
example, choosing as a basis Floquet states far enough
&om the center of the crossing, then the selection rules
reduce the problem to the interaction between states A
and B. The other state does not play any role in this pro-
cess. To elucidate the nature of the avoided level crossing
displayed in Fig. 1(b) let us examine the connection be-
tween the classical phase space portrait and the structure
of the Floquet states A, B, and C. We precede this anal-
ysis with a brief overview of the general properties of the
quasienergy states of the driven pendulum.

Figure 2 shows the Poincare surface of section calcu-
lated for p = 0.88. One can see that chaotic trajectories
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which originally developed only in the region of the sepa-
ratrix now occupy a much larger part of the phase space.
However, the phase space portrait still retains the essen-
tial features of the dynamics of the unperturbed pendu-
lum. There are noticeably deformed tori corresponding
to oscillations around the elliptic fixed point (0, 0). The
KAM tori associated with rotations may be found for

~p~ & 2.1. With the growing absolute value of the angu-
lar momentum, tori become less distorted and closely re-
semble those of unperturbed rotations. The novel phase
space structures are the nonlinear resonances. In Fig. 2

we present only these resonances which are relevant for
further discussion; they are immersed in the stochastic
sea.

Now the question arises to what extent the structure
of the classical phase space influences quasienergy states.
To address this problem in Fig. 3 we sorted the Floquet
states (computed at p = 0.88 ) with respect to their ex-

pectation value of the angular momentum p. One can see
that the states roughly fall into either of two categories.
Within one category the average momentum grows lin-

early with state number as in the case of the angular
momentum operator. Thus we expect that these states
represent clockwise and counterclockwise rotations. The

FIG. 2. Poincare surface of section for the driven pendu-
lum with 0 = 2, JM = 5, and p = 0.88. Momentum was scaled
by the parameter p.

other group comprises states with the expectation value
of the angular momentum close to zero. In this case the
identification of the nature of these states is more com-
plicated. The criterion based solely on the average value
of the momentum cannot, for example, distinguish be-
tween Floquet states associated with oscillations around
the elliptic point (0, 0) and "chaotic states" strongly in-
fluenced by the stochastic sea. Although Fig. 3 provides
useful intuition about the character of the quasienergy
states of the driven pendulum, much more information
may be derived &om a comparison of their phase space
representations and the classical phase space.

In Fig. 4 we present the Husimi distribution of
quasienergies A, B, and C calculated for the same value
of the amplitude p as that used in Fig. 2. In accompany-
ing contour plots six basic contour lines uniformly spaced
between zero and maximum value were used. Each con-
tour plot was superimposed with the KAM tori taken
&om Fig. 2 (heavy dots). The Husimi distributions of
states A and C shown in Figs. 4(a) and 4(b), respec-
tively, are very similar to each other as one would ex-
pect &om the members of the quasidegenerate doublet.
Both distributions are centered on the prominent sym-
metric nonlinear resonances immersed in the chaotic sea.
Note that the very well localized distributions are not en-
tirely confined by the outermost KAM tori which delin-
eate the islands and clearly leak into the stochastic part
of the phase space. The intricate, self-similar structure
of smaller resonances within the islands is not manifested
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FIG. 1. (a) Floquet spectrum of the driven pendulum as
a function of the amplitude of the driving force (0 = 2 and

p = 5). (h) The small rectangular part of (a) is magnified to
show the avoided crossing between the quasienergy state B
and a member of nearly degenerate doublet A. The vertical
grid line indicates the center of the crossing.
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The expectation value of momentum for the Flo-
quet states determined for p = 0.88. This picture elucidates
the in8uenge of structure of the classical phase space on the
morphology of quasienergy states.
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FIG. 5. Husimi representation of the Floquet state B for
the small value of the amplitude of the driving force p = 0.25.
Momentum was scaled by the parameter p, . Notice the much
larger size of the nonlinear resonance which underlines the
structure of this state.

its three peak structure, which begins to emerge in Fig.
5 and is quite well developed in Fig. 4(c).

%e have already mentioned that the repulsion between
states A and B may be well approximated by a sim-

ple two-level model. Far enough f'rom the center of the
avoided crossing the Husimi representation of the dou-
blet states A and C are essentially indistinguishable. The
contamination of the Husimi distribution of state A by
a chaotic component in Fig. 4(a) is a precursor of the
complete exchange of the structure between initially reg-
ular (localized) state A and originally delocalized state
B. This purely quantum mechanical process, character-
istic for a two level system, is elucidated in Fig. 6. In
this figure the expansion of. all three states in the ba-
sis of eigenfunction of the angular momentum operator
[P„)are plotted for five values of the amplitude p cho-
sen from the interval [0.90, 0.94]. The inspection of Fig.
l(b) shows that this interval comprises the main part of
the avoided level crossing. In all the graphs in Fig. 6 the
quantum number n varies between —20 and 20, the range
of occupation probability is [0, 0.15]. From the first panel
in Fig. 6, which corresponds to the amplitude p = 0.90,
it is apparent that the repulsion has already appreciably
inHuenced the structure of both states A and B. The
former one is still similar to its doublet counterpart C,
but now populates the basis states that span the initially
chaotic state B.

%e can see in Fig. 6 that with the growing perturba-
tion the mixing of states A and B become more strongly
pronounced so that at p = 0.9159 (approximate center
of the crossing) they look very much alike. This mixing
is further elucidated in Fig. 7, which shows the Husimi
representation of the states A and B at this particular
value of the amplitude. It is apparent that both quantum

FIG. 6. Expansion of Floquet states A, B, and C in the
basis of the eigenfunctions of angular momentum operator
plotted for five values of the amplitude p chosen from the in-
terval [0.90, 0.94]. Note that this interval comprises the main
part of the avoided crossing shown in Fig. 1(b). In all graphs
quantum number n varies between —20 and 20. The range of
occupation probability is [0, 0.15].

distributions, while bearing some resemblance to the dis-
tribution of state C, are delocalized in the chaotic part
of the phase space. At this point the linear combina-
tions of states A and C no longer yield a wave packet
localized in the symmetric parts of the phase space, the
property which is the hallmark of phase space tunnel-
ing. %e do not present the Husimi distribution of the
state C corresponding to p = 0.9159 since, as expected
from the symmetry analysis, this state is not afFected by
the crossing and changes insigni6cantly in the range of
perturbation shown in Fig. 1(b).

If the amplitude of the driving force is further increased
the "rotation" of quasienergy states A and B proceeds
and at p = 0.94 they almost completely exchange their
structure (cf. the first and the last panel in Fig. 6). The
initially chaotic state becomes fairly regular and the ini-
tially regular state becomes chaotic. From Fig. 1(b) we
can infer that with the growing perturbation the split-
ting between states B and C steadily decreases. Thus
subsequent phase space tunneling is determined by the
newly formed doublet made up of states B and C.

Now let us assess the role of classical chaos in the phe-
nomenon discussed above. The avoided level crossing
does not take place until the chaotic Floquet state signif-
icantly populates levels which span the nearly degenerate
doublet. The KAM tori have been shown to persist in
the quantum phase space as dynamical barriers which in-
hibit wave functions from exploring classically forbidden
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and C; consequently its dynamical behavior is quite sim-
ple. In fact, using (13) and (17) the survival probability
at the integer multiples of the period may be written as

1 1
S(kT) = —+ —cos[(Ei —Es)k],

2 2
(18)

3 3

S(kT) = ) d; + 2 ) d;d~. cos[(E, —E~)k], (19)

~h~~~ d' = l(@(0)l~')I ' IAi), and IA2), and IA&) denote
the Floquet states A, B, and C, respectively.

It is apparent &om the above equation that in general
there are three f'requency difFerences (E; E~) involved i—n
the packet's dynamics. They may give rise to a variety of
different motions as exemplified in Fig 11. Figure ll(a)
corresponds to the amplitude p = 0.915. In this case
the evolution of the survival probability appears to be
quasiperiodic. The vertical grid lines are used to indicate

0.6

0.4

0.2

1000 2000 3tXN 4000 5000

FIG. 9. Time evolution of the survival probability (solid
line) for the wave packet from Fig. 8, p = 0.90. Dots are
the values calculated fram Eq. (22). Dots are the values

calculated from Eq. (22).

where E~ and E3 are the quasienergies of states A and
C, respectively. Thus the wave function harmonically
oscillates between the symmetric KAM islands. In Fig. 9
we show the time development of the survival probability
(solid thin line) at p = 0.90. The wave function was
generated by the repetitive application of the one-cycle
propagator C. The full circles in this 6gure are the values
of the autocorrelation function obtained with the help of
formula (18). If, on the other hand, we use the same wave
packet as the initial condition but increase the strength
of the driving, then the dynamics gets more involved.

Due to repulsion between the member of the doublet
A and the chaotic state B the wave packet becomes the
linear superposition of all three quasienergy states A, B,
and C. In Fig. 10 we can see that with growing pertur-
bation the occupation probability flows &om state A to
B. This process takes place since the avoided level cross-
ing involves the exchange of the structure of these states.
The initially regular state A turns into the chaotic state
B and vice versa. As we mentioned earlier, the state C
is not afFected by the avoided crossing and its occupation
probability remains constant. The selected values of the
amplitude p in Fig. 10 are the same as those used in Fig.
6. Again using Eqs. (13) and (17) we derive the survival
probability for the three-level dynamics:

~ 0$.
OQ
~&

co 0.4.
0." 03

~~

a. 0.2.

0.1 .

&A

0.9 0.91 0.9159
'y

0.93 0.94

FIG. 10. Expansion of the wave packet from Fig. 8 in the
Floquet basis determined for different values of the amplitude

The 6rst term in the above equation determines the func-
tional form of the survival probability. The other term
introduces only minor modifications. Thus at the center
of the crossing the wave packet periodically oscillates be-
tween the KAM islands. These oscillations are shown
in Fig. 11(b). The filled circles represent the values
of the autocorrelation function calculated &om formula

(20). Note that the tunneling rate is determined only by
the splitting Eq —E3, but not by the structure of the Flo-
quet states A and B, which enter into (20) via the coeffi-
cients d» and d2. So far we have tacitly assumed that the
survival probability approaches zero whenever the wave
function reassembles itself after tunneling on the sym-
metric counterpart of the KAM island Rom which the
packet was launched. This process is shown in Fig. 12,
where the Husimi representation of the wave packet at
t = 140T and t = 281T are given. These times approxi-
mately correspond to a quarter and to a half of the period
of the oscillations. It is quite surprising how clearly the
wave function at t = 140T resembles the Floquet states
A and B &om Fig. 7. Away &om the center of the
avoided crossing the periodicity of the quantum dynam-
ics is lost. This is demonstrated by the rapid change of
the pattern of the oscillations for p = 0.93 in Fig. 11(c).
For even stronger perturbation, such as p = 0.95 in Fig.
ll(d), the dynamics is dominated by the newly formed
doublet made up of states B and C. We can see that the
low frequency oscillation, very similar to that in Fig. 9, is

the quasiperiod. Within the quasiperiod the wave packet
tunnels from one island to the other in a time shorter
than that for the conditions in Fig. 9. However, one
can see that the intermediate collapses and revivals are
usually not complete. The situation at the center of the
crossing [marked in Fig. 1(b) by the vertical grid line] is
quite different.

At the center point there are only two difFerent fre-
quency difFerences since Ei —E2 —— 2(Ei E3)
2(Es —E2). Furthermore, if we notice that P, d; = 1
and ds ——0.5, then Eq. (19) may be rewritten as

S(kT) = —(1+cos[(Ei—Es)k]) —4did2 sin [(Ei—E3)k].=1 2

2

(20)
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superimposed with much lower amplitude high frequency
oscillations. This type of dynamics appears in the limit
of the small coupling between the chaotic state and one
of the doublet states [14], the condition which is satis-
fied far enough &oxn the center of the avoided crossing.
Unlike the strong coupling case shown in Fig. 12, the
wave packet tunnels between the KAM islands without
fully appearing in the stochastic sea. Figure 13 shows
the Husimi representation of the wave function in the

.02
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II
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I I II

II
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1000 2000 30tO 4000 5MO
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FIG. 12. Husimi representation of the wave packet in the
numerical experiment from Fig. 11(b) calculated at (a) t =
140T and (b) t = 281T.

numerical experiment &om Fig. 11(d) at t = 544T. This
time corresponds to a local minimum of the fast oscilla-
tions of the survival probability. One can see that only
a small portion of the wave packet, which broke off &om
the hump localized on the right torus, shows up in the
chaotic sea. During the following half of the period of the
rapid oscillations this small piece moves to the symmet-
ric (left) torus so that at the local maximum of the sur-
vival probability the penetration of the stochastic layer
is hardly noticeable. The complete tunneling of the wave
packet is accomplished via the incremental transport of
the small pieces across the stochastic sea. Note that the
excellent agreement of the survival probability in Fig. 11
with the values obtained &om Eqs. (19) and (20) arises
&om the validity of the three-level approximation used
to describe the avoided level crossing phenomenon.

t=5447

0.2

500 1000 1500 2000 2500

.Q

FIG. 11. Time evolution of the survival probability for the
wave packet from Fig. 8 for difFerent values of the amplitude
of the driving force: (a) p = 0.915, (b) p = 0.9159, (c) p =
0.93 and (d) p = 0.95.

FIG. 13. Husimi representation of the wave packet in the
numerical experiment from Fig. 11(d) calculated at t = 544T.
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V. CONCLUSIONS

In this paper we investigated the interplay of chaos and
dynamical tunneling in the driven pendulum. We ana-
lyzed the avoided level crossing between the Floquet state
associated with the chaotic part of the classical phase
space and the member of the quasidegenerate doublet
whose quantum distribution is localized on the symmet-
ric KAM islands. We dubbed this phenomenon chaos-
induced avoided level crossing or chaotic avoided cross
ing to emphasize the fact that all involved quasienergy
states are inBuenced by the presence of the chaotic sea.
We pointed out that the exchange of the structure of
the interacting states, the process inherent to two-level
model, leads to the destruction of tunneling produced by
the members of the original doublet and gives rise to the
formation of a new doublet. We also studied the impli-
cations of this effect on the quantum dynamics of a wave

packet centered on one of the symmetric KAM islands.
To clarify the discussion we generated such a wave packet
by taking the superposition of the doublet states far away
&om the center of the crossing. Employing the quantum
survival probability, we showed that within the param-
eter region comprising the avoided crossing the initially
trivial two-level dynamics is superseded by a more com-
plicated dynamics involving three quasienergy states. In
the latter case, the dynamical behavior may vary &om
quasiperiodic motion to quite intricate motion distinctly
difFerent &om the simple dynamics usually associated
with tunneling. However, we found that at the center
of the avoided crossing the tunneling is always enhanced
and recovers the perfectly periodic character. We derived
the simple formula (20), which indicates that at the cen-
ter point the tunneling rate is determined. exclusively by
the minimal width of the crossing, but does not depend
upon the structure of the quasienergy states.

The recent surge of scienti6c activity concerning phase
space tunneling is stimulated by the emerging possibil-
ities of the experimental veri6cation of such theoretical
concepts. For example, Leo et al. [36] observed the os-
cillations of the wave packet created in a GaAs/A1GaAs
double quantum well structure (DEWS) by ultrashort
pulse excitation. By varying the applied force they ob-
served the suppression of the tunneling at the exact cross-

ing of the hybridized excited states. The theoretical anal-

ysis of this affect was given by Grossman et al. [6—9]. We

already pointed out that the dynamical symmetry of the
driven pendulum is identical to that of the driven double
well potential whose experimental realizations are feasi-
ble in various fields, e.g. , ammonia molecule, DEWS, or
a rf driven superconducting quantum interference device.
The question arises whether chaos-induced avoided level
crossing may be observed experimentally. The important
property which might facilitate an actual experiment is
the discussed enhancement of the three level tunneling at
the center of the crossing. Moreover, we have found that
this type of tunneling is particularly robust against any
symmetry breaking perturbation, which distinguishes it
from ordinary tunneling involving two states. The fur-

ther discussion of this issue will be presented elsewhere

[37].

Some thirty years ago Mark Kac asked the following fa-
mous question: "Can we hear the shape of a drum?" [38].
Several years later Davis and Heller, in their pioneering
investigation of the dynamical tunneling [I], pointed out
in the same spirit that "eigenvalues are not the whole
story of bound state quantum mechanics. " We are con-
vinced that this remark re8ects the nature of the phe-
nomenon discussed in this paper.

ACKNOWLEDGMENTS

We gratefully acknowledge discussions with Dr. F.
Izrailev and Dr. S. Tomsovic. This work was supported
by the Texas Nationa} Research Laboratory Commission
(Project No. RGFY93-203). The authors thank the Na-
tional Science Foundation for support of the numerical
calculations performed on the Gray C90 supercomputer
at the Pittsburgh Supercomputing Center (Grant No.
PHY920023P).

APPENDIX

In order to Gnd the numerical solution to the time-
dependent Schrodinger equation (7) we employ the ex-
pansion (8) and approximate the time dependence of the
vector potential (6) by [39]

(Ai)

with At = 2m/(AL), where L is the number of integra-
tion steps taken per period of the driving force. Then
the integration in (7) may be carried out analytically
and the vector of the expansion c(ts + 6t) coeKcients at
time tq + At (tI, = kit) may be obtained by the succes-
sive multiplication of vector c(t&) at time t& by unitary
matrices:

c(tg + At) = UQVQ 'c(ts).

U and V are both diagonal matrices with

(A2)

and

iii ii~ siii(At~)
tlU„„=exp —iQt —+

2p 0 (A3)

V„„=exp( —ib, tv„).
v„are the eigenvalues of the matrix representation N of
the operator p, cos(q) in the basis of the angular momen-
tum operator eigenfunctions. Q is a unitary matrix that
transforms N into diagonal form (K = QVQ ). The
advantage of the gauge transformation is now apparent.
Both the kinetic energy operator and the time-dependent
perturbation are diagonal in the angular momentum
eigenbasis, which significantly enhances the computa-
tional e%ciency. Moreover, the symmetric matrix N
has an extremely simple structure: N = (b, +z +
b z)(p/2), and consequently may be easily diagonal-
ized. In (A2) we have neglected the contribution orig-

A

inating from A' term and constant p term since they
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only yield global phase factors. Note that the genuine so-
lution of the Schrodinger equation corresponding to the
Hamiltonian (I) is given by exp[i'(q, t)]]@(t)).However,
in this work we calculated the wave functions only at
the integer multiple of the period T. In this case the
wave functions in both gauge invariant representations
coincide due to the periodicity of y(q, t). We have found
this integration scheme to be very reliable. It preserves
the norm of the wave function with high accuracy, which

was particularly important in our studies of the long time
quantum dynamics discussed in Sec. IV. In quant»m cal-
culations L = 300, although acceptable accuracy may be
obtained with far fewer integration steps. In the prin-
cipal calculations we used a basis of 161 eigenfunctions
]P„)(n = 80). The additional simulations with sig-
ni6cantly smaller and larger basis were carried out to test
the convergence of the integration scheme.
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