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One difficulty with the correspondence principle is its vagueness. To what should the quantum
theory correspond in the quasiclassical domain? Here we show that, whatever it is, it cannot
be Hamilton’s equations. This is done using Weinberg’s generalized nonlinear quantum theory [S.
Weinberg, Ann. Phys. (N.Y.) 194, 336 (1989)] by exploiting the fact that it contains an ezact copy of
classical dynamics [K.R.W. Jones, Phys. Rev. D 45, R2590 (1992)]. An enlarged dynamical theory
incorporating mixed quantum and classical interactions is shown to have some desirable properties
in relation to measurement. By studying this system, we show that the existence of observable
physical domains obeying intrinsically classical laws would violate the uncertainty principle, thereby
ruling out an entire class of such larger theories. We interpret this result as a demonstration that
the correspondence principle is essentially approximate. Further, the given exclusion is suggestive
as a guide to physical models of quasiclassical emergence in a scenario based upon environmental
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noise and stochastic reduction.

PACS number(s): 03.65.Bz, 03.20.+i, 03.65.Db, 02.30.—f

I. INTRODUCTION

In attempts to solve the measurement problem many
authors have been prepared to consider altering the quan-
tum theory [1-13]. Here we consider the idea of intrinsic
classical domains [14-16] as a possible physical source of
nonquantized environmental noise, and show that these
would permit violation of the uncertainty principle. The
argument employs the nonlinear mathematics of Wein-
berg [17,18], since this formalism allows for a simple
treatment of mixed classical and quantum systems [19].

From the logical inconsistency exhibited we conclude
that there can be no domain of linear quantum theory
where the classical results become exact, or where even
the properties of isolated classical systems are shown.
While this is not a surprising conclusion, it is quite defini-
tive, since we are able to show clearly, and in complete
generality, the precise nature of the changes to quantum
theory that would be required to obtain such an exact
recovery. On this basis it is argued that there are indeed
some major difficulties with the Copenhagen intepreta-
tion, if one considers quantum theory to be universally
applicable [20].

The discussion proceeds first from consideration of a
plausible class of measurement models through to the in-
troduction of a generalized mathematical framework that
might realize such a scheme, and then to the exclusion
of our imagined scenario [21]. This need not exclude the
class of models at the point of our introduction, but it
shows clearly the nature of the problems one must solve
to complete them as fundamental physics, rather than as
convenient phenomenological models to describe quan-
tum measurements [22-25].

Thereafter we interpret the existence of classical modes
within the Weinberg formalism as a generic statement
of the approximate physics that underlies semiclassical
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methods, and are thus able to associate nonlinear quan-
tum mathematics with the subject of quantum approxi-
mation theory [26]. This observation has important im-
plications for the constraint of any physical nonlinearity
and the design of empirical exclusions. On this point we
conclude with an example that is chosen to highlight the
key difficulty, and which may, in turn, suggest a future
direction for research on these and related topics.

II. THE MOTIVATION
OFFERED BY STOCHASTIC REDUCTION

In the realist view of state vectors and measurements,
one seeks an evolution equation for pure states including
noise terms that generate localization, collapse, jumps,
or other effects that may serve as models for measure-
ment behavior. Ghirardi et al. [6], Pearle [7], Didsi [8],
and Gisin [9], among others [11-13], have found model
equations which exhibit collapse with the correct quan-
tum mechanical probabilities.

The success of such models might lead one to try and
build a larger theory by using intrinsically classical de-
grees of freedom as a source of deterministically random
noise [16]. Then one might have some hope of solving
the measurement problem, by introducing a potentially
testable element. To see why, consider the generic reduc-
tion equation:

. d A - .

ife ) = {Hy + B, 9"m@) } ), (1)
where H ¢ is the free Hamiltonian of a quantum system
and H.(9,¥*;n(t)) represents a collapse-inducing non-

linear stochastic operator term, which depends upon a
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collection of noisy environmental parameters, denoted
n(t).

Since we are following the line that 7(t) is due to a
noisy interaction, and is not the result of genuine in-
stantaneous quantum jumps [6], we would need to ob-
tain the noisy operator IL(d), ¥*;n(t)) from interactions
with unobserved degrees of freedom, such as a dissipative
heat bath [27]. However, quantum interactions entangle
states. Therefore (1) is not derivable from quantum the-
ory proper. One would have to assume that the heat
bath does not entangle, which is in conflict with quan-
tum universality.

Therefore if we take a literal view of (1) as being an
equation that demands a new kind of nonentangling in-
teraction, then we may start to ask the question, what
could it be? The goal is not to prejudge the issue, but
rather to examine the options to see if some candidate
presents itself. If one can find a good, i.e., predictive,
candidate, then one might hope to test the new form
of interaction without having to do an experiment that
is designed to probe measurements. We simply use the
measurement problem as a guide.

III. WHY CONSIDER INTRINSICALLY
CLASSICAL DOMAINS?

The idea that part of the world might be intrinsically
classical is an obvious one. It is suggested immediately
by Bohr’s phrase “describable in classical terms,” with
reference to measuring instruments [28]. Further, it gives
the simplest possible correspondence principle.

As anyone familiar with semiclassical computations
knows, the essence of such methods is to replace some
operators by ¢ numbers, usually via the device of taking
expectations [26]. The advantage is that the approxi-
mated degree of freedom will no longer entangle, because
quantum correlations are neglected, making the problem
easier to solve.

Looking at (1), where there is a pure state coupled
to the outside world, which remains a pure state, it is
obvious that a mixed quantum and semiclassical theory
would present one possible scenario for a fundamentally
different, and larger, quantum theory, where equations
like (1) are admissible. We would simply widen the the-
ory to embrace them.

We would then assert that some sources of physical in-
teraction are this way, and I do not mean approximately.
The idea has been explored in some depth by Primas [14],
who considered the exclusion of this possibility to be of
some importance.

I take it up here for a simple reason. The proposed
generalized theory of Weinberg [17] is inclusive of the
standard theory, with entanglement, but it also allows
for the unified treatment of intrinsically classical modes
that are nonentangling. It has already been the sub-
ject of stringent tests [29-36] which show that if physical
nonlinearities exist they must be extremely weak for an
isolated atomic system. Thus we may ask if any place
remains to look for them, and what physical motivation
there may be for them.

As I have shown elsewhere, we can obtain, within the
Weinberg formalism, a complete embedding of the en-
tire formalism of classical Hamiltonian mechanics [15].
Therefore, if we work upon excluding this option, one
has, at the very least, shown that a very large body of
possible ideas, all based upon modes that obey Hamil-
ton’s equations, are unphysical. A strong negative result
like this may point the way to a better idea.

IV. THE WEINBERG FORMALISM

Originally the Weinberg formalism [17] was proposed
as a foil to test the superposition principle. However,
since that time it has been recognized that this very
same formalism actually lies behind many semiclassical
methods. Here we will exploit this fact to construct a
model universe that contains mixed classical and quan-
tal modes.

The formalism resembles Hamiltonian classical me-
chanics. It is based upon the algebra of real-valued func-
tionals h(¥,¥*) of complex wave functions ¥, that are
homogeneous of degree one [37]. The Lie bracket

_ (5_g oh _5_h bg 2)
T A L

[ ’h]W

plays the role of the quantum commutator, where §/§%¥
is a functional derivative, and the computation involves
contraction against the wave function coordinates [15)].
The equation of motion reads

., dg
h—= =1g,h 3
2 dt [g’ ]Wa ( )
of which the generalized wave equation
., d¥ éh
’ﬁ_(z? = [¥,hlw = ST (4)

is a special case. Linear quantum theory is the restric-
tion to bilinear functionals. These can be characterized
as expectation values: h(¥,¥*) = (U|H|¥). The norm
functional n = (¥|¥) acts as a unit element, and satisfies
dn/dt = 0.

Weinberg’s proposal has been tested to very high pre-
cision in nuclear spin precession experiments [29-36].
Bollinger et al. [30] have bounded the relative magni-
tude of nonlinear self-energy terms in freely precessing
9Be™ nuclei at less than 4 x 10727. Other attempts
to exclude nonlinearity have focused upon the theoret-
ical problems posed by interbranch communication in
Einstein-Podolsky-Rosen experiments [38,39], thermody-
namic constraints [40], and the lack of any plausible,
consistent, and inclusive statistical interpretation for the
nonlinear theory [41,42], when posed in a completely ab-
stract setting [43].

All this work was guided by the assumption that any
physical nonlinearity would have to be a weak pertur-
bation. Subsequently, it was discovered [15] that Wein-
berg’s theory contains a copy of Hamiltonian classical
mechanics, realized via the functional ansatz:

he(2,¥%) = nH((Q), (P)), ()



1064 K. R. W. JONES 50

where (---) = (¥|---|¥)/n, so that homogeneity restric-
tions are satisfied. The role of classical canonical coordi-
nates is played by the c-number quantities

Q(t) = (¥|QIy) and P(t) = ($|P|4), (6)

which induce a nonperturbative nonlinearity. The evolu-
tion of ¥ is nondispersive for all H(Q, P), and (6) follow
the classical trajectories for all & > 0 [19].
For comparison, the ordinary quantum theory is ob-
tained via the ansatz [17]
h9(¥, *) = (¥|H(Q, P)| V). (7
Comparing (5) and (7), one could view this inclusion of
exact classical dynamics within the Weinberg formalism
as the semiclassical approximation [26]

(Y|H(Q, P)|¥) ~ nH((Q), (P)).

Alternatively, (5) might have fundamental content. We
should remember that the historical motivation for re-
search into nonlinearity has been to locate a wave equa-
tion whose solutions behave like classical particles [1-4].

Since we cannot test quantum theory in the classical
domain the problem assumes some urgency. Plausible ar-
guments might be advanced either way; the problem is to
show exactly why such an equation cannot be physically
correct. Since the Copenhagen interpretation assumes,
implicitly, that there do exist devices with the properties
of classical systems, and because the mathematics of such
systems is actually nonlinear, we will answer, thereby, the
question of whether this is a satisfactory formulation for
quantum mechanics as a universally valid theory. Either
strictly classical devices do not exist, or the theory is not
linear.

To examine the fundamental option, imagine, for the
sake of argument, a universe with intrinsic classical and
quantal domains [15,16], see Fig. 1. As we show, intrin-
sic classical domains have the special property that they
remain disentangled from the quantum domains, even in
the presence of mutual interaction. The quantum state
of the universe, |¥y), would, if once factorized, remain
forever so:

[Ty (1)) = [¥e(t) @ [%q(2))- (8)

Intrinsic
Quantum
Domain

)

Intrinsic
Classical

Domain

le)

FIG. 1. An imaginary universe with permanently factor-
ized state |¥y(t)) = |¢c(t)) ® |¥q(t)), modeled here within
Weinberg’s formalism W.

Here |¢.) denotes the pure classical part, and [¢4) the
pure quantum part. Although the latter might become
internally entangled, the former factorizes completely, at
all times.

To show this, we compare (5) and (7), and consider
the ansatz

h(q,C)(\p,\Il*) = (W|ﬁ(ﬁ,ﬁ, <Q>, (P>)|\Il) 9)

as a candidate Weinberg functional describing interac-
tion between an intrinsic quantum system, (4,p), and an
intrinsic classical system, (Q, P).

From this we obtain the wave equation

d §h(a)
gV = g ) o
= H(4,p,(Q), (P)|¥) + (Ho)(Q — (Q))|¥)
+(Hp)(P — (P))|®), (10)

where we have used §(A)/6¥* = (A — (A))/n|¥), valid
for linear operators A [15].

In (10) there are no operators mixing components of ¥
in the Hilbert space of (Q, ]3), with those in the Hilbert
space of (¢,p). Thus property (8) is verified. As a fur-
ther check we compute the Weinberg bracket of a pair of
mixed functionals:

[¢@9), R@O)y, /ik = n((G, H])/ik
{ G)op(H) — ap(@@cz(f?)}-
(11)

This bracket contains an ordinary commutator part and
a Poisson bracket contribution. Thus it follows that pure
classical functionals obey classical equations, while pure
quantum observables obey quantum equations. Thus (9)
is a reasonable postulate.

To fix physical ideas we might imagine the considered
classical domain to be some (any) field whose interaction
is only ever important for macroscopic systems.

V. MEASURABILITY
OF INTRINSIC CLASSICAL MODES

Consider now the measurability properties of intrinsic
classical domains. Although the canonical coordinates
(6) were defined using quantum operators, we cannot use
the usual probability interpretation. To see this, recall
that P(q) = ¥(q)¥*(q) obeys two constraints in the stan-
dard theory [44]. First, n = [ P(q)dq is conserved by
unitarity. Second, the quantity

k
- *5 _ *
J mi (U708, ¥ — W5, )

may be interpreted as a probability current, and obeys
the continuity equation

%_1; +divj = 0.
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This property depends upon the appearance of second
order spatial derivatives (which induce dispersion). For
the classical wave equation, one finds that

oP (P} .. o _

3t + 7 (T*0,¥ + ¥9,T*) = 0.
The second term cannot be written as a divergence, since
it is first order in spatial derivatives. Although the norm
is preserved, the classical wave equation allows no proba-
bility current. All solutions are rigid, showing no change
in shape, Fig. 2. As such, the wave function of an intrin-
sically classical degree of freedom would have no physical
significance [45].

Thus it is inconsistent to apply the uncertainty rela-
tions to (6) for an intrinsic classical domain. If we view
(5) as fundamental, one must acknowledge that there is
no intrinsic probability interpetation to draw upon. One
would have to bootstrap this to the quantum domain us-
ing an idea like (1) [46].

(a) Square barrier: classical functional ansatz

AN

time (arb. units)
5
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N
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(b) Square barrier:  quantum functional ansatz
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FIG. 2. Numerical simulation of the square barrier problem
using (a) the classical ansatz and (b) the quantal ansatz. Note
the rigidity and nondispersive nature of the classical evolu-
tion. Parameters were chosen for the tunneling regime, with
initial wave-packet kinetic energy set at 90% of the barrier
height (which has a small slope so that its derivative exists).
See Ref. [63].

VI. VIOLATION
OF THE UNCERTAINTY PRINCIPLE

Granted this constraint, assume that a single observ-
able intrinsic classical degree of freedom exists. Consider
a von Neumann measurement-type coupling [47] between
a classical meter variable and a quantum particle,

52 D\2
p P S\
" +9(P)q

(g,¢) *\
R (W ) <‘Il om T oM

\11> (12)

Here (Q, 15) are the meter variables, M its mass, (g, p) are
the particle variables, m its mass, and g is the coupling
strength.

Using the identity

2190) = (1)) © w40

e © (a0}

one can separate (10) into two coupled, but disentangled
wave equations:

. d _[®)? (P s A
th [¥e(t)) = {m‘ + 57 (P —(P)

o) (P~ <P>)}|¢c<t)>, (13)

) .
ih gt = { 2+ aP)a} ) (14)

Thus it is consistent to suppose that Q(t) and P(t) can be
monitored without need of any collapse postulate (recall
that one needs this in the standard theory to fix a definite
branch for a quantum entangled superposition). From
(11) we obtain the auxiliary equations

“p) o AQ) _(P) .

7 =0, g - W‘FQW),

(15)

dt m’ d

These can be solved independently of (13) and (14) (the
solutions for moments are identical to pure quantum the-
ory, or pure classical theory). Doing this, we find

6 )

B = (BYO), (16)
@0 = @0+ 29 )0y
9D0) 2 _ $P)O) o
+H t._ L, (17)
B0 = HO) - 9P)Or, (18)
@) = @) + 29, g0, )

Now we choose Q(0) = 0 and P(0) = 0, and examine
(17) to see that

(9)(0) = Q'(0)/g and (5)(0) = mQ"(0)/g.
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Since no measurability constraints apply to Q(t), the
conjugate parameters ({4)(0), (p)(0)) could be precisely
measured for a single particle. Thus the measured dis-
persion (zero) would violate the uncertainty principle:
A%qA%p > K2 /4.

To summarize, if we suppose that (5) has fundamental
content, then the probability interpretation cannot be
used in classical domains. However, the disentangling
property of a mixed universe would offer immediate hope
to solve the measurement problem via a fundamentally
derived stochastic reduction equation [5-9]. Following
this through, one exhibits a violation of the uncertainty
principle. The option is therefore excluded.

VII. DISCUSSION

At first sight this result appears innocuous, especially
given the well-known arguments of Heisenberg [48]. How-
ever, there is a new element, unknown 65 years ago,
namely the exact recovery of Hamiltonian classical me-
chanics at all nonzero /. This merits some discussion,
since it is obvious that (5) is of a generality such that
it demands some physical interpretation, when it is not
fundamental. Clearly, it is just an approximation. How-
ever, its exactitude begs a deeper inquiry. We think it
may be viewed as a possible explanation for the mathe-
matical origins of the structure of classical mechanics, as
being a very special kind of approximation offered by the
equations of quantum theory.

The key is that the factorization ansatz ignores the
form of the wave function, thus making it a redundant
part of the physical description. Through this specific
form of approximation the classical concepts of separa-
ble systems and nonentangling noise find their origin as
being very nearly a property of quantum theory in the
macroscopic domain.

This was precisely the state of our prequantum under-
standing. In this respect it is significant to note that the
exact Eherenfest equations

. dla

W0 — (@), ) and U8 = L), ) (20)
are the only possible autonomous approximation to quan-
tum theory. When expectation values are carried into the
arguments of our Hamiltonian, the detailed form of 9 is
made redundant, so that only the initial values of (§) and
(p) are needed, being now a set of c-number canonical co-
ordinates, just like in ordinary classical dynamics.

In this way of viewing the situation we may understand
why classical mechanics is both a workable quantum ap-
proximation, and further, exactly why it is fundamentally
incorrect in leaving out 1, 7, and the physical constant #,
while at the same time neglecting the measurability con-
straints that apply to the aforementioned approximate
initial conditions.

One further understands, upon the basis of our exclu-
sion, just why there can be no simple combination of
physical parameters that defines the classical limit. Al-
though it has been common practice to consider the limit
k — 0 as the link between classical and quantum theory,

one must not be blinded to the fact that classical theory
is perfectly well defined, and would present a good ap-
proximation, in a universe where % assumes any non-zero
value. To illustrate, we combine (5) and (7) to identify
the dimensionless number:

_ (H(Q,P) - H((@),(P)
H(Q), (P))

Agc ; (21)

as a simple measure of the degree to which the replace-
ment of a linear equation by its nonlinear approximation
may be in error.

For the harmonic oscillator this reads Agc = hw/2Ec,
with w the resonant frequency, and E¢ the classical en-
ergy. In the case of a pendulum we have w = (g/£)'/2,
and E. = mgl6?_ /2, with £ its length, 6., the max-
imum amplitude, m the bob mass, and g the acceler-
ation due to gravity. Then Agc = h/mg'/2£3/202 .
For m = 1 kg, £ = 1 m, pax = 0.1 rad, we find
Agc =~ 2.1x 10732, decreasing further as m increases, but
never vanishing. However, if we set A to zero the illusion
of perfect agreement is manufactured. The smallness of
this number serves to warn us of the subtlety of forming
an adequate empirical exclusion of quantum nonlineari-
ties.

On this point, recall Bollinger et al.’s [30] bound of
4 x 10~?7 for the relative size of the Weinberg nonlinear-
ity in the nuclear spin precession experiments. Obviously,
this elegant experiment is both a fundamental, and, we
think, decisive exclusion of nonlinearity for electromag-
netism. Since other sources of nonlinearity might remain,
it is helpful to exclude (5) by an argument that is non-
specific about the possible interaction. There is no single
experiment that could do this for us with any confidence.

While this is very comforting, there remain some deli-
cate issues in the final exclusion of the nonlinear option.
For example, once we have excluded any possibility of an
exact domain wherein classical devices exist, there is an
obvious difficulty of principle for the Copenhagen inter-
pretation [20]. This is particularly acute in the matter of
cosmology, at which juncture we have no recourse to an
observer outside of the considered system.

Recall that Bohr’s stance on measurements presumes
the existence of physical domains “describable in classical
terms” [28]. This assumption is in accord with common
sense. To maintain consistency, Bohr denied physical
reality to the wave function. It is, in the Born interpre-
tation, merely a bookkeeping device for computing the
probability that a point particle will be found at some
given location [44]. This position would be acceptable if
quantum theory recovered the quasiclassical concept of
separable systems as the underlying basis for the boot-
strap of physical recording devices.

However, one now sees that the ideal of an exact clas-
sical limit is never joined. Clearly, it is an unphysical
idealization whose key property of separability places it
squarely outside the present quantum theory. While we
may be complacent that the theory is excellent, we may
not be complacent that this fact follows because nature
behaves just so.

In answer to this dilemma, some authors contend that
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decoherence is the solution [49]. Certainly it is true that
this scenario establishes conditions under which it is im-
possible in principle to tell if a measurement or collapse
event has actually occurred. However, in spite of the at-
tractive nature of the minimalist stance that we should
change nothing, one is equally committed, thereby, to
examine no further the options for a theory that might
well refute this position. This may obstruct progress if
the problem is a real one.

Furthermore, one cannot, as Bell often complained
[50], defend the view, as logical, that the mere vanish-
ing of off-diagonal terms in a density matrix establishes
that a quantum measurement has occurred. One has then
to explain why, in other circumstances, this step would
lead to erroneous conclusions; most clearly in the case
of photon echoes [51]. Equally, it is a peculiar activity
to “derive” an equation of type (1), for which quantum
theory allows no fundamental possibility, while declaring
that nothing has been changed [52].

This subterfuge was analyzed recently by Bonci et al.
(53], who showed it to be an unreliable consequence of
some of the semiclassical approximations that are used
to simplify calculations in the treatment of quantum sys-
tems that are coupled to baths. In light of this, and the
present work, we feel that it is quite pointless to defend,
as a proof of the consistency of linear quantum theory,
any argument that employs methods that destroy the
linearity of said theory. Obviously the factorization ap-
proximation lies in this category.

In summary, we feel that, all things considered, the
prospect one must face is that the Everett interpretation
may well survive as the future self-consistent formulation
of quantum theory that is best suited to cosmological
studies [54].

Having said that, the author finds this prospect rather
chilling. It is disturbing to the pragmatic view that
“things do happen,” and would appear to be a scien-
tific dead end in so far as it is not testable within itself.
One might, one day, refute such a view by finding a the-
ory that enlarged quantum mechanics, agreed with ex-
periment, and said more. As argued most eloquently by
Bohm and Bub [5], the nature of such experiments can-
not be imagined within the confines of a theory which
admits no logical possibility for them.

VIII. OPEN QUESTIONS

The present argument attempts to rule out a broad
class of possible enlarged theories that admit fundamen-
tal nonentangling interactions for the purpose of explain-
ing quasiclassical behavior and measurements. The ar-
gument definitely does not rule out Egs. (1) as a way
to solve the problem. Its main use, for this research, is
to draw a plausible link between the concepts of noise,
nonlinearity, and nonentangling interactions. Further, it
promotes the uncertainty principle to the status of a use-
ful sieve.

The important feature of such logical discussions is to
identify their loopholes. The most obvious one is that we
have assumed a scenario where the quantum noise is to be

traced to an environmental interaction. This is perhaps
inessential, although I believe it is the most fruitful in
suggestive power for the purpose of locating candidate
theories.

I would stress, however, that theories such as that
of Ghirardi et al. [6] do not adhere to this assumption.
Rather, they invoke a new process of spontaneous local-
ization, i.e., a genuine jumpiness at the root of the quan-
tum theory. Recently, they have sought to link this with
some novel ideas of Diési [8] on stochastic gravitational
localization.

They argue that for Didsi’s idea a free parameter is
needed for self-consistency. On this basis they conclude
that a new constant of nature is a necessary feature for a
unified description of micro and macro physics. This may
be so, but it would be preferable, we feel, to continue the
search for a constrained theory. The problem with free
theories is just that they are not predictive. They may
offer some phenomenological guide, but they are not very
convincing in themselves. It is hoped, therefore, that we
can do better.

The possibility of jumps aside, the second obvious as-
sumption to question is that our classical modes should
obey Hamilton’s equations. Certainly that is an obvious
choice, however, it was not physically motivated. It is
just a convenient mathematically inspired guess. Since
a nonentangling interaction is the major requirement for
stochastic models we might seek to furnish these from
another source.

Here one must consider very carefully just what is in-
tended by a modification to the quantum theory. Pre-
sumably one means that there is something left out of
the present theory which one is attempting to incorpo-
rate.

At the fundamental level one would normally associate
such a change with the discussion of physical forces, of
which we know there are only four—(1) strong force, (2)
weak force, (3) electromagnetism, and (4) gravity. The
first three are directly testable at the fundamental level.
The first two are very effectively screened from any di-
rect role in quasiclassical physics. In the case of electro-
magnetism, any possible nonlinearity is very effectively
probed by the elegant experiments of Bollinger et al. [30]
and others [31-34].

Thus if one is serious about testing the nonlinear the-
ory further [55], it would seem pointless to tinker with
any of these interactions. One cannot change them with-
out upsetting the agreement with prior results. However,
in the matter of gravity things are different. We do not
yet know how it must be treated quantum mechanically.

Moreover, it is clear that gravity does have an impor-
tant effect on macroscopic bodies. The reason for this
may be traced to its unscreenable nature, which property
sets it apart from the other fundamental interactions.

Thus it is plausible to suppose that the many-particle
Schrodinger equation may well incorporate a nonlinear-
ity that depends upon the density and arrangement of a
number of individual particles. It is true that the effect
must generally be very weak, but then we see from (21)
that a weak nonlinearity need not be wholly insignificant.

Speculations of this kind have been raised often [56].
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However, on the basis of the present investigation, one
has a rather better idea of what such a nonlinearity must
look like if we are to have any hope of building a con-
sistent nonlinear theory. It must admit nonentangling
noise, and it must not be in conflict with the Heisenberg
uncertainty principle [48]. The most obvious candidate is
that suggested by Mgller [57], Rosenfeld [58], and Kibble
[59]; namely, the equations of semiclassical gravity

Gy = 87(T,). (22)

Certainly this involves the notion of a disentangled clas-
sical environment, now space time, left unquantized. The
equations are nonperturbative, and would reflect a non-
trivial change to quantum theory that is most significant
for an intense quantum field, while remaining inclusive of
the linear theory as an isolated microsystem limit. More-
over, the nature of the nonlinearity is such as to allow for
inherently noisy behavior in a complicated quantum me-
chanical system [60]. In this regard, the arguments given
by Page and Geilzer [61] and Eppley and Hannah [62] for
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the necessity of quantizing the gravitational metric merit
closer analysis to see if they have any loopholes.

In conclusion, the central significance of this result is
to establish, via the inconsistency of (5), that the quan-
tum mechanical correspondence principle is essentially
approximate. In the past, the analytical intractability of
the general quantum many-body problem may have of-
fered refuge to those who might consider this question
to have been of an undecidable nature, and thus of no
consequence. I do not believe that this position remains
tenable.
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