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Quantum cryptography cannot prevent eavesdropping, but any eavesdropping attempt can be detected

by the legitimate users of the communication channel. This is because eavesdropping affects the quan-

tum state of the information carriers and results in an abnormal error rate. In this paper, we analyze

various eavesdropping techniques, which may be either translucent or opaque to the transmitted pho-

tons, and we estimate the error rate above which the key distribution is deemed unsafe and should be
abandoned.

PACS number(s): 03.65.Bz, 89.70.+c, 42.50.Wm

I. INTRODUCTION

Quantum cryptography [1—4], a new branch of physics
and cryptology, relies on the impossibility of ascribing
definite values to noncommuting variables in order to as-
sure secrecy of communication. Theoretical and experi-
mental efforts in this area have been concentrated mainly
on one of the basic cryptographic techniques, namely key
distribution [4—8]. Other cryptographic techniques, such
as quantum bit commitment and quantum oblivious
transfer, have also been analyzed and can play an impor-
tant role in practical implementations of quantum-
cryptographical systems [9,10].

Secure key distribution is a procedure allowing two
legitimate users of a communication channel to produce
two identical copies, one copy for each user, of a random
and secret sequence of bits. This random sequence,
meaningless as such, is called a key. It can subsequently
be used for encrypting messages between the two users.
The security of any encrypted communication depends
directly on the security of the key distribution.

Conventional cryptography provides no tools to
guarantee the security of the key distribution. Any en-
coding by means of classical objects is vulnerable to pas-
sive interception. Such interception may be difficult from
the technological point of view, but as long as it is al-
lowed by the laws of physics, the two legitimate users can
never be sure that no third party has acquired a copy of
their key. In a schematic way, passive eavesdropping can
be viewed as a two-stage process. The first stage amounts
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to making copies of the carrier of information without al-
tering the state of the latter, and the second to reading
from these copies (or "clones") the values of the observ-
ables used for the encoding of the key. The intercepted
original carrier is then sent over to the legitimate re-
ceiver, who is unable to check whether that carrier has
been intercepted or not, because the state of the carrier is
not altered by the cloning process.

However, the first stage of passive eavesdropping can-
not in general be achieved in the case of a quantum
transmission. According to quantum theory, cloning can
give a faithful replica, while leaving the state of the origi-
nal intact, only if it is known in advance that the carrier
of information is in a quantum state belonging to a
definite set of ortkonorrnal states [11,12]. If this is not the
case, the eavesdropper will not be able to construct even
an imperfect cloning device, which would give some in-
formation on the carrier witkout modifying it: a device of
this sort would violate unitarity. Therefore coding based
on nonorthogonal quantum states (which cannot be
cloned) gives a possibility to detect any eavesdropping at-
ternpt.

In this article we analyze conceptually the simplest
quantum-cryptographical system based on two
nonorthogonal states [5], from the point view of its
robustness to various eavesdropping strategies. In partic-
ular, we compare "translucent" eavesdropping, whereby
the information carrier is only gently disturbed by an in-

complete measurement yielding only a small amount of
information, with conventional "opaque" eavesdropping,
in which the information carrier is captured, measured,
and then resent. Other aspects of quantum eavesdrop-
ping were recently discussed by Barnett and Phoenix
[13,14].

As an example, if the information carrier is a polarized
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photon, a conceptual method for translucent eavesdrop-
ping could be to let the photon pass through a small
birefringent crystal, and then measure the recoil of that
crystal (due to momentum conservation). An elementary
calculation shows that if a freely moving crystal of mass
m de6ects a photon of wavelength A, by an amount b, the
crystal recoil is b(AC/1, ), where Ac =h /mc is the Comp-
ton wavelength of the crystal. If the crystal is very thin,
so that b is smaller than the width of the photon beam,
the emerging photons are only very slightly depolarized.
In the present paper we shall not discuss this particular
method of translucent eavesdropping, but two others,
whose mathematical description is simpler (but for which
we provide no concrete physical model).

II. COMMUNICATION PROTOCOL

The two legitimate users, traditionally called Alice and
Bob, want to establish a cryptographic key. Alice starts
the key distribution with a quantum transmission, send-
ing to Bob a random sequence of quanta in two
nonorthogonal states u and v, which represent bits 0 and
1, respectively [5].

By a suitable choice of phases and of the basis, the two
quantum states u and v, whose overlap is

~
(u ~v ) ~

=sin 2a, can always be written as

Ro=sin2a . (4)

After completion of the quantum transmission, Alice and

u

(a)

A„=P „/(1+S),
A„=P „/(1+S),

p 1 Ag Ay

where S= ( u
~
v ) =sin2a, and the index "?"refers to an

inconclusive test. The probability of obtaining the
answers u, v, or?, following the preparation of a carrier
in any state p, is Tr(p A„), Tr(p A„), and Tr(p A&), re-
spectively. (Note that the various A, do not commute,
contrary to von Neumann's projection operators in ele-
mentary measurement theory. Moreover, the final state
of the carrier is not in general an eigenstate of A;, so that
the result of such a generalized measurement is not, in
general, repeatable).

In the following, we assume that Bob uses this more
eScient detection method, so that the probability of an
inconclusive result is

cosa
u=

sina

sina
and v=

cosa

V

ALICE
V

BOB

u
On the receiving side, Bob has to distinguish between

these two nonorthogonal states for each incoming carrier.
Of course he cannot do that with certainty. He can, how-
ever, perform a test which sometimes fails to provide an
answer, but once it does give an answer, the latter is al-

ways the correct one. In the language of information
theory [15], this situation correspondS to Alice and Bob
having at their disposal a communication channel known
as a "binary erasure channel, " schematized in Fig. 1(a).

To achieve this result, the simplest (but not the most
efficient) approach for Bob is to measure, say with the
same probability, one of the projection operators

P „=1—uu or P „=1—vv (2)

A positive result for P „ indicates with certainty that
the information carrier was in the v state, and vice versa.
A null result is of no use if only unambiguous conclusions
are acceptable. (It only gives the a posteriori probabilities
for u and v. )

The probability of getting this inconclusive result is
(I+(u~v) )/2. That probability can be reduced some-
what by a more sophisticated measurement process
[16,17] which uses an auxiliary quantum system prepared
in a known initial state. After a suitable unitary evolu-
tion of the combined system, the latter is left in an entan-
gled state for which the probability of an inconclusive
answer is only (u~v) (recall that 1+x &2x for any
x+1). In the language of modern measurement theory
[18,19], Bob uses a positive operator valued measure
(POVM) consisting of the operators

(b)

V

ALICE
V

EVE

(c)

V

ALICE EVE
V

BOB

FIG. 1. (a) In the absence of an eavesdropper. Alice and Bob
share a binary erasure channel. Alice encodes two bit-values
"0" and "1" in two nonorthogonal vectors u and v. Bob's

detection procedure can produce three possible outcomes; it can
either, with probability p, determine correctly the encoded bit
value (0 or 1) or, with probability r, give an inconclusive result

(p + r = 1}. The probability of obtaining the inconclusive result

depends on the detection procedure, and is at least

~ ( u
~
v ) ~

=sin2a. (b) In a binary symmetric channel, such as this

one shared by Alice and Eve, there are no inconclusive results,

but the detection events are subject to errors. The probability
of a correct transmission in p, and the probability of an error is

q, such that p +q =1. This type of channel is entirely charac-
terized by its error rate, Eq. (6). (c) By attempting to eavesdrop

on the transmission, Eve modifies the transmission channe1 be-

tween Alice and Bob. In the opaque eavesdropping strategy,

Eve receives bits from Alice via a binary symmetric channel and
resends them to Bob via a binary erasure channe1, masquerading
Alice in front of Bob.
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Bob communicate in public and discard all inconclusive
results, so that in the absence of external disturbances,
the remaining instances are perfectly correlated: they
consist entirely of cases in which Alice sent 0 and Bob
detected 0, or Alice sent 1 and Bob detected 1. Alice and
Bob can check whether this is electively the case by re-
vealing to each other in public the parities of random
substrings of bits (and subsequently discarding one bit of
each substring).

As we shall show in the following, an eavesdropper,
conventionally called Eve, may change the rate of incon-
clusive results, and will unavoidably introduce some er-
rors. Bob will thus look for eavesdropping by first com-
paring the actual rate of inconclusive results R with the
expected value Ro—a significant discrepancy will indi-
cate eavesdropping. However, as will be shown in Sec.
IV A, there exists an eavesdropping strategy which does
not modify the rate of inconclusive results. This first test
may thus reveal an eavesdropper (if R PRO), but a nega-
tive result does not guarantee the safety of the transmis-
sion. Alice and Bob have to go one step further and to
estimate the error rate in the transmission (by "error" we
mean a mismatch between Alice's and Bob's data). If the
error probability before discarding the inconclusive re-
sults is q, then the fraction of erroneous readings after
discarding the inconclusive results is Q=q/(1 —R). In
principle, any nonzero error rate Q may indicate eaves-
dropping; however, in practice, the transmission is sub-
ject to noise, and there will be some discrepancies even in
the absence of eavesdropping.

The problem facing Alice and Bob is now to decide on
the maximum tolerable discrepancy allowed, which
would still give them a secure key. Since the issue is the
security of a transmission, Alice and Bob cannot take any
chance: they must consider the worst possible scenario
and assume that Eve has acquired as much information
as possible, subject only to the constraints of quantum
mechanics. It is then quite possible that they will consid-
er a key transmission unsafe because they fear that too
much information has leaked to Eve, while actually it is
Eve's eavesdropping attempt which failed. However, if
security is their prime concern, this is the only reasonable
decision that can be taken under the given circumstances.

III. ROBUSTNESS TO EAVESDROPPING

After completing the first part of the protocol for the
quantum key distribution and discarding the inconclusive
results, the three participants, Alice, Bob, and Eve, have
a string of bits each. The three strings are different due
to random errors, and to the errors introduced by Eve.
As Alice and Bob cannot reliably distinguish between
these two types of errors, they shall assume that they are
all caused by an eavesdropper. Their task is thus, for a
given error rate Q, to estimate the amount of information
that may have leaked to an eavesdropper, and decide
whether they can still use their data to obtain a secure
key. (The only parameter used by Alice and Bob at this
stage is the error rate Q, because R, the fraction of incon-
clusive results, may not be affected by some clever
methods, as shown below). For a significant error rate Q,

the key distribution must be set up again; but there is
usually a "safety zone" within which Alice and Bob can
implement various cryptographic techniques to commun-
icate in perfect secrecy. The more robust the crypto-
graphical system is to eavesdropping, the larger the safe-
ty zone it has. Cryptographical systems with no robust-
ness, i.e., those operating properly only at the zero error
rate, cannot be regarded as practical due to the residual
errors from the environmental noise, which one cannot
eliminate completely.

Before we proceed any further let us briefly introduce
some basic concepts from information theory, which will
later be used in the paper [15]. Let A and B be two
binary random variables with joint probability distribu-
tion p ( A, B) Th. e mutual information

Izs= gp(A, B}log&
p(A, B)

p ApB
to get the information in bits, quantifies the dependence
between the two random variables. It is symmetric in A

and B and always non-negative. If we have three (or
more} random variables with the joint probability distri-
bution p(A, B,X), the mutual information I„~ is calcu-
lated with the reduced probability distribution p( A, B),
obtained from p(A, B,X) by summing over X. For a
communication channel with input A and output B, we
define the information channel capacity as the maximum
of I„~ taken over all possible probabilities of input p ( A ).
The operational channel capacity is defined as the highest
rate, in bits, at which information can be sent with arbi-
trarily low probability of error. The Shannon channel-
coding theorem asserts that the information channel
capacity is equal to the operational channel capacity, and
that the capacity limit can be achieved by using codes
with a long block length. However, the theorem does not
provide any method for building such codes. Neverthe-
less, the channel capacity is a very clear dividing point:
at rates below the capacity there exist codes that support
error-free communication, and at rates above the capaci-
ty, regardless of the codes employed, an abundance of er-
rors is guaranteed.

The basic example of a noisy channel is a binary sym-
metric channel, which is schematized in Fig. 1(b). The
channel is entirely characterized by its error rate q. In
this case, the capacity of the channel can be calculated to
be [15]

I=1+q logzq + (1—q)log2( 1 —q)

bits per transmission. In the following, Izz denotes the
maximal mutual information between two parties X and
Y, or the capacity of the channel established by X and Y.
In our scenario, after Alice and Bob have discarded the
inconclusive results, all the information flow between
Alice-Bob, Alice-Eve, and Eve-Bob can be modeled as a
transmission over binary symmetric channels. (Note that
a careless eavesdropper could introduce a different error
rate for the two input states u and v, thus creating an
asymmetric channel between Alice and Bob. As this
would be easily discovered by Alice and Bob, we assume
that Eve is clever enough to avoid this pitfall. )
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Therefore, if I„~& I~F, Alice and Bob can use the fact
that their channel is better than the channel available to
Eve. Alice can send data to Bob at some rate below Izz,
which allows error-free communication; at the same time,
this rate is above I~E, so that there is no valid decoding
procedure for correcting errors at the output of Eve's
channel. These errors will effectively leave Eve ignorant
of data sent to Bob.

A further generalization of the scenario outlined above
allows Alice and Bob to supplement their data transmis-
sion with an exchange of messages over a public channel.
The data flow becomes more complicated and so-called
"conceptual channels" between the parties must be ana-
lyzed [15]. Applied to our considerations, this generali-
zation requires including Eve's information on Bob's data
and extending formula (7) to

C, max(I„s IqF, I„s —Isa ) . — (8)

In the following, we use condition (8) and we assume that
whenever Izz is greater than either I„E or I~@, then at
least in principle there is a way for Alice and Bob to dis-
tribute a string of secret information. On the other hand,
if the result of eavesdropping is that I„s~ min(I„F, Is@),
we shall assume that the transmission is unsafe. This as-
sumption may be overcautious, as (8) provides only a
lower limit for C, . It was indeed shown by Maurer [22]
that for some classical broadcasting channels this condi-
tion is too restrictive.

Of course, the information available to Eve depends on
the strategy adopted and, for a given I„s (or equivalently
for a given error rate Q), difFerent strategies would give
different values for I„z and I~E. In this work we shall
compare three eavesdropping strategies and show that,
by choosing the best one, Eve can acquire more informa-
tion than with the others„without causing a larger in-

The problem of secret communication involving three
parties has been analyzed in the context of classical cryp-
tography. Wyner [20] considered a communication
scenario in which Alice wants to transmit data as reliably
as possible to Bob while keeping the wiretapper Eve as ig-
norant as possible. Wyner proved that when Eve receives
Bob's channel output through an additional cascaded in-
dependent channel (i.e., the effective channel Alice-Eve is
more noisy than the channel Alice-Bob) then Alice can
send information to Bob in perfect secrecy by choosing
an appropriate data coding. Wyner's wiretap channel
was later generalized by Csiszar and Korner [21] who
considered the following scenario: Alice prepares the in-

put bit A with some probability p ( A ). It is then received
by Bob and Eve as bit 8 and E, respectively; the
transmission is completely specified by the conditional
probability distribution p(B,E~A). Csiszar and Korner
defined the secrecy capacity C, of the channel with tran-
sition probabilities p(B,E~A} as the maximum rate at
which Alice can reliably send information to Bob such
that the rate at which Eve obtains this information is ar-
bitrarily small. They also provided a lower bound for C„
which for the purpose of our analysis, can be written as

(7)

crease of the error rate. We make no claims as to wheth-
er there exist even better methods. There may be clever
ones, not investigated by us, which give Eve still a larger
amount of information on the key, while keeping the
same error rate Q.

On the practical side, Shannon's coding theorem, on
which our analysis is based, has a nonconstructive proof:
we know that there exists an encoding procedure which
will provide a secret transmission, but the theorem does
not specify the procedure itself. This is the reason why
practical key distribution schemes rely on different tech-
niques, known as error correction via reconciliation pro-
tocol and privacy amplification [4]. These techniques
provide a practical way of extracting a corrected key
from the corrupted one, and of enhancing the secrecy of
this key. However, to our knowledge, there is no general-
ly accepted limit on the information on the final key
(after error correction and privacy amplification) known
to Eve as a function of the error rate [23].

IU. THREE STRATEGIES FOR EAVESDROPPING

We shall now analyze three eavesdropping strategies.
The first one is opaque and the other two translucent.
For each strategy, we calculate R and Q, and we plot I„E
and IsF as functions of Q (see Fig. 2). In order to com-
pare these results with the information shared by Alice
and Bob, we also plot Izs(Q), which is given by Eq. (8).
For the ideal, eavesdropping-free case we have, of course,
R =—R o

=sin2a and Q =0.

A. Opaque eavesdropping

Eve intercepts the quantum carrier on its way from Al-
ice to Bob and performs a measurement which maximizes
her information as to which one of the two states, u or v,
was chosen for preparing the carrier. The best procedure
in this case is the measurement of a Hermitian operator
whose two orthogonal eigenvectors are symmetrically re-
lated to the signal states u and v [24]. In the same basis
as used in Eq. (1), these two eigenvectors are simply (o)
and (, ).

After the measurement, Eve sends to Bob another
quantum carrier, prepared in state u or v, according to
the outcome of her measurement on the real carrier.
This strategy can be modeled as a flow of information
from Alice to Eve through a binary symmetric channel
[15] and then from Eve to Bob through a binary erasure
channel, as shown in Fig. 1(c).

Firstly, let us notice that this strategy does not affect
R; Eve is masquerading Alice and sending to Bob, with
the same probability, carriers in states u or v, so that Bob
will detect the same fraction of inconclusive results as if it
were Alice preparing and sending them. On the other
hand, Eve wrongly identifies some fraction of the bits
sent by Alice. By resending them to Bob, she will affect
Q. For each carrier intercepted, Eve's error rate is sin a
and the rnaximurn information she can have on Alice's
string of bits is given by Eq. (6},with q =sin a. In order
to lower Bob's error rate, Eve may decide not to intercept
and resend all the quantum carriers, but only some frac-
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tion of them, say g. The information available to her
thus becomes

I„E=(Q/sin a)

X(1+cos a log2cos a+sin a log2sin a) . (10)

I~E=g(1+sin a log&sin a+cos a log2cos a} .

Bob will observe, on the average, a fraction sin2a of in-
conclusive results. After discarding them he can, by
communicating with Alice in public, estimate the error
rate between him and Alice in the remaining string of
bits. This error rate, after discarding the inconclusive re-
sults, is Q =r) sin a. This gives the information I„z as a
function of the error rate

Moreover, we have

Izz=g=Q/sin a .

In the extreme case, when Eve eavesdrops on each bit
(ri= 1, whence Q =sin a), her information on Bob's data,
after discarding the inconclusive results, is maximal —she
knows each bit of Bob's data. Clearly any public error
correction and privacy amplcation is useless in this case
as Eve, by listening to the public channel, can follow each
step agreed by Alice and Bob. In Fig. 2, we show how

I„z and I~z depend on Q (dotted lines). This strategy in-

validates any key distribution with an error rate
Q) sin a, even when the rate of inconclusive results is
unchanged (R =Ro).
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FIG. 2. These plots show how the mutual
information between Alice, Bob, and Eve de-
pends on Bob's error rate Q, for three values of
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m/5. Dotted lines refer to the opaque eaves-

dropping strategy {Sec. IVA}; dash-dot and
dashed lines refer, respectively, to the Srst and
the second translucent eavesdropping method
(Secs. IVB and IVC}. The solid lines show

I„s(Q},the mutual information between Alice
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all six subplots.
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cosa cosp cosy
sina 8$—:ug~u'Se —= . 8

sinp siny (12)

or as

sina sinp sin5

cosp cos5 (13)

This evolution is unitary (and therefore it is always possi-
ble to concoct some Hamiltonian which generates it) pro-
vided that

sin2a=sin2Psin(y+5) . (14)

The idea is to cause minimal damage to the information
carrier (sin2p would be only slightly larger than sin2a)
while obtaining some information from the probe thanks
to the fact than sin(y+5) (1 (it was 1 before the interac-
tion). For any other initial state of the information car-
rier, the final state of the composite system will not be a
direct product as in (12) and (13). It will be entangled,
and the final states of the information carrier and of the
probe, considered separately, will be impure density ma-
trices. In the following discussion, we sha11 assume that

y =5, for the sake of symmetry.
After sending the modified carrier to Bob, Eve is left

with her probe in one of the two states: e corresponding
to an input state u, or e„corresponding to an input state
v. In general, these two states are not orthogonal and, as
we already mentioned, the largest information gain may
be achieved by testing for the two eigenvectors (, ) vs (o).
In this case, Eve can only learn a posteriori probabilities

&. Translucent eaves4lroylnng (without entanglement)

In this strategy Eve attempts to gain some information
on each signal sent by Alice, while minimizing the dam-
age to the state of the latter. In opposition to the previ-
ous case, she does not perform a standard quantum mea-
surement on the carrier, but rather uses a POVM [18,19]
as explained above. That POVM can be realized by mak-
ing the information carrier interact unitarily with a
probe, and then letting it proceed to Bob, in a slightly
modified state. In principle, Eve could store her probe
and make her measurement much later. The potential
advantage of this scheme is that it enables Eve to decide
on the type of measurement to perform on her probe only
after Alice and Bob have gone through the whole pro-
cedure of error correction and privacy amplification. In
particular, she can decide, for each bit, whether to try to
obtain as much information as possible (this will provide
her with probabilistic information) or to have definite re-
sults with probability less than 1 (and get deterministic
information on fewer bits). In this work we shall assume
that Eve chooses to maximize her information, so that
she can determine bit values with a certain probability
rather than knowing some fraction of them precisely and
knowing nothing about the rest (it is likely that this is the
best Eve can do).

Eve thus supplies a probe in a known initial state g,
and, according to the state sent by Alice, the combined
system evolves either as

for u and v. The latter are either cos y or sin y. Her in-
formation gain is

I~E =1+cos +y log2cos @+sin y log2sin y . (15)

%e now turn our attention to Bob, who attempts to
identify the incoming signal as efficiently as possible by
using the POVM in Eqs. (3). Now, however, if the signal
sent by Alice was in state u, the one actually received by
Bob is, because of Eve s intervention, in a different state,
namely u'. The probability that Bob will observe the re-
sult which is orthogonal to u and therefore is interpreted
as vis

(cosa sinp —sina cosp)

(cosa+ sina )

sin (a —p)
(1+ sin2a )

(16)

Equations (14), (15), and (18) determine I„E as a function
of Q.

The mutual information between Eve and Bob can be
calculated on the basis of the error rate between Eve's
and Bob's data. This error rate is given by

q&E =Q cos y+(1 —Q)sin y . (19)

In Fig. 2 we plot I„E and I~E as functions of Q (dash-dot
lines).

We note that this strategy is especially interesting for
"weak" eavesdropping (y =n/4), i.e., when Eve attempts
to obtain a small amount of information while causing
only a slight disturbance. In this case, as seen in Fig. 2,
the amount of information obtained increases as the
square root of the error rate; it was linear in the error rate
for the previous strategy. For "strong" eavesdropping,

This is the probability of a throng identification of the in-

coming signal. The probability of no identification (in-

conclusive test) is

R = (u'~ A, ~u') =sin2a (cos +si )

(cosa+ sina )

1+sin2P 1+sin2P=sin2a 1+sin2a 1+sin2a

In this situation, Bob will be alerted by an unexpected-
ly high rate in inconclusive tests, even before he com-
pares his parity checks with those of Alice. Eve can
reduce this efkct by occasionally absorbing Alice's sig-
nals, and replacing them by fake signals, say u" and v",
with smaller overlap than u and v. As these signals are
less likely to give an inconclusive result than u and v, this
will enable Eve to reduce the rate of inconclusive results,
and even bring it back to Ro. Of course, this will in-
crease the error rate and can be detected by parity
checks. We shall not analyze this more complicated stra-

tegy further. Its main interest is to show that the rate of
inconclusive results along is not a reliable test for eaves-

dropping.
After discarding the inconclusive results, Bob, in pub-

lic discussion with Alice, will estimate his error rate as

Q=q/(1 —R)=sin (a —p)/(1 —sin2asin2p) . (18)
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C. Translucent eavesdropping (with entanglement)

As explained above, the main drawback of the preced-
ing strategy is that, as Eve attempts to obtain more infor-
mation on the bits sent by Alice, she increases the overlap
between the two states sent to Bob and thus reduces the
information shared with Bob. In order to increase this
mutual information, Eve may attempt to entangle the
states of her probe and of the carrier that she is resend-
ing. This can be done as follows (see Fig. 3).

Eve supplies a probe in a known initial state P, and the
combined system evolves either as

uli~auSe, +bve„ (20}

or

vP~bue +ave, , (21)

where, as previously, e„and e„represent the states of
Eve's probe: e„=(;„'r)and e„=(,",",rr).

This evolution is unitary provided that the real
coefficients a and b satisfy the following two conditions:

however (that is, y =a), as Eve attempts to get as much
information as possible on the bits sent by Alice, this
strategy clearly fails. The reason for that is that Eve ends
up ultimately affecting the state of the carriers in such
way that Bob can obtain no information at all: regardless
of the initial state u or v, the state sent to Bob becomes

1/+2(ir~z).
Therefore, we shall now turn to a third eavesdropping

strategy that tries to combine the best characteristics of
the previous two. In particular, it can be reduced to the
opaque intercept-resend strategy for strong eavesdrop-
ping, and to the translucent strategy for weak eavesdrop-
ping. The new strategy is a variant of the translucent
strategy in which the carrier and the probe do not disen-
tangle at the end of interaction.

1=a +b +2ab sin2asin2y,

sin2a=2ab+(a +b )sin2asin2y .

(22}

(23)

Note that for weak eavesdropping (y =m. /4), the states
e„and e„are very close to each other so that the probe
and the information carrier are hardly entangled, as in
the previously analyzed case of translucent eavesdrop-
ping. However, for strong eavesdropping (y~0) the
whole strategy looks as if Eve, after obtaining maximum
information about the state of the carrier, tosses a biased
coin and sends to Bob, with probability ~a~ =cos a, a
carrier in the state she detected, and with probability
~b~ =sin a, one in the opposite state. The latter case
therefore is a modification of the opaque eavesdropping
method. The comparison between the two translucent
strategies is shown in Fig. 2—dash-dot versus dashed
1ines.

A convenient parametrization for a and b is

a =cos(a+/)/cos2$,

b =sin(a —$)/cos2$,

with the additional condition,

sin2$ =sin2a sin2y .

(24)

(25)

and

u"8g~u8 e„ (26)

Using this parametrization, the strategy can be written in
a way which is similar to the previous one where two
nonorthogonal input states u f and v f are
transformed into two output states u'(3)e, and v'(3)e„
which are direct products of the carrier and the probe
states. Here the two input states which evolve into two
direct product states are u" =( sf) and v"=(,",",~&), which
are transformed as

v"8f~v e„. (27)

eu

(b)

eu

ev

= U

= V

FIG. 3. This figure shows (in a very simplified way) the
difference between translucent eavesdropping without entangle-
ment (Sec. IVB) and translucent eavesdropping with entangle-
ment (Sec. IV C). (a) In the Srst case, if Alice sends u, Eve al-
ways obtains e and Bob obtains u', which can be read by him
either as u or as v. Therefore the state obtained by Eve is per-
fectly correlated with the state sent by Alice, but not with the
state read by Bob. (b) In the second strategy, Eve attempts to
keep a perfect correlation with Bob's state, e.g., e is always
paired with Bob's u. However, in this case, the correlation with
Alice's state is not perfect.

p(0, 0,0}=a (1—sin2a)cos y,
p (0,0,?)=sin2a(a cosy+ b siny)

p(0, 0, 1}=b~(1—sin2a)sin y .

(28)

(29)

(30)

Qnowing the evolution of the two states u" and v", it is
easy to calculate the evolution of u and v and verify that
it gives Eqs. (20) and (21), together with the unitarity con-
dition, Eq. (25).

We note that in contrast to the previous strategy, when
the input states are u are v, the states of the carrier and
the probe become entangled. In order to calculate the er-
ror rate Q, we could trace out the probe states and obtain
the reduced density matrix as received by Bob. However,
the calculations are quite lengthy, and it is preferable to
work directly with the entangled state. Assuming the
same type of detection as before, we can calculate the
probability distributions of various possible outcomes
from Alice, Eve, and Bob. For example, p (0, 1, r)
represents the probability that Eve detected a 1 and Bob
registered an inconclusive result "?"when Alice sent a 0.
With this notation we obtain
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Analogous instances in which Eve registered 1 are ob-
tained from the above formulas by interchanging
cosy~siny, for example

p(0, 1,0)=a (1—sin2a)sin y, (31)

and instances in which Alice sent 1 are obtained by inter-
changing a~b, as in

p(1, 1,0)=b (1—sin2a)sin y . (32)

We calculate the transition probabilities by taking ap-
propriate sums. For the binary erasure channel between
Alice and Bob, we sum over all the possible results ob-
tained by Eve to get the error rate (before discarding the
inconclusive results),

q= g p(O, i, l)= g p(l, i, O)=b (1—sin2a), (33)
i =0, 1 i =0, 1

and the rate of inconclusive results,

R = g p(O, i, ?)
i =0, 1

= g p(l, i, ?)
i =0, 1

=(a +b +2ab sin2y)sin2a . (34)

Similarly, the error rate of the binary symmetric channel
between Alice and Eve is

q„z= g p(0, 1,i)=(a +b )(1—sin2a),
i =0, 1,?

(35)

and for the binary erasure channel between Eve and Bob,

qsx= g p(i, 0, 1)
i =0, 1

=(a +b )(1—sin2a)sin y, (36)

R = g p(O, i, ?)
i =0, 1

=(a +b +2ab sin2y)sin2a . (37)

Note that R is the same for the Alice-Bob channel and
for the Eve-Bob channel. After discarding the incon-
clusive results, we obtain the error rate for the Alice-Bob
channel,

Q—:q/(1 —R)=b /(a +b ), (38)

for the Alice-Eve channel,

Qzz =—q„z /(1 —R ) =Q cos y+ (1—Q)sin y, (39)

and for the Eve-Bob channel,

Qs~ =—qsE /(1 —R ) =sin y . (40)

Using the standard formula for the binary symmetric
channel capacity given in Eq. (6), together with Eqs. (24),
(25), (38), (39), and (40), we can now calculate I~+ and

Isx as functions of Q. The plots are presented in Fig. 2
(dashed lines).

V. DISCUSSiON

We have analyzed the simplest key distribution
scheme, with the key encoding based on two nonorthogo-
nal quantum states, and with the usual three dramatis
personae: Alice, Eve, and Bob. Our analysis of three pos-
sible eavesdropping strategies that Eve can choose for her
mischievous purposes shows an asymmetry in Eve's
knowledge of Alice's and Bob's data. As seen in Fig. 2
(compare the first and the second column), Eve always
obtains more information on Bob's string than on Alice's
string: I„z&Izs. This shows that in our case, Eq. (8)
reduces to Eq. (7). Moreover, by choosing the right stra-
tegy, Eve can gain complete knowledge of Bob's string:
IsF =1 (second column), at the expense of introducing a
large error rate in the transmission,

Q,„=sin a .

From Alice's and Bob's point of view, the existence of
a strategy which effectively discloses Bob's key to Eve,
while creating an error rate Q,„, means that all quan-
tum transmissions with an error rate above Q,„should
be abandoned. Following formula (7), we can see from
the first column of Fig. 2 that the converse is also true:
the secrecy capacity is positive for all error rates below

Q,„, indicating that as long as the error rate Q estimat-
ed by Alice and Bob is less than Q,„, there exist error-
correcting codes allowing Alice and Bob to establish a
perfectly correlated, secret string of bits, if they wish to
do so. Therefore, Q,„provides us with a well-defined

border line: whenever Q ~ Q,„, the key distribution
failed (there exists a strategy which discloses all the infor-
mation to Eve); whenever Q & Q,„,it is in principle pos-
sible for Alice and Bob to communicate in perfect secre-
cy.

From our approach, we see that when ( u
~
v ) && 1, a

small error rate is enough to invalidate the key distribu-
tion. For example, when a=m/16, corresponding to an
overlap (u~v) =0.38, the maximum error rate is only
4%. In order to obtain a robust scheme, Alice and Bob
need to use a large overlap: an overlap of about 95%%uo, cor-
responding to a=ir/5, gives a maximum tolerable error
rate of 35%%uo. The disadvantage of using such a large
overlap is that it increases the fraction of inconclusive re-
sults, to about 95% for a =a /5, so that most of the bits
sent by Alice are useless. This would significantly reduce
the speed of the key distribution. There is also another
problem with a large overlap: in the interferometric
scheme suggested by Bennett [5], where the two states u
and v are two coherent states of electromagnetic field, the
overlap is due to the so-called vacuum component of the
states. A large overlap means using very low intensity
pulses (a 95% overlap corresponds to an average of only
—,', photon per pulse). At such low intensities, the dark

counts of the detectors may increase the error rate and
swamp the signal. A practical scheme will therefore need
to make a trade-off between a larger overlap to increase
the robustness of the scheme and larger intensities to in-
crease the speed and decrease the inherent error rate due
to dark counts.

The criterion given by Eq. (41) is a well-defined limit
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FIG. 4. This plot gives the secrecy capacity of the quantum
channel, defined by Eq. (42) as the number of secret bits ob-
tained per transmission, as a function of the error rate, for three
diferent values of a: a=a/16 (dotted line), n. /8 (dashed line),
and ~/5 (solid line).

C,'=(1—sin2a)C, , (42)

where C, is given by (7}. This definition is a modification
of the "classical" one, and takes into account the rate of
inconclusive results obtained by Bob, namely Eq. (4).
When Alice and Bob use states with a large overlap, most
of the bits will be discarded during the first part of the
protocol, as explained in Sec. II. The value of C,

'
is plot-

ted in Fig. 4 as a function of the error rate for three

between failed and successful transmission. However, we
see from Eq. (7) that when Q =Q,„ the secrecy capacity
of the channel is zero: to transmit one bit of secret infor-
mation, Alice and Bob need to send an infinite number of
bits over the channel. In order to quantify the quality of
the channel, we shall therefore define the secrecy capacity
C,

' of the quantum channel as the number of secret bits
shared by Alice and Bob per bit sent over the channel. In
our case, this gives

values of the overlap, and assuming that Eve chose the
transluscent eavesdropping with entanglement (Sec. IV C)
which provides here with the largest information. We see
that even though a scheme with larger overlap is in prin-

ciple more robust, it is not necessarily the most practical,
as it wi11 lead to a very low capacity. For example, if the
error rate is about S%%uo, the scheme with a=n. l8 (with
overlap 0.71} gives a larger capacity than the one with
a=tt/5 (overlap 0.95).

%e finally stress that in order to implement quantum-
cryptographical systems in practice and to guarantee
their security, one would have to specify explicitly the en-

coding procedure for the noisy channel, and to calculate

Q,„with respect to all possible eavesdropping strategies.
It is crucial to have just enough redundancy in the Shan-
non block coding to order to overcome the mismatch of
the keys: if there is too much redundancy, Eve too will

be able to decrypt the messages. Note that successful
block encoding is effectively equivalent to preparing two
exact replicas of the same key, which could also be done
by standard error correction and privacy amplification
protocols. If such protocols were followed, the relevant
question would be how much information on the com-
mon key has leaded to Eve. We did not investigate this
issue, which property belongs to classical cryptography
and is beyond the scope of the present paper.
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