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The model problem of atomic closed shells in a bare Coulomb field has been the subject of consider-
able interest following the recent demonstration by Blinder [Phys. Rev. A 29, 1674 (1984)], with subse-

quent generalization by March [Phys. Lett. 111A, 47 (1985)], that the electron density in an arbitrary
closed shell in a bare Coulomb field is expressible solely in terms of its s-state contribution. The present

paper will provide a simple derivation of this important relationship by application of the methods of su-

persymmetric quantum mechanics to the radial Coulomb problem. Using this relation, differential equa-
tions are derived which are satisfied by the electron density for an arbitrary closed shell and the Slater
sum for an arbitrary number of closed shells in a bare Coulomb field.

PACS number(s): 03.65.Fd

I. INTRODUCTION

—P„'o(r)+ — + P„o(r)=0 .
2Z Z2

n
(1.2)

Equation (1.1) has subsequently been used by March and
co-workers to express [5] the bound-state Slater sum for
the bare Coulomb field solely in terms of the s-state Slater
sum to derive [6] a spatially dependent generalization of
Kato's theorem [7] for atomic closed shells in a bare
Coulomb field, and to express [8] both electron and
kinetic-energy densities for an arbitrary closed shell in a
bare Coulomb field in terms of s-state densities. These
latter results for the model problem of the bare Coulomb
field are of interest in density-functional theory and the
bare Coulomb model itself is of significance as the leading
term in the so-called 1/Z expansion [9,10] method in

atomic theory.
The object of the present paper is to provide a simple

derivation of the important result of Blinder [Eq. (1.1)]
using the methods of supersymrnetric quantum mechan-
ics [11,12], or factorization [13,14], as applied to the radi-
al Coulomb problem [15—19]. This approach leads to a

In a recent paper on the Sturmian propagator for the
Coulomb problem, Blinder [1] derived a generalization of
Unsold's theorem, the diagonal form of which was subse-
quently used by Shakeshaft and Spruch [2] in a semiclas-
sical evaluation of the sums of squares of bound-state
Coulomb wave functions, arising in the calculation of the
capture cross section of an electron into the nth level of a
hydrogenlike ion by a bare ion at high velocity [3,4].

This relation may be expressed in the form

p„(r)= [P„'o(r)] —P„oP„",(r),
where p„(r} represents the electron density for the nth
filled shell of electrons which interact with the nucleus
but not with each other, and P„o(r}=rR„o(r), where

R„o(r) represents the s-state radial wave function of the
hydrogenlike ion for the nth shell. The function P„o(r}
satisfies the radial Schrodinger equation (in atomic units)

set of shift operators which connect Coulomb eigenstates
corresponding to different values of angular momentum
quantum number at fixed energy (i.e., at a constant value
of principal quantum number). This allows the electron
density of the filled shell to be expressed solely in terms of
the s-state solution of the radial Schrodinger equation at
a constant value of the principal quantum number. This
relation can then be used to derive differential equations
for the closed-shell density and kinetic-energy density
corresponding to the nth closed shell, as well as for the
Slater sum for an arbitrary number of closed shells for
the bare Coulomb field problem. The resultant formulas
differ from those derived by March [5] and March and
Santamaria [8] since they start from Eq. (1.1}itself rather
than from the derived extension to Kato's theorem,
namely,

(1 3)

where p(r) is the total closed-shell density and p, (r) is the
total s-state density.

The plan of the present paper is as follows. The basic
results of supersymmetric quantum mechanics, as applied
to the radial Coulomb problem, are summarized in Sec.
II and then used in Sec. III to provide a simple derivation
of Eq. (1.1). In Secs. IV and V we use Eq. (1.1) to con-
struct differential equations satisfied by the electron den-

sity and kinetic-energy density for an arbitrary closed
shell in a bare Coulomb field. Section VI considers the
Slater sum for an arbitrary number of closed shells in a
bare Coulomb field, and an explicit differential equation
satisfied by this Slater sum is derived. The relationship
between these results and earlier results of March and
co-workers [5,6,8,20] is discussed, and the paper ends
with some general conclusions.

II. SUPERSYMMETRIC QUANTUM-MECHANICAL
APPROACH TO THE RADIAL COULOMB PROBLEM

The method of supersymmetric quantum mechanics
[11,12], which has been shown to be equivalent [21,22] to
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d (1(1+1)
dr r

2Z 2E—„( f„((r)=0, (2.1)

where n„represents the number of radial nodes. The ei-

genvalues E„&are defined by

Z Z
2En, 1

=—
(n +1+1)~ n

(2.2)

where n=n, +1+1 is the principal quantum number.
Although the energy eigenvalues are well known in this
case, the method of supersymmetric quantum mechanics
(or factorization) enables these eigenvalues to be deter-
mined for analytically solvable potentials directly using
algebraic procedures. The essence of the method is the
factorization of the Hamiltonian (or, more precisely, the
Hamiltonian minus the appropriate ground state energy}
in the form

the earlier factorization approach of Schrodinger [13,14],
has been applied previously to the radial Coulomb prob-
lem [15-19]and only a summary of the main results will

be presented here. The starting point is the radial
Schrodinger equation for a specified value of angular
momentum quantum number, namely,

If we assume that the wave functions are normalized,
then

a(lw, l(r) /2~E, ,!{1 „—1,!+1(r)

a (1)g„,,+,(r)=+25E„

(2.9}

(2.10)

a(1)gp ~(r) =0 (2.11)

such that a (1} acts as a destruction operator for the
ground state corresponding to a specified value of angular
momentum quantum number l. The operators a (1) serve
to connect the set of degenerate states at constant value
of the principal quantum number n and in combination
act as destruction operators for any such state. For ex-
ample, for the state go, (r), corresponding to n =2, we

have

where the operators a(l), at(1) act as shift operators
[16,17,19,23] for the radial Coulomb problem, acting at
constant energy (i.e., constant value of the principal
quantum number}, to decrease [increase] by one unit the
number of radial nodes with corresponding increase [de-
crease] in the value of the angular momentum quantum
number.

Note that

a (l)a(l}f„&(r)=25E„&g„&(r), (2.3) a(1)a(0)g, o(r) ~ a (1)go,(r) =0 . (2.12)

where hE„)=E ( Eo, .
The operators a (1) and a (1) are defined by

(1)
d 1+1 + Z
dr r 1+1 (2.4}

These relations demonstrate that each eigenstate at a
specified value of the principal quantum number can be
related to every other eigenstate via the use of the various
shift operators. This will be used in the following section
to devise a simple proof of Eq. (1.1).

a (1)=—
dr

1+1 Z
r 1+1 (2.5)

If we interchange the order of the operators a(l) and
at(l) in the parent Hamiltonian, we generate a so-called
partner Hamiltonian. This partner has the same bound-
state eigenvalue spectrum as the parent, except that the
ground-state energy of the parent is absent in the partner.
In the present instance it can be shown [15-19]that

a(l)a t(l) =at(1+1)a(1+1)+26E,&, (2.6)

where the partner Hamiltonian corresponds to an in-
crease in angular momentum quantum number of one
unit. The eigenvalue spectrum of the partner follows im-
mediately from the relation

a (l)a (l)(a(l)g„&(r))

III. DERIVATION OF RELATION
BETWEEN p„{r}AND P„z{r}

= [P„'o(r)] —P„o(r)P„"o(r}, (3.1)

where p„(r} represents the electron density for the nth
closed shell, R„&(r)=rP„~(r), and P„o(r) satisfies the ra-
dial Schrodinger equation

As discussed in the Introduction, Blinder [1] has de-
rived a generalization of Unsold's theorem which, in its
diagonal form, reveals a significant relationship between
the closed-shell electron density in a bare Coulomb field
and the corresponding s-state density. This relation is

n —1

p„(r)= g(21+1)R„—&(r)
1=0

={at(1+1}a(1+1)+2bE»)(a(1}g„&(r))

=25E„&(a(l)f„&(r)), (2.7)
P„",(r)+ — +,—P„,(r)=o.2Z Z

r n
(3.2)

=25E„,&(a(1)fn, i{r)) . (2.8)

where we note that the function a (l)g„&(r) is an eigen-

state of the radial Coulomb Hamiltonian corresponding
to angular momentum quantum number I+ 1. Hence

a {1+1)a(1+1)(a(l)g„&(r)) a (1)P„((r)=a(P„(+,(r),
a (l}P„&+&(r}=a&P„&(r},

(3.3}

(3.4)

For convenience, we have omitted a factor of 2, which
arises from double occupancy of each of the orbitals.

In terms of the above standard notation, the shift
operators defined in Sec. II become
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1 1
e, =Z2 2

(1+1) n
(3.5)

where the constant of proportionality a& is defined by the
relation

Fo(r) =3R„,(r)

(3.15)

where we have used the fact that

+ [a&P„&(r)][a&P„&(r)+2(2/r—Z/2)P„2(r)]

+a,P„2(r),

a(0)P, o(r)—= ——+Z P, o(r)=0,6 1
(3.6)

so that

1
P) o(r)= Z P) o(r) (3.7)

Then

Note that al =0 when I =n —1, as required.
It is instructive to demonstrate the validity of Eq. (3.1)

in the simplest case of n =1, before presenting a general
derivation. %hen n =1, we have

1 1(a ——'Z )= —— Z—:a0 4 4 2 1
n

We note that Eq. (3.15) is expressible in the form

Fo(r) =3R„,(r)+F&(r),

where F&{r) is defined by the relation

FI{r)= [aiP., t(")][a~P

+2[(1+1 ) /r —Z/(1+ 1)]

XP„ I +,( r) ] +ai P„)+,( r)

(3.16)

(3.17)

(3.18)

1——Z P, o(r)

(r)+ — +Z P, (r) .
1 2 2Z

{3.8)

and represents the generalization of Eq. (3.15) to arbi-
trary I value. It is then a straightforward matter, using
Eq. (A5), to derive the recursion formula

21+3
Ft(r) =

2 P„ I+ ~ (r)+FI+&(r)

Applying Eq. (3.2), with n = 1, gives

[P&,o(r)] =Rt,o(r)+P&, o(r)P&,o(r) .

—:(21+3)R I + i (r)+Fr+ i(r)

which leads to the expansion

(3.19)

Hence we have the result

p&(r) —=R, (r) = [P', (r)] —P, (r)P", (r), (3.10) (3.20)

Fo(r) =3R„1(r)+SR„2(r)+ +(2n —1)R„„&(r)
n —

1= g (21+1)R„I(r) .
1=-1

as required.
In order to treat the general case, we proceed as fol-

lows. From Eq. (3.3), and the definition of a (0), we have

Hence

[P„o(r)] = [(1/r Z)P„o(r)+aoP„,(r—)]

=R„o(r)+P„o(r)P„"o(r)+Fo(r), (3.12)

where we have used Eq. (3.3) and the relation
ao=Z (1—1/n ). The function F„(r) represents the
remainder and is defined by

Fo{r)=a „oP{ro)[ {aro)P„{ro) 2+{1/r Z)P„&{r)]—

a (0)P„o(r)=P„' o(r)+( —1—/r+Z)P„o(r) =aoP„&(r) .

(3.11)

Combining Eqs. (3.12) and (3.20) gives the result

[P„'o(r)] =P„o(r)P„"o(r)+R„o(r)
n —1

+ g (21+1)R„t(r)
1=1

or, equivalently,

n —1

[P„'o(r)] —P„o(r)P„"o(r)=g (21 +1)R„I(r) .
1=0

(3.21)

This equation demonstrates that the electron density
p„(r) for the nth closed shell is related to the 1=0 solu-
tion of the radial Schrodinger equation, in the form

n —
1

p„(r)= g (21+1)R„,(r)

+aoP„&(r) . (3.13) =[P„'o(r)] „P (or)P„" (or) . — (3.22)

We require a recursion relation for the functions P„ I(r),
and this is provided in the Appendix, in which use is
made of the properties of the shift operators. Applying
Eq. (A5) in the case 1 =0, we have

aoP„o(r) =3 ——+ P„,(r) —a,P„2(r),1 Z
T

L

and substitution into Eq. (3.13) gives the result

Note that the derivation has made use of the properties
of the Coulomb shift operators in order to transform be-
tween the set of degenerate eigenstates at fixed value of
the principal quantum number. In the following sections,
we will use Eq. (3.22) to derive differential equations
satisfied by the electron density and kinetic-energy densi-
ty for a specified closed shell and the Slater sum associat-
ed with an arbitrary number of closed shells in a bare
Coulomb field.
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IV. Dll'l'KRENTIAL EQUATION
SATISFIED SYp„(r)

The starting point here is Eq. (3.22), namely,

p„(r)=[P„'p(r)] —P„p(r)P„"p(r) .

Since P„o(r}satisfies the radial Schrodinger equation

—P„"o(r)+ — +
2 P„o(r)=0,2Z Z2

n

Eq. (4.1) becomes

(4.1)

(4.2)

or, equivalently,

r p„"(r)—p'„'(r) —— p'„(r)
p'„(r)

+ ———2Z p'„(r) —p„(r)=0 . (4.12)
Z2T 1, 2Z

2 7 T

This represents a second-order nonlinear differential
equation for the electron density of the nth closed shell in
the bare Coulomb problem.

It can be shown from Eq. (4.3) and its derivative that
Z2

p„(r)=[P„'o(r)] + — P„o(r) .
T n

(4.3) p'„'(r) p'„(pr)

p'„(r) p„p(r}
(4.13)

Differentiation with respect to T gives

p„'(r)= —
z P„o(r)=—2ZR„O(r)—:—2Zp„o(r} .

T

(4.4)

so that Eq. (4.12) can be written in the alternative form

r p'. ,o(r}
p„"—(r) —— "' p'„(r)

4 p„o(r)

This is the result first derived by March [6] as the spatial
generalization of Kato's theorem [7] for atomic closed
shells in a Coulomb field. Summation over the quantum
number n gives

p'(r) = 2Zp, (r)—, (4.5)

where p, (r) represents the s-state contribution to the elec-
tron density. This result is valid for a set of closed shells
in a bare Coulomb field.

In order to derive a differential equation satisfied by
p„(r), we proceed by introducing an intermediate
variable 0 „p(r)=P„o(r). Then, since 0'„p(r)
=2P„O(r}P„'p(r),we have

+ ———2Z p'(r) — p (r)=0. (4.14)
Z2T 1, 2Z
n

n n

2Z Z2
+ 0„O(r)=0 .

T n
(4.15)

We can derive a third-order nonlinear differential equa-
tion satisfied by p„(r), as first derived by March [6], as
follows. Using Eq. (4.2), it is straightforward to show
that 0 „p(r)=P„p(r) satisfies the difFerential equation

'2
0''„o(r)

0' p(r)+ ' 0' p(r)
np r

[0'„o(r)][P„'o(r)]'= 4"'
0no r

Hence, from Eq. (4.3),

[~.',o(r)]' 2Z Z'
p„(r)= "' + —,e„(r) .

40'n p r T n

(4.6)

(4.7)

Converting Eq. (4.15) into an equation for
p„o(r}=o „o(r)lr produces a second-order nonlinear
differential equation satisfied by the s-state density p„p(r},
namely,

2
p'. o(r}

p'„' p(r)+ — —'
p„p(r)

pn, o r

p'„(r) = —2Zp„o(r) = (2Z/r )0 „o(r)—, (4.8)

we can relate 0„O(r) and its derivatives to those of p„(r).
Thus

Since p'„(r) is related to 0„O(r) through Eq. (4.5), ex-
pressed in the form 2 P,o(")

r p„p(r)

2Z Z+2 — + p„o(r)=0 .
n

(4.16)

2

0 „p(r)= — P'„(r),

0'„(r}=—— p'„'(r)+p'„(r)—

This allows us to rewrite Eq. (4.7) in the form

1 r [P (")I
p„(r)= — — +rp'„'(r)+p'„(r)

2Z 4 p'„(r)

T 2 Z
T n2

p'„(r)

(4.9)

(4.10)

(4.11)

If we now apply Eq. (4.3} in the form
p„o(r}= p„'(r)I2Z, we reg—ain the third-order nonlinear
difFerential equation for p„(r) first derived by March [6],
namely,

p'„'(r)
rp'„"(r) —— p'„(r)+2p'„'(r)

Pn "

2Z T+ 4Z — p'„(r) =0 . (4.17}
n

Such differential equations satisfied by the electron densi-
ty of the nth closed shell in the bare Coulomb problem
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are of interest in density-functional theory, as has been
emphasized by March [6].

V. KINETIC-ENERGY DENSITY
IN A BARE COULOMB FIELD

March and Santamaria [8] have recently derived a sim-

ple equation relating the kinetic-energy density and elec-
tron density for a specified closed shell in a bare Coulomb
field to the corresponding s-state densities. Here we shall
provide an alternative derivation of this relation and con-
sider some of its consequences.

The kinetic-energy density for the nth closed shell in a
bare Coulomb field is defined by

t„(r)
t„o(r)

n —1

g (21+1)R„i(r)
1=0

R„o(r)
p„(r)
p„o(r)

' (5.9)

This significant result is a consequence of the fact that
states with constant principal quantum number and
different values of angular momentum quantum number
are degenerate in a central Coulomb field.

It is a straightforward matter to relate t„o(r) to the
function P„o(r), such that

i a'
t o(r)= — R,o( ) ["R,o(r)]

8n "' r gr2

n —1 1

t„(r)=—
—,
' g g P„"& (r)& g„t~(r)

1=0 m= —1

(5.1)

P„Po„" o(r)
Sar

since P„o(r)= rR—„o(r) Us. ing the relation

(5.10)

with corresponding s-state density

t„o(r)= —
—,'g„'oo(r)V'g„~(r) .

[P„o(r)]"=2[P„o(r)'(r)]+2P„o(r)P„' o(r),
(5.2)

Eq. (3.22) becomes

(5.11)

Utilizing the Schrodinger equation satisfied by the hydro-
genic wave function g„t (r), we have p„(r)= —,'[r p„o(r)]"—2P„o(r)P„"o(r) . (5.12)

Hence

leant (r)l'
2n

(5.3)

(5.13)

Substitution into Eq. (5.10) yields the expression for t„(r)
first derived by March and Santamaria [8], namely,

1 P„(r) 1
t„o(r)= — [r p„(or)]"

4~ 4r Sr

Z
t„(r)=

r
Z
271 1=0 m = —J

(5.4)
Other consequential relations can also be derived [8], but
these will not be considered further here.

Since P„, (r) =R„,(r)Yt (e,p), we have
VI. BOUND-STATE SLATER SUM
FOR BARK COULOMB PROBLEM

Z Z2
t„(r)= ——,g R„ t(r) g l Yt (&,P) l'

1=0 m= —1

1 Z
4m. r

Z2 n —1

g (21+1)R„,(r) .
211 1

—0
(5.5)

2l+1
Pl(cosa ) 2 Ylm(~1 Ni ,) ~l, (~2 42)

4m m= —1

(5.6)

where Pt(cosa) is the Ith Legendre polynomial and a is
the angle between the two directions (8„$,) and (Oi, gz).
In the present case, 8, =02 and P, =$2, so that a=0, and
hence Pl(1)= 1, so that

We have made use of the addition theorem for spherical
harmonics,

In this section we shall consider the bound-state Slater
sum for the bare Coulomb problem, defined by

n —1 l pS(r,P)=g g g lP„t (r)l e ", (6.1)
n 1=0 m= —1

where p= I/ksT, g„& (r) represents the hydrogenic
wave function corresponding to quantum numbers
(n, l, rn), and e„= Z /2n— As fir.st demonstrated by
March [5], using the result of Blinder [1], this bound-
state Slater sum can be expressed in terms of the corre-
sponding s-state sum. For completeness, we shall
rederive this result here and proceed to identify a
differential equation satisfied by the bound-state Slater
sum S(r,P).

Since

I Y,.(t),y)l'= ' +
(5.7)

and by use of Eq. (5.7), we have the result

(6.2)

The s-state contribution to the kinetic-energy density is
given, from Eq. (5.5), by

n —1

S(r,P)= g g (21+1)R„I(r)e
4m'

1 Z Z
t„o(r)= ——

~ R„o(r) .
4m r

(5.8) 1 —Peg p„(r)e
4m

(6.3)

Combining Eqs. (5.5) and (5.8) leads to the relation Using Eq. (3.22) this becomes
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S(r,P)= g [ [P„'0(r)] —P„o(r)P„'0(r)j e
4m „

The corresponding s-state sum is

So(r,P) = g p„o(r)e "= g P„o(r)e
1 —P~„ 1 2 -p~„

4m. „ 4n.r

(6.4)

(6.5)

+4ZrSO(r, P) .

From Eqs. (4.4) and (6.3), we have

(6.6)

S(r,P) = g p„'(r)e "=— g p„o(r)e
Br

'
4n 4m „

2ZSO(r—,p) . (6.7)

If we now differentiate Eq. (6.6) with respect to r, we find

3 B2
S(r,f3)= —

3 [r So(r,P)]—4 [r So(r,P)]r 2 Qr r

+4Z [rSO(r, P) ]—4ZSO(r, P),
T

(6.8)

and this is equal to 2ZSO(r, P), fr—om Eq. (6.7). The
resultant third-order differential equation is equivalent,
for the specific case of the bare Coulomb potential, to a
result first derived by March and Murray [20]. The ap-
plication of Eq. (6.7) to Eq. (6.8) results in a fourth-order
differential equation [5] satisfied by the Slater sum for the
bare Coulomb problem. However, if we use Eq. (6.7) to
define an explicit relationship between So(r,P) and

BS(r,P) /Br, incorporation into Eq. (6.6) produces a
third-order difFerential equation satisfied by the Slater
sum for the bare Coulomb problem, namely,

8 8S(r,P) = — S(r,P) — S(r,P)—
4Z dr' Z Br~

S(r,P) —2r S(r,P)
1

2Z r Br

From Eqs. (6.4) and (6.5), it is straightforward to derive
the relation

1 8S(r,f3)=— [r So(r,P)] 4—[r So(r,P)]
2 Br

VII. CONCLUSIONS

APPENDIX

Here we shall derive a simple recursion formula for the
states P„l(r) using the shift operators which act at
specified value of the principal quantum number. We
have, from Eqs. (3.3) and (3.4),

a (1)P„l+l(r)=&lPn l(r) (A 1)
a (1+1)P„l+ l(r) =Ql+ 1Pn 1+2(r) ~

Equation (Al) is expressible in the form

(A2)

1+1 Z+ P l+&(r)
T

while Eq. (A2) becomes

col+ lP, l+2("}

(A3)

We have presented a simple proof of the relationship,
first derived by Blinder, between the electron density and
the corresponding s-state density, for a closed shell in a
bare Coulomb field, based on the use of the shift opera-
tors which arise naturally in the supersymmetric treat-
ment of the radial Coulomb problem. These shift opera-
tars act at constant value of the principal quantum num-
ber and hence at constant energy. This result between
the density of a specified closed shell and the correspond-
ing s-state density may be generalized to an arbitrary
number of closed shells. In addition, it is possible to
derive difFerential equations satisfied by the electron den-

sity within a specified closed shell and the Slater sum for
an arbitrary number of closed shells. These equations are
somewhat simpler than those derived previously. In ad-
dition, a proof is presented for the simple relation be-
tween the kinetic-energy and electron densities in a single
closed shell, and the corresponding s-state densities. The
results derived here may have relevance in density-
functional theory, where the problem of noninteracting
electrons in a bare Coulomb field is of importance since it
represents an exactly solvable model.

2r~+ S(r,P} .
Z Br8

(6.9)
=Pn, 1+1(r)+ 1+2 Z+ P„ l+, (r) . (A4)

There does not appear to be a corresponding relation for
the total closed-shell electron density p(r) in the bare
Coulomb field, although a formal expression can be ob-
tained by considering the limit P=O in Eq. (6.9). This
difBculty arises from the explicit appearance of the ener-
gy eigenvalues e„within the summation over n, for which
no further simplification appears possible.

alP„ l(r) =(21+3) ——+1 Z
Pn l+&(")(1+1)(1+2)

+I+1P,l+2( (A5)

Elimination of P„' l+&(r} from Eqs. (A3} and (A4) yields
the desired recursion relation
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