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Wave function in the invariant representation and squeezed-state function
of the time-dependent harmonic oscillator
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The two quantum invariant operators are found from the time-dependent Hamiltonian of the harmon-

ic oscillator with an auxiliary condition. The solution of the Schrodinger equation for the system, such
as the eigenfunctions, eigenvalues, and minimum uncertainty, is derived by utilizing these invariant

operators. The coherent states of this system are not the squeezed states, and the eigenfunction of the in-

variant operator is not the eigenfunction of the Hamiltonian of the system unless it is in the invariant

representation. The squeezing function, which is an eigenfunction of the Hamiltonian of the system in

the invariant representation and which also gives the minimum uncertainty, is obtained by a set of uni-

tary transformed operators, i.e., squeezing operators.

PACS number(s): 03.65.—w

I. INTRODUCTION

Over the past several decades, much attention has been
paid to obtaining the exact solution to the Schrodinger
equation for the time-dependent system [1]. Among
several techniques to treat these systems, the quantum in-
variant operator method [2] and propagator method [3]
are particularly well known. Since Lewis and Riesenfeld
[4] have derived the relation between the dynamical in-
variant and solution of the Schrodinger equation for the
time-dependent oscillators, its generalization offers wide
applications to various fields [5].

After Glauber's investigation of photon statistics in ra-
diation fields [6], coherent states and squeezed states have
become important in many areas [7], especially quantum
optics [8-10]. Walls [11]carried out pioneering work on
squeezed states of light. Various authors have obtained
the coherent states for the damped [12] or damped driven
harmonic oscillator [13],harmonic oscillator with time-
dependent frequency [14],and squeezed states for general
symmetric systems [15].

Recently, through the path-integral method, we have
obtained wave functions, energy expectation values, the
uncertainty relation and transition amplitudes for a quan-
tum damped driven harmonic oscillator [16], coupled
forced harmonic oscillator [17] and forced time-
dependent harmonic oscillator [18], and coherent states
for the damped harmonic oscillator [19] and harmonic
oscillator with time-dependent frequency [20]. We have
also derived the relation between the wave function and a
dynamical invariant, which determines whether or not
the system is bound for a time-dependent quadratic Ham-
iltonian [21]. In this present paper, a squeezed state,
which is caused by the asymmetry in the uncertainties of

the two observables of a system, is obtained using a set of
unitary transformed operators or squeezing operators in
the invariant representation.

In this paper, in Sec. II we derive the two quantum
(creation and annihilation) invariant operators for the
time-dependent harmonic oscillator. Then in Sec. III we
solve the Schrodinger equation in the invariant represen-
tation with the auxiliary condition as the classical solu-
tion. In Sec. IV we show the squeezing function of the
system using the unitary transformed creation and an-
nihilation operators and Sec. V summarizes our overall
results.

II. CLASSICAL TREATMENT APPROACH

q+co(t) q=0 . (2)

Although the di8'erential equation (2) does not have an
easy solution, it can be expressed in the form

q =p(t)e'

where the functions p(t) and y(t) are determinable frotn
Eq. (2). These functions are real and depend only on
time, and substitution of Eq. (3) into (2) yields two equa-
tions from the real and imaginary parts as

The Hamiltonian of the harmonic-oscillator system is
given by

2
H= p + iMco2(t)q2

2M

where q and p are canonical variables and co2(t) is a real
positive function, and the classical equation of motion is
given as
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p p—y +ca(t) p=O,

py+2p j'=0 .

(4)

(5)

Q=Mp y'', (6)

One invariant quantity can be found from Eq. (5) in the
form

with the auxiliary condition of Eqs. (4) and (5). These
operators satisfy the canonical commutation rule

[a,at]=1 (12)

and obey the usual properties of creation and annihilation
operators. The invariant operator Eq. (9) can be rewrit-
ten in terms of a and a t as

with an auxiliary condition given by the classical solu-
tion. Substituting Eq. (6) into (4), it becomes S=fiQ(a a+ —,'), (13)

p
— +co(t) p=O .

0
M p

and the eigenstates of the invariant operator have the
same form as the normalized eigenstates

~
n ) of a ta,

Another time invariant quantity can be evaluated from

ds as as ass as ass
dt at ax ap ap ax

a aln)=nln), n=0, 1,2, . . . .

(8)
The eigenvalue spectrum of S is obtained by

(14)

From Eqs. (1} and (8), we obtain the classical invariant
quantity as

A, =QA'(n+ —,'), n =0, 1,2, . . . . (15)

1 0S=—
q +(pp —Mpq)

2 p
(9)

The ground state, denoted by uo, beyond which the

lowering (i.e., annihilation) ends, must satisfy the condi-
tion

These invariant quantities 0 and I are the measure of the
bound system. If Q is real, Eq. (9) is an elliptic equation
in phase space. Thus, as the values of q and p in the sys-
tem are limited in some region, it is a bound system.
However, if Q is imaginary, Eq. (9) is a hyperbola in
phase space and q can take any value in the space, hence
making the system unbound.

III. QUANTUM-MECHANICAL TREATMENT

au0=0 .

In q space, Eq. (16) is written as

a"o My
aq

+ (1—ppy)q =0,

whose normalized solution is

' 1/4

(16)

To treat the system quantum mechanically, by replac-
ing the canonical variables of the classical system by
quantum operators in the Hamiltonian, one gets the
quantum invariant quantity. In order to obtain eigen-
functions and eigenvalues of the invariant operator, we
re-express it in terms of creation and annihilation opera-
tors. To do this, we define the time-dependent canonical
annihilation and creation operators a and a ~ by the rela-
tions

My
exp — (1 ippy )—q2A'

(18)

The excited eigenfunctions are given as

1 «t)"&o
pg I

(19)

where their explicit forms can be found by the solution of
the differential equation

0a=
&2MAQ p

—q+ i(pp —Mpq)
gq 2/2 d —

gq 2/2

dq"
d —

gq

'n

(20)

+2MAy
My 1 — q+ip

px
(10)

which is a Hermite polynomial of order n:

a = 1 0
+2M%A p

q i (pp ——Mp—q} (2i)
dn

ss„(&gq) =( &g } "e«' —(e -«') .
-

dq

+2Mfiy
My' 1+ q

—ip
pr

Hence, the normalized eigenfunction of an excited state n

can be expressed as

u„(q, t)=
1/2

' 1/4
My
mri

exp — 1 —i q H„My . p
2A yp

'1/2'

(22)

This is an eigenfunction of the invariant operator obeying the auxiliary conditions of Eqs. (4) and (5). However, we

would like to point out that the eigenfunction of the invariant operator S [Eq. (22)] is not the wave function of the sys-
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tern, but the wave function of the system of which the Schrodinger equation is given as

i' —Q= — g+ co(t) q g.8 A 8 M
2M Qqz 2

To obtain the eigenfunction of the system, let us assume that the form of the wave function is given as

(23}

f„(q,t)=e "u„(q,t} .

Substitution of Eq. (24) into (23) gives

a„= (—,'+—n)y,

' 1/2
My (1/2+„)y My

1 —' Hexp —
2&

t —
q

P'Y
Q„(q, t) = 2"n!

The propagator of the system, with the help of Mehler's formula [22],

so that we obtain the exact wave function of the nth state of the system as
' 1/4

My
q

' 1/2

(24)

(25)

(26)

&1—z'exp

is expressed as

2XYz —X —Y 00

=e x " g H„(X)H„(Y),
1 —z „—0 2"n!

(27)

K(q, t;q', t'}= M+r'y'
2n iA'sin(y —y')

1/2

iM
Xexp

' I

q' —,q' + . , [(rq'+r'q')cos(r r'}—2&—rr'qq']
p p' sin(y —y') (28)

where p'=p(t') and y'=y(t'). Equations (2) and (28) are
the same as our previous results using path-integral
methods [8].

and

p=M[p +to(t) p +pzr' ] . (34)

IV. SQUEEZING OPERATORS

' 1/2

(bqhp )„„=—(2n +1) 1+ p'
n, n

rp
(30)

Since the minimum uncertainty of Eq. (29} is larger
than A/2, the coherent states of the system are not
minimum uncertainty states. To find the minimum un-
certainty state, we may express the Hamiltonian of Eq.
(1) in terms of a and a as

In order to obtain the uncertainty relations, we express
q, p, q, and pz in terms a and a [Eqs. (10) and (11)]. Us-
ing the definition of the uncertainty product given as

(&q&p) „=[I & ttt Iq'ltt &
—

I & trt Iqltt &'I

X
I & ttt Ip'Itt &

—
I & tn Iqltt &'I ]'~', (29)

one can easily get the uncertainty relation for various
states [23]. We note that the diagonal elements in the un-
certainty relation are given by

To diagonalize the Hamiltonian, we introduce new
creation and annihilation operators [11,23], i.e., the
squeezing operators

b=p a+v at, bt=p a +v'a,
where

IJMI
—Ivl =1

(35)

86)

[H, b]= kb, — (37)

the Hamiltonian of Eq. (31) can be diagonalized in some
space. The transformation constants p and v satisfying
Eqs. (36) and (37) are

a
v'2k (p—k )

P—k
v'2k(p —k )

(38}

(39)

These have the same properties of usual creation and an-
nihilation operators. If b and b obey the relation

H= [a +a'a +Pja, a ]], (31) k =2'(t}Q . (40}

[a,a j =aat+ata,
a=M[p +co(t) p py ] 2iMppr', — —

(32}

In this case, the Hamiltonian of Eq. (31}is

H=fico(t)(b b+ —,') .

(33) The eigenvalues of the Hamiltonian are

(41)
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A,„=fuu(t)(n+ —,'), n =0, 1,2, . . . , (42)

whereas the ground-state wave function is obtained by

bgo=0 . (43)

Using Eqs. (35), (38), and (39), we can write Eq. (43) as

1
exp i tan

&2A'co(t)M

co(t)p—+ 0
Mp

P

X [Mco(t}q+ip]go=0, (44)

whose normalized solution is
' 1/4

My
e

—
t Mco( t)/2']q (45)

2"n!

' 1/2 1/4
Mco(t) (M„(,)ns)q'

gran

1/2
Mco(t}

n q (46)

This P„ is not a solution of the Schrodinger equation
given by Eq. (23), but an important function to describe
the system. Equation (46) along with (29) yields the un-

certainty product as

(hqbp )„„=A(n+ —,
' ), (47)

and since the minimum uncertainty of Eq. (47) is fi/2, the

The normalized excited eigenstates of the Hamiltonian
are

—(bt)"up1

&n!

minimum uncertainty state is an eigenstate of the Hamil-
tonian of the system. That is, the eigen-coherent-state of
the Hamiltonian of the system is the squeezed state of the
system.

All of our above results are for a bound system. If
co (t) in the Hamiltonian of Eq. (1) were negative, then
the corresponding system would be unbound. In this
case, since the creation and annihilation operators do not
transform to the di8'erent set of operators, the system
gives no uncertainty minimum.

V. SUMMARY

Using the invariant operators, we have obtained the
quantum-mechanical solution of the time-dependent har-
monic oscillator that is always a bound system. In these
calculations we have found that the operator method is
much simpler for deriving the quantum-mechanical quan-
tities than other methods. We have also found that the
eigenfunctions of the invariant operators are not eigen-
functions of the Hamiltonian of the system unless they
are in the invariant representation. The minimum uncer-
tainty is obtained through this solution of the
Schrodinger equation. A task for future work will be to
extend this theory to the investigation of other properties
of the time-dependent harmonic oscillator for both bound
and unbound systems.
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