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Photon production by the dynamical Casimir efFect
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In this paper we present some calculations regarding the average number of photons produced in the

dynamical Casimir effect for the ideal case of two perfectly conducting uncharged parallel plates, using

the zero-point energy summation method. We show that it is possible to create intense photon radiation

when the two plates are modulated periodically.

PACS number{s): 12.20.Ds, 78.60.Mq, 42.50.—p

I. INTRODUCI lON

The idea that the "shape" of the vacuum can be
changed, for example, by inserting two perfectly conduct-
ing plates, to produce observable effects, led Casimir in
1948 to formulate what is commonly referred to as the
Casimir effect [1,2]. Since then, the Casimir effect has
been extensively studied and exploited in a variety of situ-
ations [3—7]. Examples include the Casimir effect for
plane dielectric surfaces [8,9], in a given cavity [10], be-
tween two polarizable particles [11], etc. The Casimir
effect has been generally considered as a manifestation of
the change in the zero-point electromagnetic energy due
to the presence of matter, even if it can also be derived
very elegantly by source theory with no reference to the
zero-point field [12,13].

Regardless of the way Casimir forces are calculated,
they are obtained either by holding the geometry fixed or
by varying the geometry only quasistatically. The
dynamical Casimir effect occurs when the geometry of
the system varies more quickly in time so that the vacu-
um is perturbed and emission of photons becomes possi-
ble. Work by other authors regarding photon production
in the presence of moving boundaries can be found in
Refs. [14-17].

Recently Schwinger [18-20]has proposed a more gen-
eral procedure to evaluate the Casimir effect within
source theory: the real part of the action gives the
Casimir energy, which is the only contribution we have in
the static effect; instead the imaginary part describes the
photon production, which characterizes the dynamical
situation. In this paper we present a calculation of the
average number of photons produced in the dynamical
Casimir effect for the ideal case of two perfectly conduct-
ing plates, using the zero-point energy summation
method. More explicitly, we consider two examples of
plate modulation: a pulse in time and a square-well
periodic potential. We demonstrate that for the case of a
periodic potential intense photon radiation may occur,
mainly as visible light. In all cases, the calculations are
expected to be adequate when the time scales of the fre-
quency modulation of the photons are long on the time
scale of the photon frequencies themselves, i.e., in the
adiabatic approximation.

II. FORWARD AND BACKWARD MOTION
OF AN ELEC:TROMAGNETIC MODE

tok(t) =C

2
el n tn nn.
L L d(t)

2 1/2

(2)

where I,nt, n=0, 1,2, ..., with the restriction that only
one integer at a time can be zero.

The Hamiltonian for one single mode is (see the Ap-
pendix for more details)

H(t)= —,'[P +cok(t)Q ] . (3)

FIG. 1. The distance between the two perfectly conducting
plates varies as a function of time. Before the modulation the
distance is d; and after the modulation stops, the distance is df.

The static Casimir energy for two perfectly conducting
plates separated by a distance d(L„=L=L and L, =d,
where L » d } is given by the difference between the
zero-point energy when the plates are placed at a distance
d and when the distance between them is infinite

HlcL2
U(d)=Eo(d) Eo(~)=--

720d

Now suppose that the distance d varies as a function of
time d (t), as in the example shown in Fig. 1. We assume
a constant initial value d; and after a time b, T the modu-
lation stops and d has the value dI.

In this case the frequency cok is a function of the time
cok(t}
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at(t) =

a(t)=
1/2

cok(t)

2' Q(t)+i 1

2cok t '6

' 1/2

P(t), (4b)

If we work in the Heisenberg picture and introduce the
creation and annihilation operators

1/2
cok(t)

Q(t) —i P(t), (4a)
Nk

Schrodinger equation, where t replaces the spatial coordi-
nate x.

Using a formalism originally due to Brown and Carson
[23], we can determine N&&(cof ) in terms of the scattering
solutions of Eq. (10b). For t ( —T and t ) T, Eq. (10b)
becomes

d
qkk(t}+co;fqkk(t) =0 .

with

[a,at]=1,
Eq. (3) becomes

H(t}=ficok(t)[at(t)a(t)+-,'] .

(4c)

P(t) =e (12a)

which represent a signal of frequency co moving forward
in time, or

Suppose for simplicity to; =tof =co. Equation (11) admits
solutions of the type

H, (t, )=Reek(t, )[at(t))a (t, )+-,'],
with

(6a)

CO k ( t ) ) =CO;
=C

'2 2
ml mm + en
L L

'2 1/2

(6b)

Before and after the modulation, the Hamiltonian H (t)
is the usual Hamiltonian for a simple harmonic oscillator.
Suppose that the modulation is on between —T & t & T.
Fort, & —T

$4I( t) —e +I'M& I (12b)

which represents a signal moving backward in time.
Equations (10b) and (11) have the same asymptotic
behavior. We can write two asymptotic solutions to Eq.
(lob).

One solution qf(t) (omitting the subscript kA, for sim-

plicity) gives a photon moving forward in time, which has
some probability to be scattered backward in time (see
Fig. 2)

and for t2 & T

H(t2 ) =k(t2 )[a (t2 )a (t2 )+—,
' ), (6c)

e '"'+Rb(to)e+' ', t + —~—
q (t)= '

Tf(to)e ' ', t~+ ~ .
(13)

with

k(t2 ) &f —C— 2
nl mm mn

L L df

2 1/2

(6d}

Tb(to)e+' ', t~ —~
e+'"'+Rf(co)e ' ' t~+ ~ .

(t)= '(14)

The other solution qb(t) gives a signal moving backward
in time, which has some probability to be scattered for-
ward in time due to the modulation (see Fig. 3)

The mean number of Casimir photons produced for a
given electromagnetic mode is

N(cof)=(O, t, ~a (tz)a(t2)~O, t, ) . (7)

Therefore a scattering matrix can be defined

Rb Tf
S=

Tb Rf (15}

N =g Nkk(cof ), (8)

The total number is obtained by taking the sum over all
the modes

The elements of the matrix are not independent because
the Wronskian function of any pair of solutions to Eq.
(10b) is a constant

where A. = 1,2 is the polarization index. The correspond-
ing energy is

AE =g fauf Nkk(tof ) .

We want to find an expression for N1,&. If we introduce
the complex quantity q1,&, such that

Q„k(t)=q„k+ql',k(t), (loa)

it is possible to show that qkk(t) satisfies the equation
(see, for example, Refs. [21,22])

d2

dt
(t)+uk(t)qkk(t) =0 . (lob)

Equation (10b} is formally identical to a one-dimensional
FIG. 2. Photon moving forward in time incident over the po-

tential col, (t}.
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III. PHOTON PRODU& IIo
FOR A PULSE IN TIM
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cosh (mtlr)
(20)

»0», (t) =c2
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Irl n.m

L L a
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er theackwar in time incident ovFIG. 3. Photon moving back
potential cgk( t).

nnb
a cosh(Irt /r)

Q„2 +
osh (Irtlr}

(21a)

tPi=const .
d

~[A 41]=Iti d,
—

d,
(16)

where

»0 =c nl/L} +(nm/L) +(Irn a 1 (211)

ollowing.o '
Wronskian functions atp g

toticd +00 and equatingt —+ —~ an
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and

Q1 =ci(Irnb/a) 2
n (21c)

2 —T 2w[qg, qI ]1 IRb I'= —
I TII,

W qb', qb]ITsI =1—IR/I

(17a)

(171}
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with

cos 0„
fRf„(co„)f

=
sinh (coke)+cos 8„

2

a

g'(t)

8„='1/(m/2) +Q„r (23b)

The mean number of photons produced for a given
mode is

2T,

[I—IRf (~k)I']

cos (8„)
sinh (cokr)

(24a)

We notice that in the limit cok~0 (V~(c ), N~ OD;

when ~k ~~, N ~0.
The dynamical Casimir energy is

FIG. 5. d as a function of time for the periodic potential
chosen for illustration in Sec. IV. The period is T =2T& +2T2.

cos On5E= 2fic g f d k
1

'1(/ k
~~

+ ( n n /a )
(2n ) sinh (co„r)

+co„q(t)=0,
dt2

where cok is given by Eq. (21b), and in the hills

(29a)

with k~~
=+(n.l/L) +(mm/L) . If we make the substi-

tution x =
(k~~ a /m)+ n. , the Casimir energy is given by

cf

dt2
+cok2 q(t)=0, (29b)

2L RC
"

2 ~ X
b,E=m2 g cos 8„f,dx, (25)a3 „," ~' sinh (yx)

I

where y = (acr/a ). In experimental situations, y is much
larger than one; therefore the integral in Eq. (25) can be
written as

i cok(t
—rT)q„=A„e +B„e (30)

with co„2=+co'„+Q„andQ„given by Eq. (21c).
We wish to determine the mean number of photons

produced by the modulation in a period ht =rT, where r
is a large integer. In the valleys [30]

—I cok(t —rTj

f(n, y)=4 f, dx x exp( —2xy)

2 2yn +1+2y "
=exp( —2yn )

3

and we can consider just the erst term in the series

(26)

The coeScients A„B„,belonging to successive values of
r, can be related by a matrix P, obtained by imposing the
continuity for q and its derivative at t =( —T2+rT) and
(T2+rT). Noting that the centers of the peaks have
coordinates t =rT,

A, +)
2L Ac 2 2y +2y+1

b,E-m cos 8,exp( —2y)
Q

3
y

3
(27)

=P (31a)

which is of order zero for y ))1. Therefore the pair pro-
duction is practically zero in any real situation.

with

(u, —ip&)e'

lNTtp»e

tp el&ST

(a, +ip, )e
(31b)

IV. PHOTON PRODUCTION
IN A TIME-PERIODIC POTENTIAL

As a second example we consider the case in which the
distance between the plates varies periodically as shown
in Fig. 5, where we have a succession of period barriers
with period T=2T, +2T2. In a given period T,d(t)
varies as follows: for —T2 —T) & t & —T2 and
T2 &t & T)+T2

where

a, (k, a, b) =cos(2cozTz )cos(2coT2 )

+—sin(2(o~T2 )sin(2(oT2 ),
2

P, (k, a, b) =sin(2coT2)cos(2co2T2)

——sin(2(oz T2 )cos(2co T2 ),E

(31c)

(31(1)

1

d'(t)

and for —T2 & t & T2

(28a)

and

P2(k, a, b) = +sin(2(o2T2), (31e)

1 1 (1+b ),
d (t) a

(28b)

where b is the modulation strength. Therefore in the val-
leys (T2 —T & t rT & —T2)—

e = (co2/co) + (co/co2),

g = (co/co2) —(co,/co),

where (x„p,,p2 satisfy the condition

(310

(31g)
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2+p2 p2 —
1

By iteration we have sin[(r +1)y]
sin(ry )

(39b)

A„ Ao
We have photon production for a given mode only if the
corresponding frequency cok satisfies the relation (assum-

ing T1 = T2 =T /4)

(32)B, Bo

with the condition that for r ~+~ the limit of P' should
exist. If we consider the eigenvalue problem for P, we
have

T T
cos(yk ) =cos —

c02k cos —cok

PHOTON PRODUCTION BY THE DYNAMICAL CASIMIR EFFECT

(31h) where

P=UP U-' P"=UP'U-'
d (33)

where U is the unitary matrix that diagonalizes P and Pd
is the corresponding diagonal matrix. The eigenvalues of
P are the roots of the characteristic equation

1 +N2k
2

N2k

~ T T
2N2k s 2Nk

(40)

p —p Tr(P}+det(P)=0,

p~ = ,' I Tr(P)—+"t/[Tr(P))' 4] . —
(34a)

(34b)

I
Tr(P) I

~ 2 . (35)

Acceptable solutions are obtained if and only if p+ are
complex conjugates

The corresponding number of photons produced is
'2 '

2
1 ~k 2k . T s'" (r'yk }

Sln N2k4 &2k &k 2 sin (yk }
(41)

If we indicate with Irok] the set of frequencies such
that

If we define a real parameter y, such that
cos(yk ) =+1 (42)

cos(y) = 1Tr(P), (36a)
and Nk &N„where N, is the cuto8' frequency, we notice
that in the limit r ~ 00 we have

with

p =e, p =e (36b}

sin rfk
sin fk

1f Nk Nk

0 1f cokACOk
(43)

iP2 iP2

a frequency N is allowed if the expression

cos(y) =
—,'Tr(P) =a,cos(coT)+P,sin(coT)

is satisfied.
Consider the matrix U

(p+e' —A ) (p e' —A )

(36c)

(37)

r NkN- —g
k N2k

2
N2k . 2 T

Sin —
N2k

k

(44)

Let us do a more detailed calculation in the limit
L »a. If we introduce the variables

Therefore the total number of photons produced is on the
order of

where A =a1+p1. If we impose the boundary condition
given by Eqs. (14)—(32), after substituting Eq. (33) in Eq.
(32), we get

=T K
C

2 Q
(45a}

(45b)

1
U

—1

Rf 0

Tb
PrU —1

d (38) cok and co2k can be written, respectively, as

From Eq. (38) we can derive an expression for Rf and
tllus IRf I

&x2+n2,
Q

cok2= +x +n (1+b ),

(46a)

(46b)

IR/I'=
a, +P1—28 cos(y)+8

(39a)
and Eq. (40) becomes

cos(yk)=h(x, y, n, b}=cos[y+x +n (1+b )]cos(y+x +n )

+x +n(1+b ) +x +n+ sin[yeux +n {1+b )]sin(yVx +n ) .+x2+n +x +n (1+b )
(47)
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We notice that in the limit x ~~, h -cos(2xy).
The total number of photons is obtained by summing

Eq. (41) over the values of co& satisfying Eq. (40) or (47).
For the moment we keep fixed the values of y, n, b and we
vary x. Let us call x;, i =1,2, ..., m, the solutions of Eq.
(42) up to a cutoff value x . We assume for simplicity
that the cutoff x, is a solution of Eq. (42) and x, =x . As
we shall see below, this will not change the final result.

The number of photons produced for a given n can be
expressed as(A =L2)

N(y, n, b, r, A, a)

Xp =Xi, X 1 =Xp+EX x2 =xp+25x, . . .
(53a)

x~ =xp+ Jgx, . . . , x„=xi+1—xp+r6x

where

x-+ 1

I(y, n, b, r) = G(x,y, n, b, r)dx,
X.

in the limit r~ ~. The existence of this integral is en-
sured by the continuity of 6 in the closed interval
[x;,x;+, ]. Therefore we can choose the following parti-
tion to evaluate it:

m. A '+
&

2 g f(x,y, n, b)g (x,y, n, b, r)dx, (48a)
4a

Xi+ 1 Xi
AX=

r
(53b)

where f (x,y, n, b) is
' 1/2

X +l1
(x,y, n, b)=x

x +n (1+b )
' 1/2 2

x +n (1+b2)
X +n

Xsin [y+x +n (1+b )],
g (x,y, n, b, r) is the composite function given by

sin [ryk(x, y, n, b}]
g(x,y, n, b, r) =

sin [y (kxy, n, b)]

(48b)

(48c)

Applying the definition of the Riemann integral we can
write [31]

I(y, n, b, r)= lim g G(xo+jbx, y, n, b, r)bx
f—+ 00 ~J=

(54)

For r large, G(x,y, n, b, r) is different from zero only for

X Xp, X„ (55}

I(y, n, b, r)- lim [G(xo+bx,y, n, b, r)

Therefore only two elements of the sum in Eq. (54) are
different from zero. Hence I(y, n, b, r) can be approximat-
ed as

and x,. and x;+1 are the end points of a given band. The
total number of photons produced by the time periodic
potential can be expressed as

n

+G(xo+rhx, y, n, b, r )]Ax

Xi+1=2r
r

(56)

N= g N(y, n, b, r, A, a) .
n=1

To evaluate the integral given by Eq. (48a) we notice
that g(x,y, n, b, r) has singularities at the points x =x, ,
which are removable because the limit for x going to x;
exists and is equal to r We can .therefore define a con-
tinuous function G(x,y, n, b, r) as

g(x, y, n, b, r) if x, (x (x,+,
G(x,y, n, b, r)= '

2 (49)r if x=x, ,x, +, .

The integral

i+1
J(y, n, b, r, A, a)=

z f(x,y, n, b)G(x, y, n, b, r)dx

(50)
has the same value of %(y, n,, b, r, A, a) because the two in-
tegrals differ only for a finite number of singularities.
Moreover J&0 because the integrand function is non-
negative and J=0 only if the integrand function is zero
for every value of xE[x;,x;+, ]. Applying the mean
value theorem we get

The last expression in Eq. (56) has been obtained by sub-
stituting in it the values of hx and 6 at x =x;,x;+1 in the
limit r ~~. hence N(y, n, b, r, A, a) is

N(y, n, b, r, A, a)=J= f(x;,y, n, b, r)2r(x;+& —x;) .
mA

4a

(57)

The total number of photons produced per pulse, per unit
of area, is obtain by substituting Eq. (57) in Eq. (48d)

n
C Pl

(N/Ar)= g g f(x;,y, n, b)(x;+, —x;) . (58)
n = li =1

In experimental situations, y is a very large number;
therefore the left-hand side of Eq. (47) oscillates very rap-
idly. Let us make some numerical estimates. If we
choose

a —10 cm, T-10 s, b -5,
Eq. (46c) can be written

i+1
2f(x;,y, n, b) G(x,y, n, b, r)dx, (51)

v- l. 5 X 10' +x +n Hz . (60a)

where x; is an appropriate value in the interval [x;,x;+ &].
We want now to evaluate the integral in Eq. (51) given

by y-4. 7X10" . (60b}

If the cutoff frequency is v, —10' Hz, V x + n cannot
exceed a number of the order of 7. Moreover
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If we choose a given value of x, and a small interval

around x, for example, of the order of 10, we can al-

ways find at least one value of x such that the left-hand
side goes to kl. Therefore the sum over i in Eq. (58) can
be approximated with an integral as

m x (,n)

g(x+i x } f dx
i=1

(61)

The number of photons produced per unit area per
pulse is

N 1 m
' "'"' +x+ri

rA 4uz 0

I.= E —8
8~ n

In the Coulomb gauge V A=O,

(A 1)

modulo the nonseparability of the Hibert spaces which is

present in all relativistic quantum field theories. For
completeness of presentation we outline the method
which can be employed and refer the reader to the work
of Calucci [17]for an exhaustive treatment of the details.

Suppose that we have a cavity in the spatial region Q.
The walls are considered to be perfectly rejecting. The
Lagrangian of the electromagnetic modes inside the cavi-

ty is given by

2
+x +n (1+b ) dx&x'+n'

1 BA(r, t}
E(r, t)= ——

c t

B(r,t)=VX A(r, t),
(62)

one has the normal mode expansion

(A2a)

(Azb)

where n, =7 and x, (n) is the cutoff value of x for a given

n. In Eq. (62} we have substituted sin with its mean
value. Evaluating the integral

A(r, r)=gg (r)A (r;Q(t)), (A3)

1 ~b& "~ x, (n)b
gn ln 1+

a „=i x(n) +n (1+b )

(63)

The above expression grows as ln(n, ) for large n, and it
is estimated to give, for the number of produced photons,

—10"/(area pulse) . (64)

Therefore we have a large production of photons, mainly
in the visible region.

V. CONCLUSIONS

We have shown that it is possible to create intense light
by modulating the vacuum between two perfectly con-
ducting plates when the distance between them is
sufficiently small. It is possible to apply the method dis-
cussed above to different geometries or the presence of
dielectrics. As suggested by Schwinger, the intense blue
light produced in the sonoluminescence phenomenon
[32,33] can be interpreted as being due to the dynamical
Casimir effect. We believe that the work detailed in this
paper is a confirmation of Schwinger's idea that the
dynamical Casimir effect can produce intense radiation.

where Q(t) indicates that the volume of the cavity varies
with time. If the geometry of the cavities is sufficiently
simple (for example, the spherical geometry or rectangu-
lar "box" geometry of this work), the quantum numbers

{a] retain their definition and the wave function of the
modes in the cavity have at all times the form
%(. . . ,g, . . . , t) no matter what the size of the cavity.
Inner products are defined as

&+f1+;&=f qf'+;gdg. . (A4)

L= —,'g [K pQ Qp+M pQ Qp Npg Qp], —
aP

(A5)

from which the Hamiltonian may be constructed. The
structure of the Lagrangian with moving mirrors has ad-
ditional items from the fact that the walls are moving;
i.e., the cavity electric fields are found from Eqs. (A2a)
and (A3) to be

There are no further complications introduced from the
fact that one has moving mirror walls beyond the nonse-
parable nature of the Hilbert space present even for non-

moving mirror walls.
However, the Lagrangian implied by Eqs. (Al) —(A3} is

of the general form
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APPENDIX

In the original work the notion was discussed that
moving mirrors were in contradiction to the conventional
Hamiltonian description of quantum mechanics [14). In
more recent work this has been shown not to be essential.
Moving mirrors can indeed be described in the conven-
tional Hamiltonian formulation of quantum mechanics,

E(r, t)= ——g [Q A (r;Q(t))+Q A (r;Q(t)) .
c

(A6)

L,d;,b„;,= —,
' g[gp —a) (Q(t)) Q ], (A7}

used in this work.

When the walls are moving on a time scale slow on the
scale of the mode frequencies, then the second term on
the right-hand side of Eq. (A6) can be neglected, as dis-
cussed by Calucci. The resulting Lagrangian then has
the well-known adiabatic form
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