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where 4, P„p, are the usual excitation spectrum

parameters and u is the speed of sound. Putting
these quantities into Eq. (2) and remembering that
7' =—T, we obtain the line labeled 7' in Fig. 1 which
is the same as the theoretical core radii deter-
mined from Pollock's theory presented in Ref. 1.
The vortex-core radii determined from the phonon
excitations alone are shown as the dashed line in

Fig. 1. It can be seen that whereas rotons contrib-
ute little to bulk fluid thermodynamic properties
below Q. 5'K, they begin to influence the vortex-
core region in Pollock's theory as low as 0. 35 K.

One might argue that the thermodynamic quanti-
ties C and p„ought to be calculated at the bulk
temperature T rather than the "effective" tem-
perature 7'. In our opinion, this runs counter to
the philosophy of the model but, in any event, this
approach leads to the curve labeled T in Fig. 1.
Although closer to the experimental data, it still
is in gross disagreement with it.
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The memory function associated with the phase-space density correlation function has
previously been calculated in the low-density limit by Mazenko. In this piper a simple,
classical method of arriving at his primary result is pointed out. The application to self-
correlations is also noted.

A considerable amount of attention has recently
been devoted to the classical correlation function,

S(r —r ', p p', t —t') = ( f(r pt) f(r' p't')
&

- &f(r pt) &&f(r'p't') &, (i)

where f(r pt) is the density in phase space,

f(r pt) = ', 5(r - r, (t)) 5(p -p;(t)), (2)

and the sum extends over all particles in the sys-
tem. In order to determine S without the occurrence
of unphysical secular effects, one developes ap-

proximations for its memory function cp, which is
the kernel in the Langevin-like equation,

~~

p t

+ ' p S(r, pp, t)=J dtJid tdp'
Bt m

0

x y(r —F, p p, t —t )S(r, pp, T) . (3)

The fact that S satisfies an equation of this form'
is well known. At least two useful approximations
to y have appeared in the recent literature: a
weak-coupling expansion by Akcasu and Duderstadt
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and Forster and Martin, and an expansion to low-
est order in the density by Mazenko.

The work of Mazenko has received particular
attention because it constitutes a generalization of
the linearized Boltzmann collision kernel to ar-
bitrary wavelengths and frequencies. However,
his calculation is a formidably difficult one. Be-
cause of the usefulness of his result, it seems of
interest that the result can also be obtained by a
much shorter method. It is hoped that such a
derivation might serve to make his calculation more
accessible.

In this paper a short cut for obtaining the Mazenko
memory function is pointed out. Roughly speaking,
it consists of expanding each term in (3) and read-
ing off the coefficients in the expansion of y. More
about the method is said below. Before proceeding,
we should emphasize that Mazenko has accomplished
much more than a derivation of the memory func-
tion. He has also shown, among other things, that
it satisfies certain sum rules, that it reduces to
the linearized Boltzmann collision kernel in the
appropriate limit, and that it is consistent with
the conservation laws. ' The present discussion
does not add to these important topics.

The general procedure is as follows. Fourier
and Laplace transforms are applied to (3), ac-
cording to

The inverse can be shown to exist. The expansion
of y in a small parameter is obtained merely by
expanding S in that parameter and inserting the re-
sult into (6). We expand S ' by means of the iden-
tity (S~+ S,) ' =So' —So

' S,(SO+ S,) '. For most
small parameters, including the density, this ex-
pansion of S is to be used only for the purpose of
finding cp; it is not physical except at very short
times. If the notation seems confusing, the
reader will note that this procedure is equivalent
to expanding S and solving (5) in each order for q&.

For simplicity, the present calculation is set up
along the latter line.

It is convenient to work in the grand canonical
ensemble, where a density expansion is first for-
mulated as an expansion in the fugacity P = e~'.
We actually find the first term in the fugacity ex-
pansion of y. Since ( goes to zero linearly with
the density, this term is also the leading term in
the density expansion. (The same program is fol-
lowed by Mazenko. ) A function F of the particle
coordinates has the average

(F)=-.-~(P)y) ~&

' ~ dl . . . dtte »ar('""&-
~0 ¹h

x E(1 N), (8)

S(k, pp', t) = f d re ' 'S(r, pp', t),

S(k, pp', z) =i f dte'" S(k, pp', t),

to give

z — S(k, pp', z)+ S(k, pp', t=o)
m

(4)

where 1= (r„ l&q), etc. , 0„is the Hamiltonian of
the N-particle system, and h is Planck's constant;
:- is the grand partition function, and the limit
V- ~ is understood as the final step in the averaging
process. Restricting attention to a two-body po-
tential v(r) of range ro, we can eliminate the
fugacity in terms of the density by the familiar
cluster expansion

n = y [1+y f d rf(r) + O(yro ) ], (9)

d peak, pp, z Sk, pp', z . 5

Therefore the memory function is given by

) (b, b)&', ~) j"&'0 ~- ) &(b, )&b, z)

+S(k pp t 0) S (k pp', z), (6)

where y= r„(2&Tm/Pk )
t (called the activity) and

f(r) = e z""& —1. Inversion of (9) gives the activity
in terms of the density,

y=n[1 —n f d rf(r)+O(nro)

It is trivial to work out the first few terms in the
expansion of Sin powers of f, or equivalently of y.
They can be written as

where S ' is the matrix inverse of S with respect
to the momentum variables

S= yS, + y Sz + O(y ), (1 la)

fd pS(k, pp, z) S '(k, pp', z) =5(p —p') . S, (r, pp', t)= (i—b—t) b(b)il(p —p'), (1)b)

.
2

Sz(r, pp', t) = —, dld24(P, ) C(Pz) e "'"& "z' e" "z' ~ 5(x —x;) 2 5(x' —x, )
2b i=1 j =1

4=1
[e" 'o" ' 5(x —x;)]5(x' —x, ) —C (p) C(p') . (llc)



988 C. D. BOLE Y

In these expressions, 4 is the Maxwellian

3/2
@,(p)

t SP /-Rm

27rm

the two-body streaming operators are

iLO(12) = ~ vi+—

(i2)

x il-&(12) ' 5(x' -x,) . (16)

The transform of this equation, in conjunction with
(15), leads to

q i (k, P P"', z) 4 (p') = i —+ i S,(k, pp"', t)I g 0

8iI.,(12) = —v, v(i, —~, ) .
BP1 BP2

ir, (12) = il.,(12)+ il.,(12),

and x= (r, p), x' = (0, p'). Note that the symme-
tries of S persist to each order of the expansion.

We find the fugacity expansion of p by taking

p = po+X pl+ O(X ) (14)

and matching powers of y in (5). It is obvious that
F0=0, since S, evolves by free streaming. Thus
we find for y„

+i dte'
~~

d i.e '

x [right-hand side of (16)].

q j"'(kp)= — f(ti) 4(P) . (16)

This shows that q&, breaks up into a static part (in-
dependent of z) and a "collisional" part: pi = q i"'
+@1". They are given by, respectively, the first
and second terms on the right-hand side.

The static part is readily reduced to

x S,(k, pp, z) +S,(k, pp', t=0) . (15)

For further reduction it is convenient to note that
Sz(r, pp', t) satisfies

(
a p - ~ p'—+ —V —+—~ V Sz(r, P P, t)

Pl ~t m

1"
di d2 C (p, )C (p ) e z""& '&'

2T 1 2

2e'""2)&I., 12 &~ ~ x -x,.
j=1

To zero order in the fugacity, the direct correlation
function is given by c(r)=f(i), and so (16) contains
the Fourier transform of c. Therefore, at low

density, y"'= -np ~ kc(k)C(p)/m, the factor of n

coming from the expansion parameter in (14). This
also happens to be the general expression, 7~ 8 ob-
tained most easily by a large-z expansion of (5).

The collisional part of y1 can be reduced by the
change of variables

p1+p2= 2n~ p1 -p2= 2p,

r1+r2= 2R~ r1 —r2= r ~

and integration over r, R, and t. The result is

(p,'"(k, pp', )C(p')=, fd'nd'pd'i e " ' g(i )v;v(F) [e'""t'5(p' —ci —p)~P; 8Pz VVE

e""'"5(p-' —5+p) ] z—
-1i2—-v-vv(r):- V, v(F )e '"'"'5(p o. —p) . (20)—

SZ I Bp

When the factor of n in the expansion parameter is
taken into account, this agrees with the Mazenko
expression.

In conclusion, it seems worthwhile to point out
the corresponding memory function for the self-
correlation function,

S,(r, pp', t) =(', 5 (r r,.(t)) 5(p —p,.(t)—)

x5(r, (0)) 5(p'-P, (0))) . (21)

The quantity 8, satisfies a Langevin equation like
(3), with memory kernel y, . The preceding method

applies equally well to self-correlations. We ob-
tain y, merely by ignoring dynamical correlations
between different particles in the collisional part
of y. There is no static contribution. Thus to
lowest order in the density, y, /n is given by the
right-hand side of (20) with the term e ' '" t

x5(p ' —3+p) removed. This kernel is a wave-
length- and freiluency-dependent generalization of
the kernel in the neutron transport equation.

The application of the present method to higher
orders in the density is being studied. A quantum-
mechanical discussion is also possible, but special
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Recent line-shape experiments on the absorption series of cesium pressurized by various
concentration ratios of argon and helium provide an opportunity to study the additivity of per-
turber interactions. Calculations which assume additivity and which assume additive adiabatic
collisions agree well with the reported data. The results suggest that a systematic study of
such experiments using accurate digitized data can furnish criteria for the valid applications
« the additivity approximation.

A variety of approximations are invoked in order
to compute the pressure effects of neutral perturb-
ing atoms on atomic spectra. One of the most com-
mon is that the effects of various perturbers add

as scalars, an assumption that is not generally cor-
rect. On the other hand, the principal features of

line structure can be explained for a variety of ex-
periments by calculations which employ the approxi-
mation. ' The criteria for applying other common
approximations are well established, e. g. , the im-
pact approximation, and the classical-path approxi-
mations. ' These criteria appear as inequalities and

there is rarely any experimental evidence to indi-
cate whether the inequality should read "very much

greater than" or "about equal to." In order to ob-
tain realistic reliable comparisons with experiment,
it is important to establish how sensitive line-shape
theories are to the assumptions of additivity.
Viewed differently, it would be very interesting if
line-shape studies could be used as a probe of the
phenomena of nonadditivity. The purpose of this
paper is to indicate some requirements that the
additivity assumption imposes on the computed
spectra and to relate these requirements to recent
experimental work of Ch'en and Garrett which was
focused on these questions.

The experiments studied the effect of various
mixtures of inert gases on the absorption spectrum
of the principal series of cesium. For example,
Fig. 1 of Ref. 4 displays three absorption contours

of the fourth doublet of cesium, all measured at
251 'C: The first corresponds to the case when

110.5 lb/in. a of pure argon is used to pressurize a
small amount of cesium, the second is for 110.5
Ib/in. ~ of helium, and the third is for 221 Ib/in. ~ of
a mixture of argon and helium in equal concentra-
tions. (It is this experiment that we shall focus on
in the sequel. ) In general, their results indicate
that the shifts of the lines in the pure cases add

algebraically to yield the shift in the mixed case
and that the sum of the widths in the pure cases is
about —,

' of the width of the line in the mixed case.
If, in fact, the effects of helium and argon are

independent, the resultant line should be a convolu-
tion of the lines in the pure cases. That such a
convolution produces qualitative agreement with the
experimental results can be seen clearly by con-
sidering two idealized shapes:

p (( ) e ((u —d& /2d

p ( )
-(Gl+ d& /3U

The resultant shape is proportional to e "
which is a line centered at &u =0 (the sum of the
shifts) and which has a width that is 0. /1 times
the sum of the original widths.

The line shape is computed by taking the Fourier
transform of the correlation function C(t),


